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Scutellarin ameliorates diabetic nephropathy 
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Abstract 

Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) 
Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific 
active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain 
unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozo-
tocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate 
that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, 
mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its 
beneficial effects through modulation of the transforming growth factor-β1 (TGF-β1) signaling pathway, as well as its 
interaction with the extracellular signal-regulated kinase (Erk) and Wnt/β-catenin pathways.
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1  Introduction
Diabetic nephropathy (DN) represents a significant 
microvascular complication of diabetes mellitus and 
stands as a prominent cause of terminal renal disease 
worldwide. This condition is associated with increased 
mortality and morbidity rates [1–3].

DN is characterized by a variety of pathological 
changes. These include glomerulosclerosis, mesan-
gial dilatation, thickening of the glomerular basement 
membrane, tubulointerstitial fibrosis, podocyte damage 
and extracellular matrix accumulation [4, 5]. Notably, 
the development of progressive proteinuria is a prom-
inent feature of DN, and effectively preventing and 
managing proteinuria presents a significant challenge 
in DN treatment [6]. The American Society of Nephrol-
ogy (ASPN) Clinical Practice Guidelines recommend 
using the urine albumin-to-creatinine ratio as a screen-
ing tool for kidney disease in adults with diabetes mel-
litus [7].

Mesangial dilatation and renal fibrosis are key patho-
logical features in the progression of DN [8]. Mesangial 
dilatation plays a crucial role in causing DN, character-
ized by aberrant proliferation of mesangial cells and 
accumulation of matrix proteins. This process is associ-
ated with the expression of alpha smooth muscle actin 
(α-SMA) in activated mesangial cells [9, 10]. Further-
more, the accumulation of matrix proteins like collagen 
III and fibronectin, within the mesangium contrib-
utes to the development of DN [11, 12]. In addition to 
mesangial dilatation, chronic kidney disease, including 
DN, often involves fibrotic changes in the glomerulus 

and tubulointerstitium [13, 14]. α-SMA, fibronectin, 
and collagen III are also implicated in renal fibrosis.

A central player in the progression of kidney fibrosis, a 
characteristic feature of chronic kidney disease including 
DN, is the transforming growth factor-β (TGF-β) signal-
ing pathway [15]. Elevated expression of profibrotic TGF-
β1 was observed in progressive forms of human kidney 
disease, highlighting its significance in fibrosis progres-
sion [16, 17]. Inhibiting TGF-β1 or its downstream sign-
aling pathways has been shown to restrict renal fibrosis, 
while overexpression of TGF-β1 leads to fibrotic changes. 
The canonical downstream molecules of TGF-β1 signal-
ing, SMAD2, SMAD3, and SMAD4 [18, 19], formation of 
a complex that translocates to the nucleus for regulation 
of downstream proteins [18, 20]. Additionally, TGF-β/
Smad signaling crosstalks with other signaling pathways, 
including the Wnt/β-catenin signaling, the mitogen-acti-
vated protein kinase (MAPK) signaling and the mamma-
lian target of rapamycin (mTOR) signaling. The complex 
pathogenesis of diabetic nephropathy still lacks a promis-
ing targeted treatment, despite advances in understand-
ing the contribution of TGF-β1 and its downstream 
effectors.

Breviscapine, a prescription drug as a mixture of the 
natural flavonoid (contains ≥ 90% scutellarin and ≤ 10% 
apigenin-7-O-glucronide) derived from the traditional 
Chinese herb Erigeron breviscapus [21], has gained 
attention for its pharmacological properties and potential 
therapeutic effects in various diseases, including diabetic 
nephropathy. Breviscapine has exhibited a wide range of 
pharmacological activities, particularly in cardiovascular 
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and hypertensive diseases. In the context of DN, brevis-
capine has been shown to have renoprotective effects 
by reducing the levels of urinary protein, blood urea 
nitrogen and serum creatinine, as well as regulating dys-
lipidemia parameters such as cholesterol, triglycerides, 
and high-density lipoproteins [22–24]. The combined 
medications of breviscapine with valsartan showed some 
enhanced protection against DN [25]. And it has been 
demonstrated another function in reducing urinary 
micro-albuminuria and improve renal function in DN. 
Other Studies demonstrated that breviscapine alone or 
combined with the angiotensin converting enzyme(ACE) 
inhibitor, nalapril, ameliorated streptozotocin-induced 
DN [26]. These effects suggest that the injection of bre-
viscapine benefit to patients with DN. In addition, 
Scutellarin has been reported to protect against kidney 
injury [27–30] via its anti-inflammation and antioxidant 
activity.

However, the active component responsible for its anti-
DN properties remains uncertain, and the underlying 
regulatory mechanisms remain unclear and even confus-
ing. Scutellarin, a prominent constituent of breviscapine, 
has been identified as a potential candidate for mediating 
the therapeutic effects. Future research directions and 
the need for in-depth studies on scutellarin as the active 
component of breviscapine are emphasized to unravel 
the complex mechanisms underlying the therapeutic 
effects of breviscapine in DN.

2 � Methods and materials
2.1 � Materials and reagent
Scutellarin (Yunnan Phytopharmaceutical Co., LTD., 
China); Empagliflozin (Cat. C14295412, Macklin Bio-
chemical, China), Streptozotocin (Cat. S8050, Solarbio, 
China); goat anti-rabbit immunoglobulin G (IgG) horse-
radish peroxidase (HRP)-linked antibody (Cat. AS014, 
Abclonal, China); anti-mouse IgG HRP-linked antibody 
(Cat. 7076S, Cell Signaling Technology, USA); Methena-
mine Silver Plating Stain Kit (Cat. G1790, Solarbio); Gly-
cogen Periodic Acid Schiff (PAS) Stain Kit (Cat. G1281, 
Solarbio); Masson’s Trichrome Stain Kit (Cat. G1340, 
Solarbio); Mouse MAU enzyme-linked immunosorbent 
assay (ELISA) Kit (Cat. JL20493, JONIN, China); Anti-
DKK1 antibody (Cat. A00632, Boster Biological Technol-
ogy, China); Anti-SNAIl antibody (Cat. BP0449, Boster 
Biological Technology); Anti-α-SMA antibody (Cat. 
BM0002, Boster Biological Technology); Anti-TGFB1 
antibody (Cat. BA0290, Boster Biological Technology); 
Anti-NPHS1 antibody (Cat. BA1669, Boster Biological 
Technology); Anti-NPHS2 antibody (Cat. BA1688, Boster 
Biological Technology); Anti-SMAD2/3 antibody (Cat. 
BA1395, Boster Biological Technology); Anti-Phospho-
SMAD2(s250) antibody (Cat. BM4693, Boster Biological 

Technology); Anti-FN1 antibody (Cat. BA1772, Boster 
Biological Technology); AXIN2 antibody (Cat. Ab32197, 
Abcam, USA); Anti-Phospho-SMAD3(ser425) anti-
body (Cat. AF3362, Affinity Biosciences, China); Anti-
COL3A1 antibody (Cat. M00788, Boster Biological 
Technology); Anti-extracellular signal-regulated kinase 
(ERK)1/2 antibody (Cat. ET1601-29, HUABIO, China); 
Anti-ERK1(PT202/PY204) +  ERK2(PT185/PY187) 
antibody (Cat. ET1610-13, HUABIO); Anti-P38 anti-
body (Cat. ET1602-26, HUABIO); Anti-Phospho-
P38(Thr180 + Tyr182) antibody (Cat. ER1903-01, 
HUABIO); Anti-β-Actin antibody (Cat. EM21002, HUA-
BIO); Anti-SMAD4 antibody (Cat. A5657, Abclonal); 
Anti-β-catenin antibody (Cat. 610154, BD Biosciences, 
China); Creatinine (Cr) Assay kit (Cat. C011-2-1, Nan-
jing Jiancheng Bioengineering Institute, China); Glucose 
Assay Kit (Cat. F006-1-1, Nanjing Jiancheng Bioengi-
neering Institute); microalbunminuria (MAU) ELISA kit 
(Cat. JL20493, JONIN).

2.2 � Induction of DN mice
C57BL/6J male mice of approximately 6  weeks of age 
were obtained from the Laboratory Animal Center 
of Yunnan University (Kunming, China) and housed 
at 23  °C with 50% humidity and a 12  h light/12  h dark 
cycle; The experimental procedures were approved by the 
Institutional Animal Care and Use Committee, Yunnan 
University (Protocal: YNU20220267). After adaptation, 
8-week-old mice were induced with 60 mg/kg streptozo-
tocin (STZ) diluted in citrate buffer (0.1 mol/L, pH 4.5) 
by intraperitoneal injection for 3 consecutive days, while 
the same volume of citrate buffer was given to the control 
mice. the urinary albumin level and blood glucose level 
were measured at 18-week-old mice, all animals were 
randomized into five groups (n = 9–10 per group): STZ 
group, control group, STZ + Empagliflozin (Empa) group 
(20  mg/kg/day), and STZ + Scutellarin (Scu) groups (10 
or 40 mg/kg/day). Mice were given scutellarin and empa-
gliflozin daily by gavage from week 18 to week 24 in a 1:9 
solution of dimethyl sulfoxide (DMSO): water. The same 
volume of vehicle (DMSO:water = 1:9) was administered 
by gavage to mice in both the control and STZ model 
groups.

2.3 � Histopathology and immunohistochemistry
After the experiments, kidney samples were rapidly 
excised, followed by separation of renal cortices. Renal 
histological lesions were then obtained from the right 
renal cortex. Briefly, kidneys were fixed in 4% paraform-
aldehyde and paraffin-embedded. The sections were 
subsequently cut at 5 μm and stained with periodic acid 
silver methenamine (PASM) stain, Masson’s trichrome 
(MS) stain and periodic acid-Schiff (PAS) stain.
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Glomerular areas were assessed in samples by masked 
PAS staining and mesangial index quantified using 
Image-Pro Plus 6.0 software (mesangial area/total glo-
merulus area × 100).

For immunohistochemistry, kidney tissue slides were 
deparaffinized and rehydrated, exposed to Ethylenedi-
aminetetraacetic acid (EDTA) antigen retrieval solution 
for 20  min (95–100  °C), washed once with phosphate 
buffered saline (PBS), treated with 3% H2O2 for 15 min, 
washed with PBS, and then treated with 5% bovine serum 
albumin for 30  min at 37  °C, and incubated with anti-
FN1, anti-α-SMA, anti-NPHS1 or anti-NPHS2 overnight 
at 4 °C. The samples were visualized by diaminobenzidine 
staining after washing and incubation with secondary 
antibodies.

2.4 � Measurement of blood glucose
After fasting 4–6 h, serum samples of mice from tail vein 
were collected. Then the samples were measured for 
blood glucose using Glucose Assay Kit.

2.5 � Quantification of MAU
Urine samples were collected for 24 h and urinary albu-
min excretion was measured using a mouse MAU ELISA 
kit according to the manufacturer’s instructions.

2.6 � Western blotting
Kidney tissues were homogenized in lysis buffer and pro-
cessed for western blotting. The membranes were incu-
bated with primary antibodies to NPHS1, NPHS2, p38, 
phosphor-p38, α-SMA, SMAD4, snail1, ERK1/2, phos-
pho-ERK1/2 or β-actin overnight at 4  °C. This was fol-
lowed by hybridization with secondary antibodies for 2 h 
at room temperature. Bands were visualized using ECL 
and quantified using ImageJ software.

2.7 � Statistical analysis
All data are expressed as mean ± standard deviation 
(S.D.). This study used pairwise comparisons by Tukey’s 
test method. GraphPad Prism 8.0 software was used for 
statistical analysis.

3 � Results
3.1 � Scutellarin ameliorates proteinuria, glomerular 

expansion and mesangial matrix of DN mice
DN mice were established by 60  mg/kg of STZ once 
a day for 3  days and the serum glucose levels of the 
8-week mice were above 15  mmol/L. Following by 
10-week’s feeding and the urinary albumin/creatinine 
ratios were significantly higher than the mice treated 
with vehicle only. Then, these mice were treated with 
low (10  mg/kg), high (40  mg/kg) doses of scutellarin, 
empagliflozin (20  mg/kg, positive control) or vehicle 
for another 6  weeks. At the 3rd week of the 6-week’s 
treatments with the drugs, the urinary albumin/creati-
nine ratios were measured once. After the treatments 
for 6  weeks, the mice were euthanized and the urine 
samples, kidneys were collected for evaluation of the 
effects of the drugs on the DN mice at the end stage of 
the treatments (Fig. 1b).

As showing, the ratios of urinary albumin/creatinine 
of the model mice of DN were maintaining high during 
the drug treatments. Interestingly, the urinary albumin/
creatinine ratios of the mice treated with the both doses 
of scutellarin were tended to be ameliorated at the 3rd 
week, and the low, high dose of scutellarin or empa-
gliflozin-treated mice showed significant decreases of 
urinary albumin/creatinine after 6-week’s treatments 
(Fig. 1c). Besides, the kidney weights of the mice were 
decreased to the certain degrees (Fig. 1d), even though 
the kidney weight is not as sensitive as the ratio of uri-
nary albumin/creatinine for the features of DN.

In general, STZ-induced DN mice show a feature 
of developed glomerular hypertrophy in kidneys. 
Here, revealed by the PAS and PASM stainings, we 
also observed the enlarged glomerular area and the 
expanded mesangial matrix of the DN mice (Fig. 1e–g). 
Under the conditions, low dose of scutellarin tended to 
induce decrease of glomerular expansion and mesan-
gial matrix, whereas the treatments with a high dose of 
scutellarin significantly improved these two pathologi-
cal features of DN, similar to the empagliflozin-treated 
DN mice (Fig. 1e–g).

(See figure on next page.)
Fig. 1  Scutellarin Ameliorated Proteinuria, Glomerular Expansion and Mesangial Matrix of the DN Mice. a The chemical structure of Scutellarin. 
b Work-flow of the experiment. c Ratio of urinary albumin: creatinine of the mice treated with vehicle (STZ), low dose of scutellarin (10 mg/kg, 
STZ + Scu10), high dose of scutellarin (40 mg/kg, STZ + Scu40) or empagliflozin (20 mg/kg, positive control, STZ + Empa). The samples were collected 
at the before, the 3rd week and the 6th week of the treatments. d Kidney weights of the mice. e Representative PAS or PASM-stained images 
of the kidney samples from the mice as indicated (× 200, scale bar = 100 µm). f, g Quantifications of the glomerular area and mesangial matrix 
of the samples from D. Data were summarized as mean ± S.D.; n = 3–10 for each group, “n” stands for the number of animals; *p < 0.05, **p < 0.01, 
***p < 0.001 vs. the model group (STZ); ns, non-significant, p vs. the model group (STZ)
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Fig. 1  (See legend on previous page.)
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3.2 � Scutellarin ameliorates renal fibrosis of the DN mice
Fibrosis is a typical feature of DN. To estimate the effect 
of scutellarin on fibrosis, we measured fibrotic mark-
ers Col3A1, α-SMA and FN1. As showing by Masson 
staining, fibrosis was observed in DN mice, whereas 
scutellarin ameliorated the histopathological feature of 
the fibrosis (Fig.  2a). Besides, revealed by immunohis-
tochemistry stainings, two typical markers of fibrosis, 
α-SMA and FN1, were remarkably suppressed (Fig.  2a). 
To further confirm the downregulations of the markers, 

we performed western-blotting for measuring the pro-
teins α-SMA and Col3A1. As expected, while α-SMA and 
Col3A1 were upregulated in the STZ-induced DN mice, 
low dose of scutellarin tended to downregulate the two 
markers (Fig.  2b–d). Furthermore, high dose of scutel-
larin significantly induced the downregulations of the 
proteins, similar to that of positive control empagliflozin, 
(Fig. 2b–d).

Since scutellarin remarkably ameliorated renal fibro-
sis in STZ-induced DN mice. We further elucidated 

Fig. 2  Scutellarin Improved Renal Fibrosis of the DN Mice. a Masson’s trichrome staining (× 200; scale bar = 50 µm) and immunohistochemistry 
staining for α-SMA and FN1 (× 200; scale bar = 100 µm) of the mice treated with vehicle, scutellarin or empagliflozin. b Representative western-blot 
images for α-SMA and Col3A1 of the mice. c, d Quantifications of the protein levels of α-SMA and Col3A1, respectively. β-Actin used as a loading 
control. All data are normalized to the STZ group and presented as the mean ± S.D.; n = 6 for each group, “n” stands for the number of animals; p vs. 
the model group (STZ)
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the underlying mechanism of the effect. It has been 
reported that TGF-β1 signaling is involved in the effect 
of breviscapine on DN [26]. Here we also screened the 
key signaling proteins of the TGF-β1 pathway, including 
TGF-β1 and its downstreams, SMAD2/3, p-SMAD2, 
p-SMAD3, SMAD4, Erk1/2 and p-Erk1/2, p38 and 
p-p38. As expected, the TGF-β1 was upregulated in 
the model group, whereas both low and high doses of 
scutellarin caused the downregulations of the protein, 
similar to that of empagliflozin treatments (Fig.  3a, 
b). Furthermore, p-SMAD2 increased by DN, and the 

increase was suppressed by the high dose of scutel-
larin but not the low dose of scutellarin and empagli-
flozin (Fig.  3a, c). Although the change in p-SMAD3 
was not observed in the low dose of scutellarin and 
empagliflozin, but the high dose of scutellarin signifi-
cantly reduced p-SMAD3(Fig.  3a, d). Meanwhile, the 
proteins levels of SMAD4 (Fig. 3e), p-p38 (Fig. 3f ) and 
p-Erk (Fig. 3g) were shown similar tendency as that of 
TGF-β1, except that the low dose of scutellarin did not 
induce a significant downregulation of p-Erk (Fig. 3g).

Fig. 3  Scutellarin Inhibits TGF-β1 and Its Downstream Signalling Pathway. a Representative images of Western blotting samples for TGF-β1, 
p-SMAD2, p-SMAD3, SMAD2/3, SMAD4, p-p38, p38 and p-Erk and Erk1/2 of the mice treated with vehicle, scutellarin or empagliflozin. b–g 
Quantifications of the protein as indicated. All data are normalized to the STZ group and presented as the mean ± S.D.; n = 4–6 for each group, “n” 
stands for the number of animals; p vs. the model group (STZ)
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3.3 � Scutellarin improved podocytes injure in DN mice
NPHS1 and NPHS2 are two key markers for podocyte 
injury or activation, in order assess the impact of scutel-
larin on podocyte injury in the DN mice, we used immu-
nohistochemical staining to determine the protein levels 
of NPHS1 and NPHS2 in the kidneys of the mice, and 
found that NPHS1 was downregulated in the model mice, 
whereas the treatments with scutellarin or empagliflozin 
significantly restored the expressions of NPHS1 back to 
the control level (Fig. 4a). In consistent with the immu-
nohistochemistry result, the western-blotting of the pro-
tein demonstrated that the treatments with scutellarin or 
empagliflozin significantly restored the down regulated 
NPHS1 in STZ-induced DN mice (Fig. 4b, c). For NPHS2, 
the immunohistochemistry result was similar to the 
Western blot result, showing that treatment with empa-
gliflozin or high dose scutellarin induced significantly 
higher expression of NPHS2 (Fig. 4b, d), but the level of 
NPHS2 was not changed in DN mice.

Numerous studies have demonstrated that Wnt/β-
catenin signaling mediates TGF-β1-driven podocyte 
injury and proteinuria [31, 32]. Axin, β-catenin, Dkk, 
and Snail, are the key proteins of the Wnt/β-catenin 
signaling pathway. Here we continued to detect Wnt/β-
catenin signaling in podocytes of the mice. As shown, 
the western-blotting data demonstrated that β-catenin 
was upregulated in the DN mice, whereas high dose of 
scutellarin or positive control empagliflozin decreased 
its expressions (Fig.  4e, f ). These changes of β-catenin 
were similar to that of Axin2 (Fig. 4e, g). The difference 
is that empagliflozin-treated mice showing only a trend 
of decrease for Snail (Fig. 4e, h), but the increase in Snail 
was suppressed by the low and high doses of scutellarin. 
However, DKK1 was not changed in DN mice, so that no 
changes were observed for the treatments with vehicle, 
scutellarin or empagliflozin (Fig. 4e, i).

4 � Discussion
In this study, we have provided a comprehensive and sys-
tematic analysis demonstrating the protective effects of 
scutellarin against various aspects of DN in STZ-induced 
DN mice. Our findings indicate that scutellarin effec-
tively mitigates proteinuria, renal hypertrophy, fibrosis, 
and podocyte injury. Furthermore, the pharmacological 
data strongly supported the participation of the TGF-β1 
signaling pathway and its downstream network in medi-
ating the observed effects of scutellarin. These results 
highlight scutellarin as the key component of breviscap-
ine responsible for regulating DN.

Previous reports have shown that breviscapine’s ben-
eficial effects in treating DN. Breviscapine treatment 
has been shown to effectively inhibit the progression of 
tubulointerstitial injury, albuminuria and glomerular 

hypertrophy. Western blot analysis showed a significant 
reduction in the expression of TGF-β1 [33]. Addition-
ally, it has been reported that combining breviscapine 
with enalapril resulted in superior renoprotective effects 
compared to individual treatments in rats with DN. The 
mechanism underlying this synergistic effect may involve 
the suppression of increased oxidative stress, PKC activ-
ity, and the overexpression of TGF-β1 in renal tissue [26].

The role of TGF-β1 in DN pathogenesis is well estab-
lished. TGF-β1 plays a crucial role in the production of 
extracellular matrix in the kidney and its dysregulation 
has been linked to the progression of renal fibrosis in 
DN [34]. Mice with overexpression of TGF-β1 specifi-
cally in renal tubular epithelial cells develop spontane-
ous systemic tubulointerstitial fibrosis, demonstrating 
that TGF-β1 contributes to renal fibrotic processes [35]. 
Our results showed that scutellarin markedly suppressed 
the overexpression of TGF-β1 and its downstream mol-
ecules, suggesting its potential to improve renal fibrosis 
in diabetic nephropathy.

Podocytes contribute to the development of albumi-
nuria in DN through their critical role in maintaining 
the integrity of the glomerular filtration barrier [36]. 
Reduced expression of nephrin (NPHS1) and podocin 
(NPHS2) is associated with fusion of the podocyte foot 
processes, this leads to breakdown of the glomerular fil-
tration barrier and subsequent albuminuria [37]. We 
found that scutellarin treatment significantly restored 
the expressions of NPHS1 and NPHS2 in the glomerulus. 
Wnt/β-catenin signaling involved in TGF-β1-induced 
proteinuria and podocyte injury, according to new evi-
dence [31, 32]. Several key proteins, including Axin, 
β-catenin, Dkk, and Snail, are integral components of the 
Wnt/β-catenin signaling pathway. β-Catenin is a cyto-
plasmic protein that translocates to the nucleus, medi-
ating TCF-LEF-dependent gene expression [38]. Snail is 
one of the target genes regulated by the Wnt/β-catenin 
signaling pathway and has been implicated in kidney 
injury [38]. Axin is part of the destruction complex’ 
responsible for degrading β-catenin when Wnt ligands 
fail to act [38]. On the other hand, Dkk acts to inhibit 
Wnt/β-catenin signalling [38]. In this study, we noticed 
that scutellarin treatment markedly reduced the protein 
expressions of β-catenin, Axin2, and Snail in the glomer-
ulus. However, the protein expression of Dkk1 was not 
notably altered by scutellarin treatment. These findings 
suggest that scutellarin may regulate Wnt/β-catenin sign-
aling in podocytes, possibly by suppressing the activation 
of β-catenin and its downstream target genes, including 
Axin2 and Snail.

We set up two different doses of scutellarin to investi-
gate its effects on DN. A high dose group (STZ + Scu40) 
and a low dose group (STZ + Scu10) were established to 
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Fig. 4  Scutellarin Restored Podocyte Injury of the DN Mice. a Representative images of immunohistochemistry for NPHS1 and NPHS2 of the mice 
treated with vehicle, scutellarin or empagliflozin (× 200; scale bar = 50 µm). b Representative images of Western-blotting for NPHS1, NPHS2. 
c Quantitative plot of the expression of NPHS1 of the mice. d Quantitatification of NPHS1 expression of the mice. e Representative images 
of Western-blotting for β-catenin, Axin2, snail and DKK1 of the mice. f–i Quantifications of the protein levels for β-catenin, Axin2, snail and DKK1 
from E. All data are presented as the mean ± S.D.; n = 4–6 for each group, “n” stands for the number of animals; p vs. the model group (STZ)
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assess the dose-dependent response of scutellarin. The 
results indicated that the high dose group exhibited sig-
nificant improvements in pathological indicators and key 
proteins involved in the signaling pathway compared to 
the low dose group. For instance, the low dose of scutella-
rin significantly reduced the urinary albumin/creatinine 
ratio, suggesting a beneficial effect on albuminuria. How-
ever, it only showed a tendency to decrease glomerular 
expansion and mesangial matrix, without reaching sta-
tistical significance. Similarly, the low dose of scutellarin 
significantly reduced the expression of TGF-β1, which 
is involved in the pathogenesis of DN, but it did not sig-
nificantly affect the proteins in its downstream signal-
ing pathway. There could be several possible reasons for 
these observations. Firstly, it is likely that the low dose of 
scutellarin had weaker efficacy in mitigating the patho-
logical phenotypes compared to the high dose. Secondly, 
the effects of scutellarin on molecular-level proteins may 
be less sensitive at the lower dose, resulting in a lack of 
significant changes in the downstream signaling pathway 
proteins.

Moreover, several clinical guidelines recommend the 
use of the SGLT2 inhibitor empagliflozin for the treat-
ment of DN. In our study, we compared the effects 
of empagliflozin with scutellarin at a high dose and 
found relatively comparable effects in alleviating the 
pathological features of DN. However, it is worth not-
ing that the effect of empagliflozin on the pathway was 
not completely identical to that of scutellarin. Spe-
cifically, empagliflozin did not significantly affect the 
downstream signaling pathway of TGF-β1, which is 
a key pathway involved in the pathogenesis of DN. A 
study conducted by Issei Tomita and colleagues sug-
gests that SGLT2 inhibitors mediate the protection of 
DN through the promotion of ketone body-induced 
mTORC1 inhibition [6].

In conclusion, our study provides compelling evi-
dence for the promising preventive effect of scutella-
rin on DN. Scutellarin demonstrated its effectiveness 
by inhibiting the TGF-β1 profibrotic signaling pathway 
and suppressing the phosphorylation levels of MAPKs 
(ERK1/2 and p38) as well as the Wnt/β-Catenin path-
way (β-Catenin, Axin2). These findings indicate that 
scutellarin acts on multiple molecular targets involved 
in the pathogenesis of DN. However, despite these sig-
nificant findings, the specific protein targets of scutel-
larin in improving DN remain unclear and require 
further exploration. The detailed molecular mecha-
nisms by which scutellarin exerts its renoprotective 
effects require further study.
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