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Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with 
increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the 
immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review 
provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infec-
tions influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative 
stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter 
systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These 
pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. 
The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of 
viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
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DENV-3	� Dengue virus type 3
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MAPK	� Mitogen-activated protein kinase
MCP-1	� Monocyte chemoattractant protein-1
MCU	� Mitochondrial Ca2+ uniporter
MDA	� Malondialdehyde
mGluR5	� Metabotropic glutamate receptor 5
MIP-1α	� Macrophage inflammatory protein 1 alpha
MOI	� Multiplicity of infection
MPR	� Mannose-6-phosphate receptor
mTOR	� Mammalian target of rapamycin
NAD+	� Nicotinamide adenine dinucleotide
NADPH	� Nicotinamide adenine dinucleotide 
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NFTs	� Neurofibrillary tangles
NF-κB	� Nuclear factor kappa B
NLRP3	� NLR family pyrin domain containing 3
NLRs	� NOD-like receptors
NMDA	� N-methyl-d-aspartic acid
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NO	� Nitric oxide
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NRF2	� Nuclear factor erythroid 2-related factor 2
NS4B	� Nonstructural protein 4B
O2.-	� Superoxide anions
OONO-	� Peroxynitrite
p70S6K	� Phosphorylated 70-kDa S6 kinase
PARP	� Poly ADP-ribose polymerase
PD	� Parkinson’s disease
PERK	� Protein kinase RNA-like ER kinase
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PINK1	� PTEN-induced kinase 1
PKA	� Protein kinase A
PMP22	� Peripheral myelin protein 22
PPP	� Pentose phosphate pathway
PrP	� Prion protein
PrPC	� Cellular prion protein
PrPSc	� Scrapie prion protein
PRRs	� Pattern recognition receptors
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Pyk2	� Proline-rich tyrosine kinase 2
RABV	� Rabies virus
RANTES	� Regulated on activation, normal T-cell 

expressed, and secreted
RIG-I	� Retinoic acid-inducible gene I
RLRs	� Retinoic acid-inducible gene-I-like 

receptors
ROS	� Reactive oxygen species
sAPPα	� Soluble APP alpha
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus 2
Ser51	� Serine51
SOD-1	� Superoxide dismutase 1
SQSTM1	� Sequestosome 1
TBARS 	� Thiobarbituric acid reactive substances
TBEV	� Tick-borne encephalitis virus
TCA​	� Tricarboxylic acid cycle
TDP-43 	� Transactive response DNA-binding pro-

tein 43
TGF-β	� Transforming growth factor beta
TLR	� Toll-like receptor
TNF-α	� Tumor necrosis factor alpha
TNF-β	� Tumor necrosis factor beta
TRADD	� TNF receptor-associated death domain
TRX-1	� Thioredoxin 1
TSPO	� Translocator protein

2882 Molecular Neurobiology (2024) 61:2881–2903



1 3

UPR	� Unfolded protein response
VEEV	� Venezuelan equine encephalitis virus
VP1	� Viral envelope protein 1
VZV	� Varicella zoster virus
WNV	� West Nile virus
ZIKV	� Zika virus
α-CTF	� α-C-terminal fragment
α-syn	� Alpha-synuclein
β-CTF	� β-C-terminal fragment

Background

Neurodegeneration is the progressive atrophy and loss of 
function of neurons, glial cells, and the neural networks in 
the brain and spinal cord. This degeneration and death of 
neurons often leads to several neurodegenerative diseases 
that cause complex and serious medical conditions that 
worsen over time with motor, cognitive, and autonomic 
dysfunction, such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Huntington’s disease (HD), amyotrophic lat-
eral sclerosis (ALS), and prion diseases [1]. Different neu-
ropathologic mechanistic processes cause neuronal death in 
neurodegenerative diseases including the oxidative stress 
due to the overproduction of free radicals with the decline of 
cellular antioxidant defense systems. Excessive free radical 
formation induces mitochondrial dysfunction, mitochondrial 
dynamic imbalance, and impaired bioenergetics which con-
tribute to the redox imbalance that can cause malfunctioning 
of the endoplasmic reticulum (ER), resulting in the abnor-
mal protein accumulation, calcium accumulation, and intrin-
sic cell death pathway activation [2]. Severe or prolonged 
stress activates cell death pathways, including autophagy and 
apoptosis [3]. Neuronal loss in neurodegenerative diseases 
is often associated with the deposition of extra- and intra-
cellular misfolded proteins that are toxic to neurons, impair 
mitochondrial redox activity, and increases the generation 
of oxidative stress that activates apoptosis signaling to trig-
ger cell death [4]. The activation of an immune response by 
microglia and astrocytes which occurs in response to the 
cytotoxic consequences of the aggregation of misfolded pro-
teins induces the production of several inflammatory factors 
that promote chronic neuroinflammation associated with the 
progression of neuronal loss in the CNS [5]. These interre-
lated mechanisms are involved in the death and dysfunction 
of neurons in neurodegenerative diseases.

Neurotropic viruses are common causes of CNS infec-
tions, both acute and chronic viral neurologic syndromes, 
including meningitis, encephalitis, encephalomyelitis, and 
myelitis [6]. Viruses can enter the CNS via two major 
routes: blood circulation (viremia) and crossing the 
blood–brain barrier (BBB) or entering via peripheral nerve 

endings. Viral entry into the brain through the BBB can 
occur through three different mechanisms: the transcel-
lular pathway (virus passage through infected endothe-
lial cells), the “Trojan Horse” pathway (virus transport 
using infected immune cells), or the paracellular pathway 
(virus entry through disruption of junction proteins, the 
actin cytoskeleton, or the basal lamina) [7, 8]. The inva-
sion of neurotropic viruses into the CNS is associated 
with neurodegeneration through a variety of mechanisms. 
Viruses primarily infect neurons through interaction 
with host attachment factors and receptors, followed by 
either direct fusion to the plasma membrane (enveloped 
viruses) or endocytosis (non-enveloped viruses) and sub-
sequent delivery of the viral genome (DNA or RNA) to 
the cytosol or the nucleus of the infected cell [9]. Upon 
entry, the virus replicates within neuronal cells, and the 
accumulation of viral antigens induces an increase in oxi-
dative stress which leads to the activation of both innate 
and adaptive immune responses. Viral components are 
recognized by host pattern recognition receptors (PRRs) 
such as Toll-like receptors (TLRs), C-type lectin receptors 
(CLRs), NOD-like receptors (NLRs), Retinoic acid-induc-
ible gene-I (RIG-I)-like receptors (RLRs), and cytosolic 
DNA sensors (CDS) which are widely expressed in the 
CNS cells including microglia, neurons, astrocytes, oli-
godendrocytes, epithelial cells, and innate immune cells 
[7]. Activation of PRR signaling triggers the production 
of inflammatory mediators in order to clear viral invasion. 
However, chronic activation of these receptors can cause 
inflammatory damage [10]. Neurotropic virus infection 
induces neuronal damage through direct killing, cell lysis, 
increased free radical release, perturbation of the cellular 
stress response, cellular activation of neuroinflammation, 
and induction of apoptotic signaling leading to neuronal 
cell death [11, 12]. In addition, viruses can infect neuro-
glial cells, which results in the activation of astrocytes and 
microglia, leading to the production of numerous proin-
flammatory cytokines. The overproduction of proinflam-
matory cytokines induces an increase in the permeability 
of the BBB, which allows the virus to easily enter the 
CNS. Moreover, the increase in proinflammatory cytokines 
induces neuroinflammation, which leads to pathological 
changes such as cellular infiltration, perivascular cuffing 
meningeal disruption, neuronal shrinkage, and plaque for-
mation in brain tissues. Viral infections disrupt the cel-
lular function of neurons, such as metabolic pathways and 
neurotransmitter synthesis, which result in neuronal and 
brain dysfunctions. Viral infections implicate pathogenic 
etiology in neurodegenerative diseases. In this review, we 
provide and summarize the molecular mechanisms of neu-
ropathogenesis associated with neurotropic virus-induced 
neurodegeneration.
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Viral Infection Induces Oxidative Stress

Infection with neurotropic viruses promotes oxidative 
stress, which is associated with excessive production of 
reactive oxygen species (ROS) and insufficient cellular 
antioxidant defenses. The disturbance in the oxidant–anti-
oxidant balance leads to potential cellular damage in the 
host cell. ROS can damage cell components such as nucleic 
acids, lipids, and proteins and subsequently disturb their 
functions, contributing to neurodegeneration conditions in 
the CNS. Mitochondria are the major source of intracel-
lular ROS and antioxidant enzymes, which maintain redox 

balance. Neurotropic viruses causing both acute and slow 
infection can induce the generation of ROS, which can 
initiate the lipid peroxidation process and play a critical 
role in cellular death (Fig. 1).

Japanese encephalitis virus (JEV; family Flaviviridae) 
infection can cause Japanese encephalitis in humans with a 
high fatality rate in severe cases, and ~30–50% of survivors 
experience serious permanent neurologic sequelae or psy-
chiatric sequelae [13, 14]. JEV infection increases the level 
of ROS production, which increases neuronal cell death trig-
gered by both mature viruses and replication-incompetent 
virions [15]. ROS overproduction together with a decrease 

Fig. 1   Neurotropic viral infection induces neurodegeneration through 
a variety of cellular mechanisms. Viral infection affects several host 
cell response mechanisms to attenuate neuronal functions, includ-
ing (i) increasing reactive oxygen species (ROS) by interfering with 
the electron transport system and disrupting the production of anti-
oxidants, (ii) promoting neuroinflammation by increasing proin-
flammatory cytokine secretion from infiltrated inflammatory cells 
and infected neuronal cells such as microglia and astrocytes, which 
then (iii) activates the apoptosis signaling pathway by inducing both 
intrinsic and extrinsic signaling pathways leading to neuronal death 

in the CNS. Abbreviation: Cyt c, cytochrome c; CoQ, coenzyme Q; 
BCL-2, B-cell lymphoma 2; BAX, BCL-2 associated X; FAD, flavin 
adenine dinucleotide; FADH, flavin adenine dinucleotide hydride; 
NADH, reduced nicotinamide adenine dinucleotide; NAD+, nico-
tinamide adenine dinucleotide; TNF-α, tumor necrosis factor alpha; 
TRADD, TNF receptor-associated death domain; CAT, catalase; 
SOD, superoxide dismutase; GPx, glutathione peroxidase; GR, glu-
tathione reductase; TRX, thioredoxin; TLRs, toll-like receptors; 
TCA, tricarboxylic acid
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in membrane fluidity in JEV-infected neuronal cells causes 
severe cytopathic effects and subsequently contributes to 
neuronal cell death [16]. JEV infection increases the lev-
els of superoxide anions (O2.-), nitric oxide (NO), and 
peroxynitrite (OONO-) in neurons and glial cells [17–19]. 
Excessive O2.- production during viral infection was also 
observed in neuronal cells infected with other members of 
Flaviviridae family, including West Nile virus (WNV) [20] 
and dengue virus type 2 (DENV-2) [21], leading to host cell 
apoptosis.

Venezuelan equine encephalitis virus (VEEV; family 
Togaviridae) causes severe zoonotic disease in humans, and 
approximately 4–14% of cases develop serious neurological 
complications and 1% develop lethal encephalitis [22–24]. 
VEEV infection significantly increases in ROS levels in 
astocytoma U87MG cells [25]. An increase in NO forma-
tion together with the activation of inducible nitric oxide 
synthase (iNOS) was observed in the brains of mice infected 
with VEEV [26]. The overproduction and activation of 
malondialdehyde (MDA), a lipid peroxidation marker, was 
detected in the brains of JEV-infected animals [27]. Lipid 
peroxidation induced by VEEV has been shown to increase 
the concentration of thiobarbituric acid reactive substances 
(TBARS), a byproduct of lipid peroxidation, in the mouse 
brain [26].

Rabies virus (RABV; family Rhabdoviridae) is a deadly 
virus that infects the CNS and causes encephalitis, ulti-
mately resulting in death in mammals [28]. RABV infection 
is shown to increase the ROS production in mouse neuro-
blastoma cells [29]. The viral component of RABV plays a 
critical role in the induction of oxidative stress [30]. Immu-
nostaining for 4-hydroxy-2-nonenal (4-HNE) indicated evi-
dence of lipid peroxidation associated with oxidative stress 
that causes axonal injury, as shown by axonal swelling and 
reduced axonal growth in the dorsal root ganglion of RABV-
infected mice [31]. Another member of the Rhabdoviridae 
family, Chandipura virus (CHPV), an enveloped RNA virus 
that causes acute encephalitis mainly in children, has been 
reported to induce neuronal apoptosis by stimulating oxida-
tive stress. CHPV infection increases the intracellular Ca2+ 
secretion, which further increases ROS, superoxide produc-
tion levels, and mitochondrial dysfunction within CHPV-
infected cells and causes neuronal death in vitro and in vivo 
[32–34].

Enterovirus 71 (EV71; family Picornaviridae) is a major 
causative agent of hand, foot, and mouth disease (HFMD) 
with fatal neurological complications in young children. 
EV71 infection can lead to increased ROS generation and 
activation of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase, which in turn enhances EV71 infection 
in neural cells [35–37].

Oxidative stress is also seen in viruses causing latent or 
slow infections, such as herpes simplex virus (HSV; family 

Herpesviridae) and human immunodeficiency virus (HIV; 
family Retroviridae). Herpes simplex encephalitis is caused 
by herpes simplex virus type 1 (HSV-1) and is a common 
cause of sporadic focal encephalitis worldwide [38]. Intra-
cellular ROS generation in response to HSV-1 infection was 
observed in microglia [39] and neural cells [40]. HSV-1 
infection causes oxidative stress and induces the release 
of bioactive lipid peroxidation byproducts, MDA/hydroxy-
alkenals (HAEs), in cultured mouse neural cells, which is 
necessary for virus replication [40]. HIV causes immuno-
deficiency, which leads to acquired immunodeficiency syn-
drome (AIDS). HIV infects the CNS and enhances neuro-
toxicity, which directly harms the brain and manifests as 
HIV-associated neurocognitive disorders (HANDs) [41–43]. 
Several component proteins of human immunodeficiency 
virus type-1 (HIV-1) enhance ROS production in neuronal 
cells, including neurons, microglial cells, and astrocytes, by 
different mechanisms [44–46]. The HIV-1 transactivator of 
transcription (Tat) protein induces the production of ROS 
and significantly induces DNA breakage [47]. Increased lev-
els of nitroxidative stress marker proteins such as NADPH 
oxidase, cytochrome P450-2E1 (CYP2E1), and iNOS are 
observed in HIV-1 transgenic rat brains [48].

ZIKV targeting of neuronal cells causes neurologi-
cal complications such as congenital microcephaly, Guil-
lain–Barré syndrome, transverse myelitis, and meningoen-
cephalitis [49, 50]. ZIKV impairs mitochondrial structure 
and function, as shown by the decrease in oxygen flux 
coupled with adenosine triphosphate synthesis [51]. ZIKV 
infection leads to the increased production of ROS, which 
is associated with DNA breakage in neural cells in vivo and 
in vitro [51, 52]. ZIKV infection resulted in a significant 
increase in lipid peroxidation, as observed by the high lev-
els of MDA and carbonyl protein in human glioblastoma-
infected cells [52].

The increase in free radicals and lipid peroxidation 
induced by neurotrophic viruses demonstrates that oxida-
tive stress contributes as a key factor in the pathogenesis of 
neurodegeneration in viral infection of the CNS.

Virus Infection Disturbs the Production 
of Antioxidants

The elevation of cellular oxidative stress due to increases 
in free radicals and lipid peroxidation was associated with 
an opposite decrease in antioxidant activities. Viral infec-
tions stimulate ROS production and inhibit antioxidant 
enzyme levels [53, 54] (Fig. 1). The antioxidant defense 
mechanism is impaired by a decline in intracellular anti-
oxidant levels, such as superoxide dismutase 1 (SOD-1), 
thioredoxin 1 (TRX-1), and glutathione (GSH), and a reduc-
tion in catalase (CAT) and glutathione peroxidase (GPx) 
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activities in neuronal cells and several brain regions dur-
ing JEV infection [16, 27]. EV71 diminished the ratio of 
GSH to its disulfide form, glutathione disulfide (GSSG), an 
indicator of oxidative stress [55]. ZIKV-induced oxidative 
stress is correlated with decreased levels of SOD and CAT 
activities in U87-MG cells and the brains of C57BL/6 mice 
[52]. Infection with HSV-1 has been reported to induce the 
depletion of GSH [56]. Exposure of rat brain endothelial 
cells to HIV-1 envelope glycoprotein GP120 (gp120) and 
Tat significantly decreases the levels of intracellular GSH, 
GPx, and glutathione reductase (GR) and the ratio of GSH/
GSSG [57]. The decrease in antioxidant enzyme activities 
after ZIKV infection was found to be associated with the 
negative regulation of nuclear factor erythroid 2-related fac-
tor 2 (NRF2)/antioxidant response element (ARE) signaling 
[52]. This evidence suggests that depletion of the antioxidant 
enzymatic system occurs during viral infection.

Virus Infection Induces Mitochondrial 
and Endoplasmic Reticulum Stresses

Mitochondrial oxidative stress is involved in pathological sta-
tuses and is the major source of excessive amounts of ROS in 
infected cells. ROS accumulation in cells is a direct reflection 
of disruption in mitochondrial electron transport chain (ETC) 
function and redox imbalance in the ER lumen, leading to 
the accumulation of unfolded proteins and in turn increasing 
oxidative stress, which results in increased cellular damage 
and apoptosis. An increase in ETC-related protein activity 
was observed after viral infection (Fig. 1). RABV infection 
significantly alters a variety of mitochondrial parameters, such 
as increases in maximal uncoupled respiration and complex 
IV respiration and mitochondrial complex I and complex IV 
activities in neurons [58]. The activity of mitochondrial com-
plex I, a site of ROS production, was correlated with the high 
level of ROS in mouse neuroblastoma cells [29]. The increase 
in the generation of ROS and oxidative stress caused by the 
specific 139–172 region of the RABV phosphoprotein that 
interacts with complex I in mitochondria causes mitochon-
drial dysfunction [29]. RABV infection induces mitochondrial 
ETC dysfunction, resulting in oxidative stress and degenera-
tive changes in neuronal processes (involving both dendrites 
and axons) in infected mice [31, 59, 60]. Experiments using 
inhibitors of several mitochondrial proteins showed that EV71 
mainly induces ROS generation at a site of the mitochon-
drial ETC distal to mitochondrial complex III [35]. Increased 
mitochondrial oxidative stress by EV71 infection can cause 
mitochondrial morphological changes and exhibit functional 
anomalies, such as a decrease in mitochondrial electrochemi-
cal potential and a lower respiratory control ratio of mitochon-
dria in glioblastoma cells [35].

Together with mitochondrial oxidative stress, ER stress usu-
ally occurs simultaneously to generate cellular stress in virus-
infected cells. The ER is responsible for the correct three-
dimensional conformation of protein folding and maturation. 
The formation of disulfide bonds produces large amounts of 
ROS and depletes GSH, contributing to the redox imbalance 
that can cause malfunctioning of the ER, including massive 
protein production, loss of Ca2+ homeostasis, inhibition of 
N-linked glycosylation, and accumulation of mutant proteins 
[61, 62]. Viral replication can cause an increase in viral pro-
tein synthesis demand to overcome the ER folding capacity, 
leading to the massive production of misfolded viral proteins 
that accumulate in the ER lumen and trigger ER stress [63]. 
JEV infection induces ER stress as evidence of the detection 
of the excessive proliferation of ER membranes together with 
the amount of viral proteins and the induction of unfolded pro-
tein response (UPR) signaling in neuronal N18 and NT-2 cells 
[16]. In human neural stem cells (hNS1 cells), JEV infection 
promoted the expression of ER stress-related proteins such as 
glucose-regulated protein 78 kDa (GRP78), heat shock protein 
(HSP) 60, HSP70, and HSP90 [64]. JEV infection activates 
several ER stress sensors, including protein kinase RNA-like 
ER kinase (PERK), activating transcription factor 4 (ATF4), 
and C/EBP homologous protein (CHOP) under acute or pro-
longed ER stress. The JEV-induced UPR provokes CHOP/
growth arrest and DNA damage-inducible protein (GADD153) 
and triggers the activation of p38 mitogen-activated protein 
kinase (MAPK), which enhances JEV-induced apoptosis via 
the activation of the caspase cascade [16]. JEV nonstructural 
protein 4B (NS4B) activates the PERK/ATF4/CHOP neuronal 
apoptosis pathway both in vitro and in vivo [65].

WNV infection activates multiple branches of ER stress-
mediated UPR pathways, leading to transcriptional and 
translational induction of UPR target genes [63]. Activation 
of ATF6 and PERK pathways was induced during WNV 
infection in SK-N-MC neuroblastoma cells, resulting in 
CHOP activation and downstream apoptosis [66]. The tran-
scriptomic analysis shows that the components of the UPR-
related genes such as PERK, ATF4, and DDIT3 (encoded 
CHOP) and early growth response 1 (EGR1) are activated 
in VEEV-infected human astrocytoma cells [67]. The activa-
tion of EGR1 is regulated by extracellular-signal-regulated 
kinase (ERK) and PERK pathways, which are important in 
contributing to neural cell death in VEEV infection [68].

ZIKV infection activates ER stress by significantly increasing 
the expression of ER stress markers in neural cells [69]. ZIKV 
upregulates UPR-related genes in the cerebral cortex of infected 
postmortem human fetuses as well as in cultured human neural 
stem cells and in the mouse embryonic brain [70]. Transfection 
with EV71 viral envelope protein 1 (VP1) increased transla-
tion initiation factor 2α (eIF2α) kinase phosphorylates Serine51 
(Ser51) phosphorylation, which represented to ER stress activa-
tion in mouse brainstem neurons [71]. In mouse Schwann cells, 
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the overexpression of VP1 also induced ER stress, leading to 
the upregulation of peripheral myelin protein 22 (PMP22) [72]. 
These observations indicate the role of ER stress in the patho-
genesis induced by viral infection.

Virus Infection Induces Alteration 
of Autophagy

The cellular stress response induced by virus infection is also 
related to the induction of autophagy in infected cells [73]. 
CHPV infection shows an increase in microtubule-associated 
protein 1 light chain 3 beta (LC3B), an autophagic marker, 
associated with overproduction of ROS and mitochondria 
dysfunction in HT-22 mouse hippocampal neuronal cell [32]. 
Infection with EV71 shows an increase in LC3-II protein as 
well as the formation of LC3 aggregates, autophagosomes, 
and amphisomes in several infected brain tissues of mice [74, 
75]. Immunofluorescence staining indicated the colocaliza-
tion of EV71 proteins with LC3 and mannose-6-phosphate 
receptor (MPR, endosome marker) proteins, which indicates 
amphisome formation accompanied by autophagic flux in 
EV71-infected SK-N-SH cells [74]. The EV71 VP1 protein is 
an important neurovirulence protein that induces autophagy by 
regulating the mammalian target of rapamycin (mTOR) sign-
aling pathway to promote viral replication [75–77]. Phospho-
rylated mTOR, phosphorylated 70-kDa S6 kinase (p70S6K), 
and peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) are 
signaling pathways involved in EV71-induced autophagy and 
neural cell apoptosis when downregulated [36, 75, 76]. In 
HIV-1 associated encephalitis, increases in several autophagic 
markers, such as Beclin-1, autophagy-related gene (Atg)-5, 
Atg-7, and LC3-II, have been observed in frontal cortex post-
mortem brains [78]. The SK-N-SH cells treated with gp120 
from C-X-C motif chemokine receptor 4 (CXCR4) and C-C 
motif chemokine receptor 5 (CCR5)-tropic HIV-1 virus exhibit 
the accumulation of autophagic proteins and autophagosomes 
[78]. Autophagy in HAND has also been evaluated. HIV-1 
proteins such as Nef and Tat alter neural autophagy in dif-
ferent manners related to the autophagosome formation and 
autophagic flux, which may contribute to HAND [79–81]. 
The JEV-activated autophagy has been explored in both N2a 
neuroblastoma cells and mouse brains, and it demonstrated 
an increase in LC3-II protein accumulation and induction of 
autophagosome formation [82].

Virus Infection Induces Impairment 
of Mitophagy and Mitochondrial Dynamics

In addition, viruses induced impairment of mitochondrial 
dynamics and triggered mitophagy, a specific autophagy 
form for the removal of damaged mitochondria, directly 
and indirectly, and controlled the mitophagic process via 

different strategies [83]. The accumulation of ROS by 
VEEV TC-83 infection alters mitochondrial dynamics 
by affecting the expression of dynamin-related protein 1 
(DRP1), a protein that plays a role in mitochondrial fis-
sion, resulting in an increase in mitochondrial fractions in 
infected astrocytes [25]. PTEN-induced kinase 1 (PINK1) 
and Parkin, proteins associated with mitophagy, appear 
to be enriched in mitochondrial fractions, indicating that 
mitochondrial damage contributes to the apoptosis of 
infected cells [25]. As shown in human primary neurons, 
HIV-1 gp120 and Tat proteins induce the mitochondrial 
fission process via DRP1 as a result of neural mitochon-
drial fragmentation and then activate mitophagy markers 
such as LC3B and Beclin-1 and recruit PINK and Par-
kin sequestosome 1 (SQSTM1) to damaged mitochondria 
[84–87]. However, HIV-1 proteins are found to inhibit 
mitophagic flux in human primary neurons by impairing 
the delivery of mitochondria to the lysosomal compart-
ment, leading to incomplete neuronal mitophagy, which 
causes neuronal damage [84]. Dysregulation of autophagy 
and mitophagy and alteration of mitochondrial dynamics 
may be important and contribute to the pathogenesis of 
neurotropic virus infection.

Virus Infection Activates the Apoptosis 
Signaling Pathway

Oxidative stress elicits the loss of mitochondrial mem-
brane potential and results in the induction of the intrinsic 
apoptosis pathway [16, 88, 89]. The expression of apop-
totic protein markers has been observed in several neu-
rotropic virus-infected cells (Fig. 1). Overexpression of 
caspase-3 is observed in the brains of pediatric patients 
with HIV-1 encephalitis and corresponds to increases in 
DNA fragmentation, a marker of apoptotic cells [90]. In 
the HIV-1 model, the levels of BCL2 associated X (BAX) 
and activated caspase-3 were significantly elevated in 
the hippocampus and were associated with neuronal cell 
death in HIV-1 transgenic rats [48]. HIV-1 gp120 protein 
induces apoptosis in neurons and microglial cells in asso-
ciation with the activation of MAPK pathways mediated 
by ERK and JNK and lowering the expression of B-cell 
lymphoma 2 (BCL-2) [42, 91, 92]. BCL-2 is a major target 
of HIV-induced changes that are modulated to different 
degrees during HIV infection, resulting in either a proap-
optotic or an antiapoptotic phenotype [93]. VEEV infec-
tion causes neuronal injury ranging from nuclear chroma-
tin condensations to nuclear and cellular fragmentation, 
indicating apoptotic cell death [94]. The positron emission 
tomography (PET) with a tracer targeting the caspase-3 
substrate revealed an increase in apoptosis and a decrease 
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in BBB integrity in VEEV-infected mouse brains [95]. 
EV71 markedly reduces BCL-2 expression but induces an 
increase in the mRNA expression of several apoptosis-pro-
moting factors, such as BAX, CASP7 (caspase-7), CASP3 
(caspase-3), and cleaved caspase-3 [96]. EV71 infection 
triggers the translocation of cytochrome c (Cyt c) from 
mitochondria to the cytosol, and caspase-9 is activated, 
leading to neural cell death and indicating that the mito-
chondria-mediated intrinsic apoptotic pathway is activated 
by EV71 [97, 98]. EV71 also induces cell cycle arrest 
of SH-SY5Y cells through stimulation of endogenous 
microRNA let-7b expression after EV71 infection [96]. 
The invasion of RABV into the CNS shows morphologic 
changes of apoptosis and marked increases in BAX in the 
hippocampus and cerebral cortex [99–103]. The marked 
apoptotic are present in neurons, glial cells, and perivas-
cular mononuclear cells within the white matter of the 
cerebellum of dogs with the positive detection of BCL-2 
and BAX protein [104]. The morphological changes and 
apoptosis of spinal neurons and dorsal root spinal gan-
glion cells are present in the late period of infection [105]. 
The replication of RABV in mouse neuroblastoma cells 
increases the level of BAX and caspase activation, which 
induces the degradation of poly ADP-ribose polymerase 
(PARP), leading to destruction of the DNA [106]. WNV 
proteins such as capsid and nonstructural protein 3 (NS3) 
induce apoptotic features in CNS cells via BAX-dependent 
apoptosis that triggers mitochondria-outer-membrane-per-
meabilization [107–111]. WNV replication decreased cell 
viability and induced upregulation of BAX expression and 
the release of Cyt c from the mitochondria and formation 
of apoptosomes, followed by the activation of the effector 
caspase-3, the initiator caspases-8 and -9 then cleavage of 
the PARP in which induces neuronal cell death [66, 108, 
111–114]. JEV infection promoted increased the expres-
sion of BAX [89, 115], cleaved PARP levels [88], and the 
activation of caspase-3 activity [116], were observed in 
JEV-infected cells (Fig. 1). JEV infection also increased 
Cyt c release and caspase 3 activation in cultured neuronal 
cells and in infected mouse brain, inducing neuronal death, 
and increasing the mortality rate of mice [19, 115, 117]. A 
reduction in BCL-2 expression levels was found in JEV-
infected neuronal cells and the mouse brain [115]. Several 
studies have also reported the overexpression of BCL-2 
levels at the early stage of JEV infection, which helps to 
the induce host cell survival in order to facilitate viral per-
sistence [117–121]. However, the studies showed that the 
increase in BCL-2 during JEV infection failed to inhibit 
the infected cells from undergoing apoptosis and failed to 
block viral replication [117, 119, 121, 122]. Moreover, our 
recent study with a high multiplicity of infection (MOI) of 
Beijing-1 infection remarkably induced neuronal cell death 
via inducing the proteolysis of endogenous p21 BAX to 

generate more apoptogenic molecules of p18 BAX during 
the late stage of JEV infection [117]. The accumulation of 
cleaved p18 BAX might be due to the activation of calpain 
protease, which increases the intrinsic cytotoxic properties 
of this proapoptotic molecule and effectively induces Cyt c 
release from mitochondria, leading to the activation of the 
caspase cascade, which results in the induction of intrin-
sic apoptosis [123]. Thus, the intrinsic apoptosis pathway 
plays an important role in the pathogenesis of neurotropic 
virus infection.

Virus Infection Induces Neuroinflammation

Neuroinflammation is an important feature of neurodegen-
erative disorders. Normally, neuroinflammatory processes 
play a protective role in response to CNS injury by several 
factors, including viral infections. Neurotropic viral infection 
of the CNS can cause the activation of microglia and astro-
cytes, inducing the production of several neuroinflammatory 
factors that promote chronic inflammation and increasing the 
progression of CNS diseases by the virus [124].

Inflammation is a hallmark of virus encephalitis. During 
JEV infection, various peripheral immune cell types infil-
trate the CNS and affect the integrity of the BBB, which is a 
major regulator of neuroinflammation and viral propagation 
into the brain [125, 126]. In addition, peripheral immune 
cells infiltrating brain-resident cells interact with JEV upon 
infection of the brain. Microglial cells are the resident mac-
rophages of the CNS, can be productively infected by JEV, 
and might serve as a reservoir for the virus [127]. The acti-
vation of microglia has been proposed to play a major role 
in neuronal cell death through the release of proinflamma-
tory mediators [125, 128, 129]. The upregulation of TLR3, 
TLR7, and RIG-I signaling, including ERK, p38MAPK, 
activator protein 1 (AP-1), and nuclear factor kappa B (NF-
κB), are triggered by JEV infection and induces the activa-
tion of microglia [116, 129] (Fig. 1). JEV induces encepha-
lopathy by activating microglial cells and astrocytes that 
can increase the levels of proinflammatory cytokines such 
as tumor necrosis factor alpha (TNF-α), interleukins (IL-
6, IL-8 and IL-10), and RANTES (regulated on activation, 
normal T-cell expressed and secreted) [130, 131].

Overproduction of chemokines and proinflammatory 
cytokines are key factors that play an important role in 
the pathogenesis of flavivirus infections. In the brain, the 
release of chemokines regulates the migration of leuko-
cytes from the peripheral into the site of infection. Both 
clinical and experimental models suggest the involve-
ment of neuroinflammation in dengue virus disease [132]. 
Intracranial injection of DENV is associated with the 
induction of interferon-beta (IFN-β), interferon-gamma 
(IFN-γ), TNF-α, chemokine (C-C motif) ligand 2 (CCL-2), 
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CCL-5, C-X-C motif chemokine (CXCL)1, CXCL2, and 
IFN-stimulated gene (ISG) expression including viperin, 
Ifi27l2a, IRF7, and CXCL10 [133, 134]. DENV-2 and 
DENV-3 infections enhance of the infiltration of CD8+ 
and CD4+ T cells and neutrophils in the brain [132–134]. 
High levels of chemokines and proinflammatory cytokines 
such as IL-6, IL-1β, IFNγ, and TNF-α were associated 
with the severity of neuronal damage and the high mortal-
ity rate of mice during JEV infection [19, 131, 135–137]. 
TNF-α has a major effect on the induction of neuronal 
cell death in JEV infection by inducing the extrinsic apop-
tosis pathway via TNF receptor-associated death domain 
(TRADD) [89] and triggering inflammatory cells to release 
other cytokines, resulting in neuronal cell death [19, 131]. 
Moreover, IL-6, CXCL10, CCL-2, and CCL-5 downregu-
lated the expression of BBB tight junction proteins, caus-
ing an increase in BBB permeability [136]. In addition, 
IL-1β activates the expression of adhesion molecules on 
epithelial cells, leading to inflammatory cell infiltration 
and the subsequent generation of numerous proinflamma-
tory mediators, which ultimately cause neuronal cell death 
and irreversible brain damage [131, 136].

In another encephalitis virus, VEEV, PET tracer was 
used to target 18-kDa translocator protein (TSPO) to study 
the accumulation of macrophages and microglia/astrocyte 
activation; the results demonstrated an increase in neuroin-
flammation in the cortex, thalamus, striatum, hypothalamus, 
hippocampus, olfactory bulb, brain stem, and cerebellum 
of VEEV, and a decrease in BBB integrity was observed in 
VEEV-infected mouse brains [95]. VEEV-infected micro-
glia produce several proinflammatory cytokines as a result 
of direct infection, including IFNγ, IL-1α, IL-1β, IL-6, and 
IL-12 [138].

The secretion of the proinflammatory cytokines, IFNγ, 
IL-6, and IL-1β in the cerebrospinal fluid (CSF) was 
increased in the acute stage of CNS involvement from EV71 
infection [139, 140]. The histological studies of EV71-
infected autopsy tissues showed obvious inflammation in 
the spinal cord gray matter, brainstem, hypothalamus, and 
subthalamic and dentate nuclei with perivascular cuffs, vari-
able edema, neuronophagia, and microglial infiltration [141, 
142]. EV71 infection increases TNF-α, IL-1β and RANTES 
production, which triggers bystander damage to neurons 
involving the tyrosine kinase/MAPKs/NF-κB signaling cas-
cade during EV71 infection [143].

Tick-borne encephalitis virus (TBEV; family Flaviviri-
dae) is an important tick-transmitted virus that causes tick-
borne encephalitis (TBE) in Eurasia [144]. Increased lev-
els several cytokines and chemokines have been detected 
in CSF or serum samples from TBE patients with higher 
ratios of IL-12:IL-4 and IL-12:IL-10, reflecting the global 
pro-inflammatory cytokine balance [145–148]. TBEV 
disrupts the BBB and infects neurons, astrocytes, and 

oligodendrocytes, inducing neuroinflammation followed by 
neuronal death [149–151]. TBEV infection upregulates the 
expression of several pathogen recognition receptors, pro-
inflammatory cytokines, and interferon-stimulated genes in 
neuronal/glial cells [152, 153]. TBEV-infected mice exhib-
ited time-dependent increases in serum and brain tissue 
concentrations of multiple cytokines/chemokines such as 
CXCL10/IP-10, CXCL1, G-CSF IL-6, and RANTES [153, 
154]. Thus, neurons and astrocytes are potential sources of 
pro-inflammatory cytokines in TBEV infection (Fig. 1).

The CNS is the major target of ZIKV infection. In addi-
tion to the induction of massive neuronal cell damage, 
ZIKV-mediated neuroinflammation is the key to causing 
neurological pathology via an excessive inflammatory 
response, particularly in neonates. The relationship between 
ZIKV-induced neuroinflammation and postnatal microceph-
aly has been revealed in animal models and fatal cases of 
ZIKV-associated microcephaly [155, 156]. Brain histology 
demonstrated a pattern of inflammation, such as microglial 
activation, astrogliosis, vascular edema, lymphocytic infil-
tration, neuronal necrosis, neuronophagy, calcifications and 
apoptosis, which disrupted neural progenitor cells (NPCs) 
and neurovascular developments [155–157]. During ZIKV 
infection, activated microglia and astrocytes are mainly 
responsible for the production of several proinflamma-
tory mediators, which are correlated with high expression 
of apoptosis markers in the brain and leakage of the BBB 
[155, 156, 158]. The molecular mechanism of ZIKV-medi-
ated inflammation has been explored in vitro and in vivo 
[158–160]. TLR3 signaling was induced by ZIKV infec-
tion in both microglia and astrocytes, leading to increased 
NF-κB and PERK phosphorylation, which triggered the high 
production of several proinflammatory cytokines involved 
in the inflammatory process, such as IL-6, IL-1α, IL-4, 
IL-10, IL-8, monocyte chemoattractant protein-1 (MCP-
1), RANTES, IFN-β, and transforming growth factor beta 
(TGF-β) [158] (Fig. 1). In addition, overproduction of IL-6, 
macrophage inflammatory protein (MIP)-1α, MIP-1β, MCP-
1, TNF-α, IL-1Rα, IL-1α, IL-1β, IL-8, and IL-12p70 was 
observed in ZIKV-infected primary human fetal brain cells 
[160]. ZIKV infection induced the activation of NLR fam-
ily pyrin domain containing 3 (NLRP3) inflammasome in 
glioblastoma cells [159]. Therefore, the brain damage by 
uncontrolled inflammation is an important pathogenesis of 
ZIKV infection.

In addition, in the RABV-infected brain, microglial cells 
and astrocytes were significantly increased in the areas of the 
nerve cells that showed apoptosis [100, 103, 161, 162]. The 
neuronal damage from RABV infection is caused by the high 
production of inflammatory cytokines in primary astrocytes 
and microglia [163]. The induction of inflammation in the 
mouse brain by RABV is observed by the overexpression of 
TLR3, TLR4, MIP-1α, RANTES, IP-10, MCP-1, TNF-α, 
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and IL-6, which increases RABV pathogenicity [162, 164]. 
These observations demonstrate that the persistent and high-
level expression of chemokines, excessive infiltration, and 
accumulation of inflammatory cells in the CNS, and severe 
enhancement of BBB permeability are the major features 
associated with the neuropathology by neurotropic infection.

Viral Infection Alters Brain Metabolism

Over the past decade, it has become clear that viruses rely 
on host cell machinery to facilitate their replication. One 
of these mechanisms is based on the alteration of host 
cell metabolism, including glycolysis, the pentose phos-
phate pathway (PPP), the tricarboxylic acid (TCA) cycle, 
and oxidative phosphorylation, to facilitate optimal viral 
propagation. In the brain, it is probably more important to 
acknowledge that virus infection affects neuron and astrocyte 
metabolism, which disrupts brain function.

Virus Infection Disturbs Neuron Metabolism

Brain development requires a controlled cellular metabolism 
for neural stem cell proliferation, differentiation, and matura-
tion. Neural stem cell proliferation appears to have a special-
ized metabolism and is more dependent on glycolysis than 
oxidative phosphorylation for energy production. In contrast, 
neuronal differentiation is strongly manipulated by meta-
bolic rewiring from glycolysis to oxidative phosphorylation 
[165]. Increasing evidence indicates that ZIKV infection 
suppresses neuron stem cell proliferation and induces pre-
mature differentiation, causing microcephaly of the newborn 
during pregnancy [166–168].

In recent publications, a multiomics study comprising 
the combination of metabolomic data with the information 
from transcriptomics and proteomics has been used to inves-
tigate and model the role of ZIKV-induced microcephaly. 
It demonstrated the metabolic alterations of nicotinamide 
adenine dinucleotide (NAD+)-related pathways including 
the TCA cycle, amino acid metabolism, and mitochondrial 
oxidative phosphorylation [169]. The mechanisms gov-
erning ZIKV disturbance of host cell metabolism are not 
yet fully understood. An activation of MAPK and cyclic 
guanidine monophosphate (GMP)-protein kinase G signal-
ing upon ZIKV infection likely has a critical impact on the 
pathogenesis of ZIKV-induced microcephaly [169]. Initial 
studies demonstrated that NAD+ metabolism may be highly 
dependent on MAPK-mediated nicotinamide mononucleo-
tide adenylyltransferase 2 (NMNAT2) degradation, thereby 
promoting axon degeneration [170, 171]; this suggests that 
ZIKV infection alters cellular metabolism via the MAPK-
NMNAT2-NAD+ axis (Fig. 2). These signatures of meta-
bolic reprogramming are consistent with the findings that 

ZIKV in both wild-type and mutant strains disrupts gly-
colytic flow into the TCA cycle, leading to mitochondrial 
dysfunction, which triggers inflammation and neuronal cell 
death [172]. In addition, due to the reduction in glycolysis 
and the TCA cycle seen in ZIKV-infected host cells, there is 
a dependence on the PPP (Fig. 2). For example, there is actu-
ally an increase in metabolic intermediates, such as guani-
dine diphosphate and GMP, in the PPP of ZIKV-infected 
cells [172]. Trends toward a decreased glucose contribution 
to the TCA cycle and an increased contribution to PPP cells 
to sustain viral propagation were also observed in infected 
C6/36 mosquitoes [173], suggesting that ZIKV infection in 
neurons may divert the carbon substrate into the PPP to pro-
mote viral replication.

Virus Infection Disrupts Astrocyte‑Neuron Metabolic 
Cooperation

The metabolism of neurons is functionally linked with 
astrocytes that provide energetic support to fuel the active 
neuron. While neuronal cells have robust aerobic glycolysis 
by converting glucose into acetyl-CoA for the production 
of substrates for the TCA cycle and oxidative phosphoryla-
tion, astrocytes, despite the presence of oxygen, favor the 
production of lactate. Astrocytes utilize glucose as their 
main energy source, and approximately 60% of glucose is 
converted to lactate [174], which is constitutively released 
to the extracellular milieu and taken up by neuronal cells to 
supply their high metabolic demand. This cooperative func-
tion of astrocytes and neurons is known as the astrocyte-
to-neuron lactate shuttle (ANLS) [175]. Astrocyte-neuron 
metabolic cooperation is tightly regulated, but disrupting 
this ANLS by viral infection may cause abnormalities in 
brain function.

Neurological complications in HIV are strongly associ-
ated with cognitive impairment. Several studies have shown 
that induction of viral protein accelerates cellular damage in 
the CNS. HIV Tat release from infected cells can activate 
astrocytes and damage surrounding neurons [176, 177]. In 
fact, a number of studies have provided details about the 
potential mechanism underlying the role of HIV Tat in astro-
cyte metabolic shift and neurotoxicity (Fig. 2). First, the 
decrease in lactate dehydrogenase activity in Tat-activated 
astrocytes led to a reduction in extracellular lactate levels, 
which impaired neuronal energy metabolism and function 
[178]. Second, the cellular response of astrocytes to Tat is 
a metabolic shift from aerobic glycolysis to mitochondrial 
respiration mediated by the mitochondrial Ca2+ uniporter 
(MCU) regulating Ca2+ uptake. Targeting MCU has been 
found to rescue glycolysis and normalize extracellular lac-
tate levels in astrocytes [178]. Third, astrocyte cellular stress 
mediated by Tat utilizes fatty acids as the energy source 
to support mitochondrial respiration [178]. Finally, HIV 
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Tat impacts oxidative injury in astrocytes by reducing glu-
tathione synthase. These changes in turn activate AMPK 
and increase glycolytic enzymes along with oxidative phos-
phorylation [179].

Neurological symptoms are more commonly observed in 
patients with severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2; family Coronaviridae) infection. A num-
ber of studies have indicated that the foci of SARS-CoV-2 
infection are also observed in astrocytes. The study shows 
that infected astrocytes alter key proteins and metabolites 
involved in glycolysis, gluconeogenesis, and the PPP. The 
decrease in lactate and pyruvate was due to the induction of 
oxidative metabolism in infected cells [180]. To supply the 
metabolic intermediates used in oxidative phosphorylation, 
infected astrocytes tend to alter other metabolic pathways, 
including glutamine metabolism. Intriguingly, among glu-
tamine metabolic intermediates, glutamine, glutamate, and 
gamma-aminobutyric acid (GABA) are gradually decreased 
following SARS-CoV-2 infection [180, 181]. As astrocytes 
cooperate with neurons to maintain the glutamate-glutamine 
cycle in the brain, a reduction in glutamine metabolism in 
astrocytes may shape brain activities.

Virus Infection Affects Neurotransmission 
System

Previous reports have demonstrated the involvement of viral 
infection in neuronal dysfunction by affecting neurotrans-
mitter systems. Neurotransmitters are endogenous chemical 
messengers by which neurons communicate with each other 
to enable the brain to regulate a variety of functions through 
the process of synaptic transmission. Alterations in neuro-
transmitter levels have been observed in some neurotropic 
viral infections and are correlated with the impairment of 
specific brain functions. Dopamine is the main catechola-
mine neurotransmitter that controls voluntary movement, 
cognition, and endocrine regulation [182]. JEV infection 
significantly increases dopamine production and modulates 
the rate-limiting enzyme of dopamine biosynthesis, with an 
increase in phosphorelated tyrosine hydroxylase levels at the 
early stage of infection [183]. JEVs exploit dopamine-medi-
ated neuronal communication to increase the susceptibility 
of dopamine D2 receptors (D2R)-expressing cells to JEV 
infection, which causes damage to dopaminergic neuron-rich 
areas such as the thalamus and midbrain, leading to neuronal 

Fig. 2   Cellular metabolism in 
the brain is altered by neuro-
trophic virus infection. Upon 
infection, there is a systemic 
metabolic alteration in neuron 
and astrocyte. The astrocyte 
to neuron lactate shuttle is 
inhibited and subsequently 
enhanced TCA cycle and 
oxidative phosphorylation in 
astrocytes. To fuel active TCA 
cycle, virus may activate fatty 
acid β-oxidation and glutamine 
metabolism. Within the neuron, 
the metabolic flow of glycoly-
sis, TCA cycle, and oxidative 
phosphorylation is disrupted 
and selectively increased 
pentose phosphate pathway to 
sustain viral replication. Reduc-
tion of lactate production from 
astrocyte and dysregulation of 
neuron metabolism coopera-
tively induce neuron dysfunc-
tion. Abbreviation: α-KG, 
alpha ketoglutarate; β-Ox, beta 
oxidation; Gln, glutamine; Glu, 
glutamate; LDH, lactate dehy-
drogenase; NMN, nicotinamide 
mononucleotide; PPP, pentose 
phosphate pathway; OAA, 
oxaloacetate; OXPHOS, oxida-
tive phosphorylation; SucCoA, 
succinyl-CoA; TCA, tricarbox-
ylic acid
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loss and increasing the fatality rate of JEV-infected mice 
[183]. The marked decline in catecholamine levels, includ-
ing norepinephrine, dopamine, 3,4-dihydroxyphenylacetic 
acid, homovanillic acid, and serotonin, which are unrecov-
erable, has been reported in the brain, and it leads to the 
impairment of locomotor activity in JEV-infected rats [184]. 
The cholinergic system plays an important role in cognitive 
function. The decrease in acetylcholinesterase (AChE) activ-
ity together with damage to different brain regions is asso-
ciated with the transient dysfunction of learning ability in 
JEV-infected rats [185, 186]. The decline in muscarinic cho-
linergic signaling in several brain regions of JEV-infected 
rats includes the expression levels of cholinergic receptor 
muscarinic 2 and choline acetyltransferase, and the reduction 
in total muscarinic cholinergic binding is correlated with 
transient spatial learning and memory impairment [186].

The balance of glutamate, the most abundant excitatory neu-
rotransmitter, and GABA, an inhibitory neurotransmitter in the 
CNS, plays a crucial role in several brain functions, including 
synaptic signaling, cognition, pain, and motor stimuli [187–189]. 
HIV infection causes the imbalance of these two neurotrans-
mitters and is correlated with neuronal and glial dysfunction as 
well as cognitive impairment in the brains of HIV-seropositive 
patients with prolonged antiretroviral treatment [190–193].

Glutamate-mediated excitohypertoxicity is an important 
mechanism of neuronal injury by viral infection. Several 
studies have revealed the effect of HIV-1 proteins on neu-
rotoxicity induced by glutamatergic system dysregulation 
[194]. The HIV-1 Tat protein induces the formation of a 
macromolecular complex involving N-methyl-d-aspartic 
acid (NMDA) receptors that promotes apoptosis in neu-
rons and astrocytes [195–197]. Dysregulation of glutamate 
can contribute to HIV-associated neurocognitive disorder 
[198, 199]. Similar to JEV infection, the increase in glu-
tamate-mediated excitotoxicity activity is correlated with 
the increase in oxidative stress observed in the brain region 
responsible for memory and learning impairment in JEV-
infected animals [200]. The increased glutamate levels and 
decreased levels of its NMDA receptors are associated with 
the activation of TNF-α signaling and the presence of redox 
imbalance in neural cells, which promote neuronal death 
[200, 201]. These results suggest that neurotropic virus 
infection can alter the neurotransmission systems that lead to 
the dysregulation of brain function and contribute to virus-
induced neuropathogenesis.

Virus Infection Accelerates Alzheimer's 
Disease‑Like Pathological Features

Alzheimer’s disease (AD) is the most common cause of 
dementia that leads to the death of elderly persons. Although 
age is the most important risk factor for the AD, however, 

several infections have been suggested to increase the risk of 
AD. AD is characterized by progressive impairment of syn-
aptic function and degeneration in the brain. Two major path-
ological features associated with AD include amyloid and 
tau aggregates in the brain. Amyloid beta (Aβ) plaque accu-
mulation is the main hallmark observed in the brains of AD 
patients [202]. Aβ is produced by the proteolytic process of 
the amyloid precursor protein (APP) that occurs at biological 
membrane. The cleavage of APP by α-secretase or enzymes 
from the disintegrin and metalloproteinase domain proteins 
(ADAM) family occurs within the Aβ region on APP; there-
fore this pathway does not produce Aβ peptide in neurons and 
called nonamyloidogenic pathway [203]. After α-secretase 
cleavage, soluble APP α (sAPPα) and α-C-terminal fragment 
(α-CTF, CTF-83 or C83) are generated. The α-CTF is further 
cleaved by γ-secretase complex releasing small fragment of 
extracellular p3 and the amino-terminal APP intracellular 
domain (AICD) which is rapidly degraded. In nonamyloi-
dogenic pathway, the AICD is rapidly degraded [204]. On 
the other hand, the amyloidogenic pathway initiates with 
the cleavage of APP by β-secretase or β-site APP-cleaving 
enzyme 1 (BACE1), releasing the sAPPβ and leaving the 
β-C-terminal fragment (β-CTF, CTF-99 or C99) at the mem-
brane. The processing of γ-secretase in this pathway gener-
ates two protein products including Aβ and AICD, which are 
different from another pathway by acting as transcriptional 
regulators of several target genes. Because γ-secretase can 
cleave many positions within CTF99, it can create different 
lengths of Aβ peptide, and the predominant forms are Aβ42 
and Aβ40. The insoluble extracellular Aβ aggregates into 
plaques and can accumulate in the brain [205].

Another neuropathological feature of AD is the accu-
mulation of neurofibrillary tangles (NFTs). NFTs are the 
result of hyperphosphorylation of the microtubule-stabiliz-
ing protein tau. Tau protein is highly expressed in neuronal 
cells and plays a role in axonal microtubule stabilization, 
modulation of axonal transport, and neuronal polarity. Tau 
phosphorylation occurs at serine and threonine sites that 
are regulated by balancing multiple kinases, such as glyco-
gen synthase kinase 3 beta (GSK-3β) and cyclin-dependent 
kinase-5 (Cdk-5). Excessive kinase and reduced phosphatase 
activities cause hyperphosphorylated tau to detach and self-
aggregate and cause microtubules to become destabilized 
[206]. Moreover, GSK-3β, a protein kinase, is not only 
involved in tau hyperphosphorylation but also linked to 
other aspects of AD pathogenesis, including Aβ production 
and mitochondrial dysfunction [207]. Tau deposition in the 
brain has been suggested to be the consequence of Aβ plaque 
accumulation [208]. The synergy of Aβ and NFT accumula-
tion is distributed to various neurodegenerative mechanisms, 
including cholinergic degeneration, synaptic impairment, 
and neuroinflammation, which are partially responsible for 
cognitive and behavioral deficits [209].
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As demonstrated in several studies, viral infections are 
related to the induction of pathological hallmarks of AD 
in association with neuronal damage, synaptic dysfunction, 
and impairment of cognitive functions. Most of the studies 
have shown the link between latent viral infections and the 
risk of developing AD. Latent infections from viruses such 
as HSV and HIV cause long-term activation of the immune 
system that leads to chronic neuroinflammation and neuro-
degeneration in the CNS [210–212]. Previous observations 
reveal a possible indication of HIV and HSV infections as 
a risk factor associated with AD by distribution of APP and 
tau-processing homeostasis [213, 214].

The presence of high levels of HSV and its genome have 
been found in brain tissues, especially in the frontal and tem-
poral cortices and in the CSF of AD patients [211, 215–219]. 
HSV-1 is a neurotropic virus that lives long within the host 
and may reactivate after latency and penetrate the BBB into 
the limbic system and other brain areas that are most often 
affected in AD [218, 220]. HSV-1 infection causes the altera-
tion of APP processing and has potential causality in the 
involvement in AD pathogenesis. HSV-1 induces multiple 
cleavages of APP and promotes intracellular accumulation of 
various neurotoxic species of Aβ [221–223]. The upregula-
tion of BACE1 and the γ-secretase subunit (nicastrin) in the 
cultured neuronal and glial cells after HSV-1 infection indi-
cates the induction of the amyloidogenic pathway by HSV-1, 
which leads to a dramatic increase in the intracellular levels 
of Aβ40 and Aβ42 [224] and in the autophagic compartments 
[223]. HSV-1 infection modulates the process of autophagy, 
as shown by the failure of the fusion of autophagosomes con-
taining Aβ with lysosomes, indicating the impaired degrada-
tion of Aβ localized in the autophagic vesicles, which con-
tributes to the accumulation of Aβ characteristic of AD [223]. 
Moreover, HSV-1 infection is associated with the inhibition 
of the nonamyloidogenic pathway by decreasing α-secretase 
activity in HSV-1-infected neuroblastoma cells [223]. Oxi-
dative stress induced by HSV-1 potentiates the accumula-
tion of intracellular Aβ and further inhibits its extracellular 
secretion, which disrupts the autophagic flux in the infected 
cells [225]. Furthermore, HSV-1 causes functional changes 
in cortical neurons that induce activity- and Ca2+-mediated 
APP phosphorylation and intracellular Aβ production [226]. 
Aβ protein deposits are present in the brains of mice infected 
with HSV-1 and show cognitive impairment in recurrent 
HSV-1-infected mice [224, 227]. The induction of APP amy-
loidogenic processing by HSV-1 also leads to the accumula-
tion and nuclear translocation of AICD in HSV-1-infected 
neuronal cells [228]. This increase in AICD products in neu-
rons has been observed to bind at the promoter and regulate 
the transcription of the neprilysin (NEP) gene, whose prod-
ucts are involved in the Aβ clearance process at early stages 
of infection. In addition, AICD regulates the expression of 
the GSK3β gene, which plays a role in tau phosphorylation 

during the late stage of HSV-1 infection [228]. Moreover, 
the increase in intracellular Aβ accumulation and GSK-3 
activation induces synaptic dysfunction, as observed by 
the reduction in presynaptic proteins (i.e., synapsin-1 and 
synaptophysin) and the depressed synaptic transmission in 
cultured cortical neurons infected with HSV-1 [229]. HSV-1 
infection affects tau processing by increasing the kinetics of 
tau aggregation and NFT formation. In the brains of HSV-
1-infected mice, p-tau and its cleaved fragments are signifi-
cantly increased in the cortex and hippocampus compared 
with noninfected mice [227, 230]. Infection with HSV-1 also 
induces an increase in tau cleavage, a marker of early neuro-
degeneration, by the activation of caspase-3 activity in neural 
cells, which indicates the involvement mechanism of HSVs 
in the alteration of tau processing homeostasis [227, 231]. In 
addition, HSV-1 reactivations cause hyperphosphorylation 
of tau at several sites, including serine 202, threonine 212, 
serine 214, serine 396, and serine 404, by the induction of 
GSK-3β and protein kinase A (PKA) activity [229, 231–233]. 
The HSV-1 protein can activate the PI3K/AKT signaling 
pathway to facilitate viral infection, protein synthesis, and 
reactivation [234, 235]. The PI3K/AKT pathways are known 
to regulate GSK-3 activation, which is involved in several cel-
lular functions, including APP and tau hyperphosphorylation 
[236, 237]. The PI3K/AKT/GSK-3 pathways may be a cru-
cial mechanism involved in the progressive accumulation of 
AD pathological hallmarks in HSV-1 infection. In the case of 
herpes simplex virus type 2 (HSV-2) infection, HSV-2 causes 
a marked accumulation of Aβ40 and Aβ42 in human SK-N-
MC neuroblastoma cells [238]. HSV-2 infection decreases 
the levels of secreted APPα and α-CTF, which indicates the 
disruption of the APP nonamyloidogenic pathway [238]. 
Moreover, HSV-2 also induces tau phosphorylation in neu-
ronal cells [238]. Latent infection with HSVs poses a risk 
of developing AD pathological features in the brain [211].

Epidemiologic studies have implicated the possible 
involvement of varicella zoster virus (VZV) in AD/dementia 
[239]. VZV (family Orthoherpesviridae) is an exclusively 
human neurotropic alphaherpesvirus that causes varicella 
(chicken pox) upon primary infection after which the virus 
establishes latency in ganglionic neurons along the entire 
neuraxis and the reactivation causes zoster (shingles) [240]. 
VZV causes gliosis and increased levels of several proin-
flammatory cytokines in human-induced neural stem cells 
(hiNSC). VZV infection of hiNSCs quiescently infected 
with HSV-1 leads to HSV-1 reactivation, and the increases 
in Aβ and p-tau accumulation were observed [239]. This 
suggests that VZV may reside latently in the brain and, upon 
reactivation, cause direct damage leading to AD through 
induced inflammation, which leads to neuroinflammation 
and reactivation of HSV-1 in the brain and consequent AD-
like changes [239]. This report supports the indirect role of 
VZV in AD/dementia via reactivation of HSV-1 in the brain.
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In HIV infection, Aβ deposition is one of the pathologic 
features found in the brains of HIV patients with prolonged 
antiretroviral treatment and aging [241, 242]. In long-term 
HIV infections, the alteration of the accumulation of Aβ42, 
total tau, and p-tau levels in CSF of HAND cases is simi-
lar to that of AD patients [243]. HIV viral proteins may be 
continually produced, increasing the risk of aged patients 
developing AD. HIV-1 Tat protein induces Aβ accumula-
tion, tau phosphorylation, and subsequent neuronal death, 
causing slow cognitive and motor movements, seizures, 
and premature death [244–247]. HIV-1 Tat protein reduces 
clearance of Aβ42 from the brain to the blood and promotes 
nuclear entry of Aβ as well as inflammatory responses in 
human brain endothelial cells [248]. Furthermore, HIV-1 
Tat protein enhances the cleavage of APP by β-secretase, as 
shown by the increased levels of β-CTF and reduced levels 
of α-CTF, resulting in elevated levels of Aβ42 in HIV-1-in-
fected neurons [246, 249]. HIV-1 Tat protein induces impair-
ment of endolysosome structure and function and influences 
the pathways of Aβ generation, degradation, phagocytosis, 
and transport, which contribute to HIV-1 neuropathogenesis 
[249, 250]. Tau processing and HIV-1 Tat protein accelerate 
tau phosphorylation via multiple mechanisms that lead to the 
formation of NFTs in HIV transgenic animals [48, 244, 250]. 
Tau hyperphosphorylation is found in the hippocampus of 
HIV-1 patients, and high levels of hyperphosphorylated 
tau are marked in prolonged anti-retroviral therapy-treated 
subjects [242]. Thus, neurotoxic viral proteins could be a 
risk factor for brain damage subsequent to AD and/or HIV-
associated cognitive impairment.

Viral Infection Induces Proteins to Misfold 
and Aggregate

The aggregation of aberrantly folded specific proteins is a 
pathogenic mechanism underlying several neurodegenera-
tive diseases. The misfolded proteins are involved in neuro-
degenerative diseases including Aβ, p-tau, alpha-synuclein 
(α-syn), transactive response DNA-binding protein 43 
(TDP-43), and prion protein (PrP), share common struc-
tural, biological, and biochemical characteristics, as well 
as similar mechanisms of aggregation and self-propagation. 
Virus infection induces the deposition of Aβ and p-tau that 
increases the risk of developing AD, which we have already 
discussed in the previous section.

Several neuroinvasive viruses have shown a potential 
relationship to develop PD. PD is a second most common 
neurodegenerative disorder characterized by progressive 
loss of dopaminergic neurons of the substantia nigra pars 
compacta and the presence of Lewy bodies (LBs) together 
with a reduction of dopamine concentration in the striatum 
[251]. Abnormal proteinaceous aggregates of α-syn, a major 

component in LBs, play a causative role in PD pathogen-
esis [252]. Several studies show that patients with WNV, 
JEV, DENV, HIV, influenza-A, hepatitis C virus (HCV), 
hepatitis B virus (HBV), and SARS-CoV-2 infections are 
at significant risk for developing Parkinson’s symptoms, 
including tremor, cogwheel rigidity, bradykinesia, and wide 
gait [253–258]. The increase in the amount of α-syn pro-
tein found in the primary neurons [259] and in the brains 
of patients with acute WNV encephalitis [259] and in the 
brains of HIV patients [260]. HIV-1 Vpr protein triggers 
the accumulation of α-syn in neurons [261]. Recent in vitro 
study showed that SARS-CoV-2 spike protein and nucle-
ocapsid protein were found to accelerate the upregulation 
and aggregation of α-syn, which was associated with the 
LBs formation [262, 263].

The accumulation of intracellular ubiquitin inclusion bod-
ies in motor neurons in the brain and spinal cord is one of 
the neuropathologic hallmarks of ALS. TDP-43 is a major 
component of inclusion bodies in pathological deposits [264, 
265]. A number of reports have shown that TDP-43 plays a 
major role in virus entry, replication, and latency in several 
viruses [266]. TDP-43 proteinopathy, which is associated 
with neuronal dysfunction, is induced by several viral infec-
tions [266]. The TDP-43 levels were found to increase in the 
serum of WNV [267] and SARS-CoV-2 [268] patients in 
association with the high levels of inflammatory markers. 
Phosphorylated TDP-43 (pTDP-43) inclusion bodies have 
been found in the brains of SARS-CoV-2 infection [269]. 
TDP-43 has been shown to be potentially involved in both 
HIV-1 [270] as well as in HSV-2 [271] latency and cell per-
mittivity, suggesting a possible role for TDP-43 in HIV-1 
and HSV-2-associated neurodegeneration in latent infection.

Aggregation and spread of a cellular prion protein (PrPC) 
throughout the brain also play an important role in the patho-
genesis of AD. PrPC is converted into an aggregated neuro-
toxic isoform called scrapie prion protein (PrPSc) that causes 
the neuronal death in prion diseases such as Creutzfeldt-
Jakob disease in humans, which shared several neuropatho-
logical similarities links to AD [272–274]. In the hippocam-
pus and temporal cortex of AD brains, PrPC has been shown 
to co-localize with Aβ plaques [275, 276]. PrPC functions as 
a receptor for Aβ42 oligomers and mediates the Aβ-induced 
synaptic dysfunction [277]. The binding of Aβ oligomers to 
PrPC activates an Aβ-induced signaling cascade involving 
metabotropic glutamate receptor 5 (mGluR5), tyrosine-pro-
tein kinase Fyn, proline-rich tyrosine kinase 2 (Pyk2), and 
eukaryotic elongation factor 2 kinase (eEF2K) that links Aβ 
accumulation and tau hyperphosphorylation, resulting in the 
synaptic failure and neuronal death in the CNS [277–282]. 
PrP expression is upregulated in vitro by infection with a 
variety of viruses including HCV, HIV-1, human adeno-
virus type 5, Epstein–Barr virus, murine leukemia virus, 
and vesicular stomatitis virus [283]. Recent report shows 
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that influenza A virus infection causes PrPC to misfold into 
PrPSc in mouse neuroblastoma cells [284]. PrPC is signifi-
cantly elevated in the both neuronal cells and CSF of HIV-
1-infected individuals with neurocognitive impairment and 
mediates neuroinflammation by inducing chemokine release 
by astrocytes [285]. This evidence suggests that viral infec-
tion promotes PrP misfolding and formation of infectious 
prions in associated with the progression of CNS neurode-
generation, particularly in the pathogenesis of AD.

Thus, viral infection is involved in several specific neuro-
degeneration-related protein misfolding and subsequent pro-
cesses of protein aggregate propagation in the CNS leading 
to neuronal dysfunction, neuroinflammation, and neuronal 
death that contribute to neurodegenerative disease.

Conclusion

The diagnosis and treatment of CNS infection are urgent 
needs and challenging. Currently, there are limited or no 
effective antiviral drugs available for viral infection of the 
CNS. Neurotropic viruses can cause CNS disease through a 
variety of molecular mechanisms (Fig. 3), including direct or 
indirect immune activation, which contributes to the degen-
eration of neuronal cells. Viral infection promotes an imbal-
ance between free radicals and antioxidants, which increases 
cellular oxidative stress and leads neuronal cells to undergo 
programmed cell death by apoptosis. Viruses encounter 
the cellular recycling process and induce impairment of 
mitophagy and mitochondrial dynamics in host cells. Dys-
regulation of mitochondrial homeostasis by viruses affects 
neuronal metabolism and disrupts brain function. Alterations 

in neurotransmitter systems and the presence of pathological 
hallmarks of AD can be observed in neurotropic viral infec-
tions in correlation with the specific destruction of brain 
functions. The fastest protection or cessation of neuronal 
damage by virus invasion can help to relieve symptoms, 
which could enhance the survivor rate and reduce severe 
neurological sequelae. An understanding of the neuropatho-
genesis of viral CNS infection could support intensive diag-
nosis and treatment strategies by targeting CNS molecular 
mechanisms and might be useful for the screening of novel 
antiviral agents that are essential to improving the manage-
ment of these neurotropic viral infections.
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