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Energy-efficient superparamagnetic Ising
machine and its application to traveling
salesman problems

Jia Si 1,2, ShuhanYang1, YunuoCen1, JiaerChen1, YingnaHuang1, ZhaoyangYao1,
Dong-Jun Kim1, Kaiming Cai1, Jerald Yoo 1, Xuanyao Fong 1 &
Hyunsoo Yang 1

The growth of artificial intelligence leads to a computational burden in solving
non-deterministic polynomial-time (NP)-hard problems. The Ising computer,
which aims to solve NP-hard problems faces challenges such as high power
consumption and limited scalability. Here, we experimentally present an Ising
annealing computer based on 80 superparamagnetic tunnel junctions (SMTJs)
with all-to-all connections, which solves a 70-city traveling salesman problem
(TSP, 4761-node Ising problem). By taking advantage of the intrinsic ran-
domness of SMTJs, implementing global annealing scheme, and using efficient
algorithm, our SMTJ-based Ising annealer outperforms other Ising schemes in
terms of power consumption and energy efficiency. Additionally, our
approach provides a promising way to solve complex problems with limited
hardware resources. Moreover, we propose a cross-bar array architecture for
scalable integration using conventional magnetic random-access memories.
Our results demonstrate that the SMTJ-based Ising computer with high energy
efficiency, speed, and scalability is a strong candidate for future unconven-
tional computing schemes.

The demands for future data-intensive and energy-efficient computing
tasks overwhelm the computational power of conventional von Neu-
mann architectures1. For example, NP-hard problems are often
encountered in combinatorial optimizations2, resource allocation3,
cryptography4, finance5, image processing6, tour planning7, and job
sequencing8, and their computational time and hardware resources
increase exponentially with the problem size, which makes them very
difficult or impossible to be solvedby conventional computers in afinite
time. These problems can be mapped to the Ising model, a mathema-
tical model to characterize interactions between magnetic spins9. The
dynamics of themodel is algorithm- based, i.e. by constructing a proper
coupling matrix and allowing the system to evolve utilizing an intrinsic
convergence property of the Ising model, the ground state could be
obtained as a solution to the corresponding problems. However, as the
system might be trapped in many local minima, the annealing process

hasusually been adopted in Ising computers to address such limitations.
It is commonly agreed that adding fluctuations prevents the Ising
computer from being stuck at the local minima.

Efficient algorithms and hardware systems for finding an optimal
or near-optimal solutionof an Isingmodel at a fast speed and lowpower
have been sought. Adiabatic quantum computing (AQC)10,11 and quan-
tum computing12–15 based on superconducting qubits are capable of
converging the Ising model by tunneling out of local minima to the
global minima. A 100-node Maxcut problem was solved using a quan-
tum computer of 2048 spins with huge power consumption16. Besides
the high cost and complexity of cryogenic temperature, this proof-of-
concept systemwas limitedby the sparse connectionsonly between the
nearest neighbors, which leads to sub-optimal outcomes17. Simulated
annealing based on CMOS implementations was exploited for parallel
Ising computing, including central processing units (CPU)18,19, graphics
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processing units (GPU)20, and field-programmable gate array (FPGA)21,22.
These hardware have reported as large as 16,384 spins, however, it
requires huge hardware resources for generating random numbers to
introduce stochasticity to escape from the local minima4,18,23,24. Coher-
ent Ising machine (CIM) is an optical scheme with competitive energy
efficiency. However, it requires a long fiber ring cavity and relies on
external FPGA for implementing coupling25,26. The temporal multi-
plexing process is also time-consuming and hard to expand to large
systems. Recently, experiments and simulationworks have investigated
various devices to emulate the behavior of Ising spins by taking
advantage of their intrinsic physics. An 8-spin asynchronous probabil-
istic computer based on superparamagnetic tunnel junctions for sol-
ving integer factorization tasks of values up to 945 was demonstrated4.
SPICE simulations of 16-city TSP using simulated annealing method
were presented27. Other works such as 8-spin phase-transition nano-
oscillators28, multiferroic oxide devices with a high thermal stability29,
and magnetoresistive random access memory (MRAM)30,31 have also
conceptually proved that spin-based devices are suitable for repre-
senting Ising units. However, these works have encountered challenges
in either partially-connected Ising spins or small scalability which limit
the Ising computer from solving practical problems.

TSP discussed in this paper is a well-known problem which is
much beyond the limitation of locally connected Ising models. Other
combinatorial optimization problems, such as knapsack problems,
coloringproblems, andnumberpartitioning, need all-to-all connection
to satisfy specific constraints9. In practice, an additional graph
embedding process is often required when mapping to 2-dimensional
CMOS circuitry which only considered the coupling between adjacent
spins32–34. Since the embedding increases the required number of
auxiliary spins and causes spin connections to change, the annealing
accuracy is degraded significantly, especially when the problem size is
large. This means that supporting a fully connected Ising model is
highly recommended for dealing with a wide range of problems.
Another problem is the rapidly increasing connectivity when con-
sidering large-scale systems, which usually results in huge energy
consumption and latency. Since the number of spins that a particular
annealing processor can handle limit the scale of the problem that can
be solved, how to solve complex problemswith limited hardware in an
energy-efficient way has also drawn significant attention.

In this work, we experimentally report a scalable Ising computer
based on 80 SMTJs with all-to-all connections and successfully solve
the 4761-nodeTSP problem. The intrinsic stochasticity in SMTJ enables
ultra-fast and low-power Ising annealing without using extra resources
for random number generation and Metropolis determining process7.
By combining global annealing with intrinsic annealing in SMTJ, the
convergence of the Ising problem is guaranteed especially in large-
scale Ising problems. The method to determine parameters of global
annealing is discussed.With an all-to-all connection among Ising spins,
the combinatorial optimization of 9-city TSP is solvedwith the optimal
solution.We further develop the algorithm for constrained TSP (CTSP)
with no extra auxiliary Ising bits both in algorithm and hardware,
indicating the superiority and flexibility of this Ising computer. Fur-
thermore, we propose an optimization strategy based on graph par-
titioning (GP) andCTSP and experimentally solved a 70-city TSP,which
typically needs 4761 nodes, on our 80-node Ising computer with a
near-optimal solution. The system can obtain the lowest power con-
sumption of 0.64mW as well as high energy efficiency of 39 solutions
per second per watt among state-of-art Ising annealers. We have
experimentally demonstrated that large-scale Ising problems can be
solved by small-scale hardware in an energy-efficient way.

Results
SMTJ-based artificial Ising spin
Various NP-hard problems can be solved by constructing corre-
sponding Ising models and observing the ground states during

evolution processes. Figure 1a shows an all-to-all connected Ising
model, whose Ising Hamiltonian can be written as

H = �
XN
i,j

Ji,jsisj �
XN
i

hisi, ð1Þ

where H is the total energy of the system, N is the total number of
spins, si is the i-th spinwith oneof two states; “+1” (Ising spinup) or “−1”
(Ising spin down), Ji,j is the coefficient of coupling between the i-th and
the j-th spins, and hi is the external field of the i-th spin. For a fixed
configuration of other spins than sk , the probability of sk staying in the
down-state is given by

p #=
1

1 + e�2Λ :
ð2Þ

where Λ= ∂H
∂sk

(see Supplementary Note 1).
One natural implementation of this Ising spin is based on a

stochastic nanomagnet. The inset of Fig. 1b shows the sketch of an
SMTJ, consisting of a tunneling barrier sandwiched by a reference
layer and a free layer (see Methods section). Because of the small
device diameter (~50 nm), the energy barrier of the free layer
between the anti-parallel (AP) and parallel (P) states is low that the
retention time of either state is in the range of μs to ms, similar to
previous studies4,35. The SMTJ resistance, measured as a function of
time in Fig. 1c, shows preferred AP states at high currents and P states
at low currents. When the current (I) is ~4μA, SMTJ shows an equal
chance of AP and P states. The probability of the AP state under
different input currents over 0.1 s is fitted in Fig. 1b by a sigmoid
function:

p AP=
1

1 + e�a× ðI�bÞ ð3Þ

where a =4:67 and b= 3:9μA: In order to emulate Ising spin sk with our
SMTJ device, weonlyneed tomake the probability of the down-state of
sk to be equal to that for the AP state of SMTJ, namely p AP=p #, with
two calibration coefficients. Thus, we can derive the form of the
current I k injected to SMTJ as (see Supplementary Note 1):

I k =
2Λ
a

+b=
c
a

X
j

2Jkjsj +hk

 !
+b ð4Þ

where c= 1=kT is the effective inverse temperature which can be
conducted for global annealing.

Intrinsic annealing in SMTJs-based Ising computer
By integrating 80SMTJswith a peripheral circuit and amicrocontroller
unit (MCU), we build an 80-node Ising computer (see Supplementary
Note 2). Each Ising spin in Eq. (1) is emulated by an SMTJ with intrinsic
randomness, where P (AP) state represents spin-up (down). Figure 1d
shows the photograph of the printed circuit board (PCB) and the
diagram of the system (see Methods section). The system contains 8
processing elements (PEs); each PE has 10 SMTJ computing units. Each
SMTJ computing unit includes a transistor and a resistor to adjust the
state of SMTJ into stochastic. During the computing process, an MCU
examines the states of all SMTJs by reading the output of comparator
arrays through multiplexers and generates new input voltages for
digital-to-analog converters (DACs) according to the updating rule in
Eq. (4) (see Supplementary Note 3 for calibration of 80 SMTJ com-
puting units).

During the evolution process, an Ising solver could be easily
trapped in a local minimum state. To avoid this non-optimal solu-
tion, annealing algorithms such as simulated annealing (SA) or
quantum annealing (QA) were developed. The general idea of SA is
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Fig. 1 | Illustration of SMTJ-based Ising computer. a All-to-all connected 12-spin
Ising model with s represents the spin and J1,6 represents the coupling between s1
and s6. b Sigmoidal fit of probability of AP state (pAP) of an SMTJ under different
input currents (I). pAP =

1
1 + e�4:672× ðI�3:905μAÞ. Inset: diagram of an SMTJ. A tunneling

barrier layer is sandwiched by a reference layer and a free layer. c Time-dependent
resistance of an SMTJ under different input currents (I). d Photograph and

schematic diagram of SMTJ-based Ising computer. The system contains 8 proces-
sing elements (PEs), 4 digital-to-analog converters (DACs), a comparator array, a
multiplexer and a microcontroller unit (MCU). Each PE has 10 SMTJ computing
units. Each computing unit includes a transistor and a resistor to adjust the prop-
erty into stochastic. Blue lines and orange arrows represent the control and data
flow, respectively.
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to make the system evolve from a high temperature to a low tem-
perature gradually7. The convergence and relaxation of SA can be
mathematically provable36. During each iteration, a random number
is generated for stochasticity and introduced to determine whether
the result in this iteration should be accepted or not. In QA, quan-
tum fluctuations cause quantum tunneling between states17. In both
SA and QA, stochasticity needs to be introduced into the annealing
process. In contrast, our Ising systemutilizes the intrinsic stochastic
behaviors of SMTJ to perform the Metropolis process of standard
SA in hardware, which greatly saves the solution time and hardware
resources for generating randomness (see Supplementary Note 4).
Besides, our Ising computer has an all-to-all connection which has
wider application scenarios, as well as a better capability of escap-
ing from local minima.

Ising mapping of N-city TSP and CTSP
We have applied our Ising computer to the TSP problem, one of the
combinatorial optimization problems, which applies to various sec-
tors, such as vehicle routing, logistics, planning, and scheduling. The
goal is tofind the shortest route that visits all listed cities once andonly
once given distances between the cities in the list. In order to solve this
problem, we first map N-city-TSP to an N2-spin Ising model, or
ðN � 1Þ2-spinmodel assuming a fixed starting city. Figure 2a shows the
coordinates of 9 cities and Fig. 2b shows the 81-spin Ising model,
whose rows indicate the cities and columns indicate the visiting order.
We define the binary spin, s, as si,j = 1 if city i is visited as j-th city or

si,j = −1 otherwise. The total Hamiltonian of TSP is expressed by9

HTSP =
X
i

X
j

sij + ðN � 2Þ
 !2

+
X
j

X
i

sij + ðN � 2Þ
 !2

+w
X
j

X
i,i0

di,i0
si,j + 1
2

� �
si0,j + 1 + 1

2

� � ð5Þ

where the first term is a constraint that represents only one city is
visited at the j-th visit, and the second term represents one city is
visited only one time. w is a constant small enough (0 <w< 1) not to
violate the twoconstraints of theTSP cycle.di,i’ is thedistancebetween
city i and city i’. According to Eqs. (1) and (5), coupling matrix J of 81
spins could be obtained, as shown in Fig. 2c (see Supplementary
Note 5). It shows that spins in the same row or column have strong
coupling, as indicated by the first two terms in Eq. (5).

We define CTSP as the visiting orders of some cities are enforced
during the traveling. This is quite useful in real-life scenarios. For
example, a delivery man collects food and drinks at shop A and must
deliver hot drinks to B first even though the total cost is higher than
optimal.Wepropose analgorithm for solvingCTSP by adding negative
“distance” to the Hamiltonian. For example, suppose that city A and
city B are required to be connected in the CTSP as city 2 and city 7

Fig. 2 | Construct Isingmodel for a 9-city TSP. aCoordinates of all 9 cities used in
this problemwhich are the first 9 cities in the dataset Burma14 fromTSPLIB.b Ising
spin representation for 9-city TSP (81 spins). Rows indicate names of cities and
columns indicate the visiting order. Each spin can be 1 (visited) or −1 (not visited) in
each iteration. c Color map of the coupling matrix JTSP of 9-city TSP, and the color
bar represents an effective energy with the unit of kT. Here, k is the Boltzmann

constant and T is the temperature. d Constrained TSP (CTSP) with a fixed vising
sequence from city 2 to city 7 or from city 7 to city 2. The arrows represent the
visiting sequence. e The Ising spin representation for CTSP with the fixed visiting
sequence in d. Arrows represent possible vising sequences. f Color map of the
difference of coupling matrix between TSP (JTSP) in a and CTSP (JCTSP) in d. Arrows
represent the fixed vising sequences from city 2 to city 7 or from city 7 to 2.
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shown in Fig. 2d, and then we add the term

�θHc = � θ
X
j

sA,jsB,j + 1 + sB,jsA,j + 1

 !
ð6Þ

such that the energy of a path, where city A and city B are connected, is
always loweredby θ:Whenθ is sufficiently large, theoptimal pathmust
have city 2 and city 7 connected. Thus, the total Hamiltonian of the
CTSP is expressed by

HCTSP =HTSP�θHc: ð7Þ

Constructing an Ising model for CTSP is exactly the same as TSP
except for extra allowed visiting sequences, as shown in Fig. 2e. This
would lead to a modification of the coupling matrix of J according to
Eq. (7) (see the deduction of JCTSP in Supplementary Note 6). From
Fig. 2f we can clearly see the differences between JCTSP and JTSP . This
algorithm of CTSP fits for arbitrary constraints of visiting sequences as
well as their combinations.

Experimental demonstration of 9-city TSP
We first run a 9-city TSP in the 80 SMTJ-based Ising computer at a
relatively low but non-zero effective temperature to examine the
intrinsic annealing in SMTJ. The iteration time is set comparable to the
longest retention time of SMTJs to avoid reading previous spin states.
In our experiments, we set the iteration time as 0.1ms. As shown in
Fig. 3a, as the effective inverse temperature (c) is increased quickly to
0.5, the system converges rapidly to a low energy state within 50
iterations and reaches the ground state after 4000 iterations. It should
be noted that the intrinsic stochasticity in SMTJs helps the system
escape from local minima without an extra annealing process, as
shown in the right inset of Fig. 3a. Figure 3b illustrates the evolution of
9 spins out of 81 spins. The evolution of all 81 spins can be found in
Supplementary Note 7.

We choose four states in Fig. 3a to inspect the traveling path in
Fig. 3c and their Ising spins, namely si,j , as shown in Fig. 3d. The yellow
square in Fig. 3d represents si,j = 1(visited) and the blue square repre-
sents si,j = � 1(not visited). In an initial state A, the spin states are
randomly set and then converge to a relatively low energy at state B.
State C is an intermediate solution during the annealing process. State
D is the optimal solution satisfying two constraints of the TSP. Because
we anneal the system to a relatively low but non-zero temperature so
that the convergence to a sub-optimal state could be guaranteed, and
at the same time, the intrinsic randomness in SMTJ helps the system to
escape from local minima and find a ground state quickly. We test 10
different random initial states each with 5000 iterations and find that
in all cases the system can obtain a relatively small energy, as shown in
Supplementary Note 8. However, there is a probability that the system
jumps out of the ground state because of the non-zero temperature. If
we continue to observe the evolution in a large timescale, the system
would move back to the global minimum state. In some cases, where
the speed and near-optimal solution matter but the accurate optimal
solution is not, the number of iterations can be chosen to be small.

Further global annealing of the system to a lower effective tem-
peraturemay guarantee the convergence of the computation. Herewe
use linear annealing as an example to examine the convergence of this
algorithm in a very large-iteration limit. The initial temperature should
be chosen sufficiently high to ensure that the thermal energy exceeds
any energy barrier (ΔH =Hmax � Hmin) within the system, while still
adhering to the fundamental constraints of the specific Ising model.
For a given N-city TSP, Hmax in Eq. (5) can be estimated as w×N × �d,
assuming that the distance between any two cities is the same as the
average distance �d. Similarly, Hmin can be estimated as w×N ×dmin.
Therefore, the initial c of 9-city TSP in our experiment canbeestimated
as cinitial ∼ 1=ΔH =0:07, wherew=0:5, N =9 for a total of 9 cities, �d =4

and dmin = 0:8 for the average and shortest distance of each two cities,
respectively in Fig. 3c. We then choose cinitial = 0.2 which is sufficiently
safe for annealing. As the temperature linearly decreases, the dyna-
mical system gradually stabilizes. The final temperature should be low
enough i.e., cfinal ≫ 1=ΔH, to freeze all possible fluctuations.Herewe set
cfinal = 1:8 which is at least one order larger than 1=ΔH. This can also be
verified by observing randomly generated states under cfinal for long
iterations. Regarding the annealing speed, if several changes in the
spin configuration are observed under each value of c, then this
annealing speed is valid. Plenty trials are required to find the proper
annealing speed (details in Supplementary Note 8).

In Fig. 3e we can find the first global minimum energy appears
after 16,500 iterations, and converge to the ground state after
40,000 iterations. Temperature schedules can be optimized to
reduce iteration numbers, e.g. increase the effective temperature in
the first few time steps, and then decrease gradually, or learned by
the reinforcement learning method37. In practice, we use one
memory to store the minimum energy state during the computa-
tion, and another memory to record the final energy state. We take
the minimum value of these two results as the solution. Figure 3f
shows the success probability (defined as finding the optimal path)
of TSP with various node sizes. The success probability of 9-city TSP
reaches 95% after 104 iterations. The success probability with the
parameterw in Eq. (5) which determines the relative strength of the
constrain term and distance term is also discussed. If the w is too
large, then the probabilities of violations, namely the invalid path,
would increase, as shown in Supplementary Note 8. Ifw is too small,
then the effect of the distance term is small, which results in a
slower convergence to the ground state.

The advantages of this annealer are threefold: (1) Selective
working modes by using different temperature schemes. One is the
probabilistic samplingmodeworking at a constant temperature,which
is similar to an asynchronous probabilistic computer4; the other is the
annealing mode conducted by reducing the effective temperature. (2)
Fast speed and low power consumption to find the ground state
because of the intrinsic annealing properties in SMTJ. (3) Global
annealing outperforms probabilistic sampling in achieving efficient
convergence, especially for large-scale problems.

We have implemented a synchronous design with a lower
requirement on the speed of peripheral circuits. This design also
effectively mitigates issues such as leakage, sneak currents, and para-
sitic resistances which might encountered in asynchronous hardware
with a memristive (or resistive) crossbar array.

Compressing 70-city TSP to 80-node Ising computer
Generally, the number of spins required for an N-city TSP is (N-1)2,
which limits the scalability of TSP on state-of-the-art computing sys-
tems. Here, we propose a graph Ising compressing algorithm based on
CTSP that can significantly reduce the number of spins and interac-
tions for solving a TSP. Figure 4a is an example of how we apply this
algorithm to our 80-node SMTJ Ising computer for solving a 70-city
TSP (4761 nodes, st70 data set from TSPLIB38). The major steps of this
algorithm can be described as follows: (a) divide the cities into several
smaller groups until the number of cities in each group is less than 10
byGPmethod; (b) solve TSPwithin eachgroup separately; (c) integrate
neighboring groups to obtain an initial path of the whole group; and
(d) optimize the path in (c) by a CTSP window sliding over the
whole map.

It is worth mentioning that GP is also an Ising problem. When
converting a global TSP into local TSPs, using GP would be more
hardware-friendly for our Ising computer compared to other clus-
tering algorithms. It is based on the idea that the original graph can
be separated into multiple sub-graphs depending on the Euclidean
distance. The number of spins required for solving GP is ~N and thus,
GP is quite efficient for local TSPs since the problem size can be
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Fig. 3 | Solution to 9-city TSP. a Total energy transition of 9-city TSP with 5000
iterations (the optimal solutionwith the energy of 18.23 corresponds to the dashed
horizontal line). Insets: effective inverse temperature (c) and total energy within
3500–4500 iterations. b Evolution of 9 representative SMTJ states in 5000 itera-
tions. An offset is used in the y-axis to show each SMTJ clearly. c Visiting routes of
state A, B, C, andD in a.dCorresponding Ising spins of state A, B, C, andD in a. The
yellow squares represent ‘visited (si,j = 1)’ and the purple squares represent ‘not

visited (si,j = � 1)’. e Total energy transition with increasing c from 0.2 to 1.8. Left
inset: zoom-in view of total energy transition with increasing c from 0.392 to 0.52.
Right inset: transition of c with iterations. The red dashed line represents the
optimal path (success). f Success probability of solving TSP with varying the node
size. The data points and shadows represent themedian value and the interquartile
range (IQR), respectively.

reduced to ~ N � 1ð Þ2=a, where a is the number of groups, and each
TSP can be optimized independently (see GP mapping in Supple-
mentary Note 9).

The final step (d) is based on CTSP, where a rectangular
window slides over the path and cuts it into several disconnected
lines, among which the two longest lines are chosen and the
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edge cities are connected as a circular path (Supplementary
Note 10). The CTSP is solved within each window for sub-area
optimization without changing the visiting order of edge cities.
After this, the two lines at the edge cities are opened and CTSP is
carried out again after sliding to the next window. GP-CTSP-based
optimization algorithm provides an efficient way of finding near-
optimal solutions for large-scale TSP on limited hardware
resources.

Figure 4b shows the comparison of numbers of spins for dif-
ferent TSPs by a conventional Isingmethod9, cluster Isingmethod39,
and our method. The required number of spins in our method is
relatively unchanged for various TSPs, while that of other methods
increases substantially with the scale of the problem. Figure 4c
shows the total path of 70-city TSP as a function of iteration number
using different SA-based algorithms, including symbiotic organisms
search40, ant colony optimization41, multi-offspring genetic
algorithm42, and gene-expression programming7. Finally, we obtain
the near-optimal path with a total energy of 700.71, which is slightly
higher than the optimal solution of 675. However, the iteration
number for an optimized solution is 4.9 × 106 by our method, which
is two to three orders lower than that of SA-based algorithms run-
ning on Intel Core-i7 CPU7 with the main frequency of 3 GHz, as
shown in Fig. 4c.

Ising computer scaling and cross-bar architecture
The above experimental demonstration shows our Ising computer
with 80 SMTJs is capable of finding a near-optimal solution to a
medium-scale NP-hard problem. We then explore the performance
with increasing from 70 to 200 cities. The simulation of complete
TSP task is carried out using MATLAB, incorporating a stochastic
model of the SMTJ employed in our experiment (details in

Supplementary Note 11). The solution quality is defined as

Solution quality= 1� total path� best demonstrated solution
best demonstrated solution

:

ð8Þ

Figure 5a illustrates the solution quality of the best results
obtained for each TSP task (Supplementary Note 12 for the best solu-
tions). Notably, as the number of SMTJ (M) increases, higher quality
solutions can be attained. It is worth emphasizing that the shortest
path obtained for the 101-city TSP is 640.9755 in our study, surpassing
the optimal path of 642.3095 provided by TSPLIB (Eil101.opt.tour).
This outcome serves as evidence of the superiority of ourmethod. The
utilization of more SMTJs solving TSP per sliding window leads to
improved optimization of CTSP annealing, resulting in an enhanced
solution quality, as depicted in Fig. 5b. Consequently, the time to
convergence s would also increase with the use of more SMTJS. When
dealing with a fixed hardware capacity, an appropriate number of
SMTJs forCTSPoptimization canbe assigned, taking into account both
the solution quality and convergence speed. Figure 5c showcases the
success rate (defined as achieving 95% solution quality) as the problem
size increases. The success probability of 200-city TSP, whose com-
plexity is ~40,000 nodes, can reach as high as 90%, demonstrating the
scalability of our method compared to typical TSP (without GP
and CTSP)9.

We also propose a cross-bar architecture for large-scale Ising
computer implementation, which can be integrated by usingmodern
MRAM and CMOS technologies. The core part of this architecture
consists of SMTJ bit cells organized as a cross-bar array, integrated
with row decoders and read sense amplifiers (RSA), as shown in

Fig. 4 | Experimental solution of 70-city TSP. a Optimization algorithm for 70-
city TSP. b Number of required SMTJs for various problems using different
methods. Burma14, berlin52, eil76, and eil101 are TSP of 14, 52, 76, and 101 cities,
respectively. c Comparison of total Ising energy (path) and total clock cycles for
final solution with different SA-based algorithms, including symbiotic

organisms search40, ant colony optimazation41, multi-offspring genetic
algorithm42, and gene-expression programming7. Our method is tested on our
Ising system and others are tested on Intel Core-i7 PC. In this comparison, our
system runs at a main frequency of 10 kHz.
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Fig. 5d. Each SMTJ bit cell contains one select transistor and one SMTJ
(1T1SMTJ), whereas the gate of the select transistor is driven by word
lines (WL), and the source of all bit cells are connected to the ground.
Each bit line is assigned with an RSA. The current flows through SMTJ
can be continuously adjusted by Vin of RSA, and the state of SMTJ can
be read by RSA at the same time. Figure 5e illustrated the circuit of
RSA, in which two clamp transistors control the current flow through
the bit cell path and reference path by the gate voltage (Vin), and a
current mirror is used to guarantee the same current of the above
two paths. Then different voltages would show in the Q and QB point
when the resistance of SMTJ is higher or lower than the reference
resistor (Rref). By utilizing an enabled voltage sense amplifier (VSA),
the voltages at the Q and QB points are sensed, allowing the SMTJ
state to be determined as either Vdd (P state) or 0 V (AP state). Par-
ticularly, a voltage equalization circuit (VEC) is designed for

initializing VSA to avoid incorrect readout. Electrical coupling
through a resistance change43 is evaluated to have neglectable effects
(details in Supplementary Note 11). Figure 5f shows the signals to
control and read bit cells. In phase 0 (PH0), one row of SMTJs is
selected by WL, and Vin prepared by peripheral circuit is applied to
the corresponding RSA. EQ is set high to initialize Q, QB and Vout as
Vdd/2. In phase 1 (PH1), the SMTJ fluctuates from the falling edge to
next rising edge of EQ. Finally, in phase 2 (PH2), RSAs read the data of
one row in parallel at the falling edge of SEN. After the first row has
been retrieved, the partial sum starts to be computed. Meanwhile,
the same process for the second row can be started, so and so
forth. To avoid reading the previous state, the duration of PH1 is
preferred to be comparable with the retention time of SMTJ, which
limits themain frequency of the system (seedetails in Supplementary
Note 11).

Fig. 5 | Scaling with problem size and cross-bar implementation towards large-
scale Ising computing. a Solution quality of various problems using different
number of SMTJs (M) in the array. The datasets used are St70, Eil101 and KroA200,
for 70, 101 and 200 cities, respectively. b Total length of KroA200 TSP at different
convergence speeds using different number of SMTJs. The dashed line represents
the best demonstrated solution. c Success probability of different TSP algorithm
(without/with GP and CTSP) as the number of cities increases after running for 50
times. A total of 512 SMTJs are used. Here we define the success as achieving the
solution quality of 95%. d SMTJ cross-bar array which contains row decoder, SMTJ,

select transistor and read sense amplifier (RSA). BL represents bit line, WL repre-
sents word line, Vin, Vout and Vdd represent the input voltage, output voltage and
supply voltage ofRSA. eCircuit of oneRSAwhich contains a currentmirror, voltage
equalization circuit (VEC,with a control signal of EQwhich initializes the voltages in
Q andQBpoints, under a reference voltage of Vdd/2), voltage sense amplifier (VSA,
with a control signal of SEN), reference resistance (Rref = 1

2 ðRap+RpÞ, Rap and Rp
represent SMTJ’s resistance in AP and P state respectively), and control transistors.
f Signals of writing/reading two adjacent SMTJ cells in one BL, selected byWL0 and
WL1 in sequence. All signals are defined in e and f.
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Discussion
We compare our system with other state-of-art Ising solvers, including
CMOS annealer (Intel Core i7 processor)7, quantum annealer (D-Wave
2000Q)16,17, CIM with FPGA26, memristor Hopfield neural networks
(mem-HNN)44, and phase-transition nano-oscillators (PTNO)28 in sol-
ving 4761-node TSP70, as shown in Table 1. We use the experimental
data for benchmarking from literature, and two kinds of SMTJs for
comparison. One is our perpendicular anisotropy SMTJ device and the
other is assuming recently reported in-plane anisotropy SMTJ with a
retention time of 8 ns45,46. Themajor attributes are themain frequency
(defined as 1/iteration time), power, time-to-solution as well as energy
efficiency (defined as solutions per second per watt). As quantum
computers, CIM, mem-HNN, and PTNO only demonstrated ~100-node
max-cut problems, we estimate the time-to-solution for solving TSP70
by assuming that the algorithm and the total number of spins to find a
near-optimal solution is the same as our work (details in Supplemen-
taryNote 13). Here, we set 80-spin Ising computer as a standard and fix
the number of iterations of 400,000 for a good solution to TSP70.
Only Ising computing parts are calculated for power consumption.

In Table 1, although the main frequency of CPU is the highest
among all candidates, the energy efficiency is lower than our SMTJ-
based approach. This is due to the redundant logic and data transfer
delay between the memory and PEs in a conventional von-Neumann
architecture. The SMTJ-based approach currently outperforms the
quantum annealer both in the power consumption as well as time to
solution. The power of quantum annealer is huge which needs to be
optimized further for real applications. CIM is another promising
architecture with a fast speed and acceptable power consumption.
Current CIM systems are proof-of-concept systems which are not at
present optimized for energy efficiency.Mem-HNNhas a relatively fast
speed assuming the 180-nmCMOS technology. However, the required
number of devices is large, which limits the integrated density. The
PTNO approach uses capacitors or resistors to mimic spin coupling,
whose main frequency would be limited by the system scale and
parasitic effects. It is reported that the ideal main frequency would
decrease from 500 to 87MHz when the system scale increases from
8-node to 100-node28. Our SMTJ-based Ising computer outperforms
other approaches with low power consumption with 0.64mW (details
in Supplementary Note 13).

We experimentally demonstrate perpendicular MTJs with a reten-
tion time of ~0.1ms and solve TSP70 Ising problems at an energy effi-
ciency of 39 solutions per second per watt. Furthermore, we simulate
an Ising computer with 4Kb SMTJs using 40nm commercial CMOS
technology. The simulated energy efficiency for solving TSP70 by using
the same SMTJ can reach 68 solutions per second per watt. By using
reported in-plane SMTJ45 and advanced CMOS, the system could obtain
the highest energy efficiency of 5:4× 103, which shows several orders of
magnitude improvement over other approaches. This result suggests
that an SMTJ-based Ising computer can be a good candidate for solving
dense Ising problems in a highly energy-efficient and fast way.

In summary, we have experimentally demonstrated an intrinsic
all-to-all Ising computer based on 80 SMTJs, and solved 9-city TSPwith
the optimal solution. Furthermore, a compressing strategy based on
CTSP and GP is proposed to experimentally solve 4761-node 70-city
TSP on an 80-node system with a near-optimum solution as well as
ultra-low energy consumption. A cross-bar architecture is then pro-
posed for large-scale Ising computers and the 200 city TSP task is
simulated. Our system provides a feasible solution to fast, energy-
efficient, and scalable Ising computing schemes to solve NP-hard
problems.

Methods
Sample growth and device fabrication
Thin film samples of substrate/[W (3)/Ru (10)]2/W (3)/Pt (3)/Co (0.25)/
Pt (0.2)/[Co (0.25)/Pt (0.5)]5/Co (0.6)/Ru (0.85)/Co (0.6)/Pt (0.2)/Co

(0.3)/Pt (0.2)/Co (0.5)/W (0.3)/CoFeB (0.9)/MgO (1.1)/CoFeB (1.5)/Ta
(3)/Ru (7)/Ta (5) were deposited via DC (metallic layers) and RF mag-
netron (MgO layer) sputtering on the Si substrates with thermal oxide
of 300nm with a base pressure of less than 2× 10�8 Torr at room
temperature. The numbers in parentheses are thicknesses in nan-
ometers. To fabricate the superparamagnetic tunnel junctions, bottom
electrode structures with a width of 10 µm were firstly patterned via
photolithography and Ar ion milling. MTJ pillar structures with a dia-
meter of ~50nm for the superparamagnetic behavior were patterned
by using e-beam lithography. The encapsulation layer of Si3N4 was in-
situ deposited after ion milling without breaking vacuum by using RF
magnetron sputtering, and top electrode structures with a width of
10 µm were patterned via photolithography and top electrodes of Ta
(5 nm)/Cu (40 nm) were deposited by using DCmagnetron sputtering.

MTJ characterization by probe station
The setup includes a source meter (Keithley 2400) for supplying DC
bias currents and a data acquisition card (NI-DAQmxUSB-6363) for the
readoperation. A single SMTJ operation cycle comprises two steps (i.e.
bias and read). A small DC input current with an amplitude of 1–20μA
is applied to SMTJ. Simultaneously, the DAQ card reads the voltage
signal across the SMTJ at a maximum sampling rate of 2MHz. TheMTJ
switching probability varies in accordance with the amplitude of
applied currents. The retention time of MTJ is determined from ran-
dom telegraph noise measurements over 250ms. The expectation
values of event time τ is determined by fitting an exponential function
to the experimental results.

Ising PCB
80 SMTJ arrays and peripheral circuits are integrated on a 12 cm× 15
cm PCB, controlled by anMCU (Arduino Mega 2560 Rev3). Four 12-bit
rail-to-rail DACs (AD5381) with 160 output channels in total are used to
generate analog DC inputs for PE and comparator arrays. Half of the
DAC output channels are used to provide stimulation to the gate
terminal of NMOSs (2N7002DW-G), and others are used to provide
reference voltages to comparators (AD8694). The drain voltages of
NMOS are compared with reference voltages and generate outputs in
parallel. Outputs of comparator arrays are read by MCU through four
multiplexers (FST16233) and then are calculated to obtain new inputs
for DACs. The supply voltage of the PCB board and SMTJs is 5 V and
0.8 V, respectively. The value of resistors in each computing unit can
be designed to adjust the center of sigmoidal curves.

Data availability
The data generated during this study are available within the article
and the Supplementary Information file. Sourcedata areprovidedwith
this paper.

Code availability
The codes that support this study can be available from the corre-
sponding author upon request.
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