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DenRAM: neuromorphic dendritic
architecture with RRAM for efficient
temporal processing with delays
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LaurentGrenouillet2, NiccolòCastellani2, Giacomo Indiveri 1, ElisaVianello 2&
Melika Payvand 1

Neuroscience findings emphasize the role of dendritic branching in neocor-
tical pyramidal neurons for non-linear computations and signal processing.
Dendritic branches facilitate temporal feature detection via synaptic delays
that enable coincidence detection (CD) mechanisms. Spiking neural networks
highlight the significance of delays for spatio-temporal pattern recognition in
feed-forward networks, eliminating the need for recurrent structures. Here, we
introduce DenRAM, a novel analog electronic feed-forward spiking neural
networkwith dendritic compartments. Utilizing 130 nm technology integrated
with resistive RAM (RRAM), DenRAM incorporates both delays and synaptic
weights. By configuring RRAMs to emulate bio-realistic delays and exploiting
their heterogeneity, DenRAMmimics synaptic delays and efficiently performs
CD for pattern recognition. Hardware-aware simulations on temporal bench-
marks show DenRAM’s robustness against hardware noise, and its higher
accuracy over recurrent networks. DenRAM advances temporal processing in
neuromorphic computing, optimizes memory usage, and marks progress in
low-power, real-time signal processing

The dendritic tree of biological neurons is an intriguing and prominent
structure, with multiple branches (arbors) hosting several clusters of
synapses, enabling communication and processing in complex net-
works. Communication among neurons involves the reception of
action potentials (spikes) at the synapse level, generation of a post-
synaptic current, with amplitude proportional to the synaptic weight,
and propagation of the weighted sum of all the currents to the cell
body (the soma). Spikes are produced in the neuron soma and trans-
mitted through its axon to the synapses of the destination neurons
(Fig. 1a). Dendritic arbors exhibit a wide range of behaviors useful for
computation, such as spatio-temporal feature detection, low-pass fil-
tering, and non-linear integration1. Therefore, it has been suggested
that dendritic branches can be considered as semi-independent com-
puting units in the brain2–5. Despite these remarkable features of
dendrites, most neuron models used in Artificial Neural Networks

(ANNs) do not take them into account, and instead use the so-called
“point neurons” (i.e., neurons with all synapses connected to the same
node, with no spatial differentiation). While ANNs with point-neuron
models can produce remarkable results for static inputs (or for dis-
crete sequences of static inputs), they are not ideal for processing the
temporal aspects of dynamic input patterns. Indeed, it has been
recently shown that to replicate the properties of a single cortical
neuron with dendritic arborization it is required to use deep ANNs of
5–8 layers6.

A key feature of dendrites is their ability to detect local features
through the spatial and temporal alignment of synapse activations
within a branch, known as Coincidence Detection (CD)7,8. CD can
capture temporal signal features across various time scales, effectively
turning dendrites into multi-time scale processing units9. The spatial
arrangement of synapses on dendrites influences both local and
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somatic responses, with functionally related synapses forming clusters
to enhance feature detection, ultimately improving computational
efficiency and storage capacity10. The spatial arrangement of synapses
on dendrites can be modeled using neuron compartments (Fig. 1b),
where each compartment acts as a spatio-temporal processing
element.

Spatio-temporal feature detection is found in many biological
information processing circuits, such as the Barn owl’s sound source
localization using the Interaural Time Difference11–13, or the vibration
source detection by the sand scorpion14,15. These biological systems
encode information in the precise timing of spike events, allowing for
extremely accurate sensing at low power consumption. Since the time
of arrival of the events is at the core of this computation, temporal
variables, such as delays play a significant role in computation.

Previous studies in Spiking Neural Networks (SNNs) have
demonstrated that training temporal variables, such as a synapse and
neuron time constant, can enhance the accuracy of network in classi-
fying spatio-temporal patterns16–20. More recently, delays have gar-
nered increased attention as temporal variables that enrich the
computational efficiency of SNNs21–24. As illustrated in Fig. 1c, state-of-
the-art architectures for tasks such as classifying the Spiking Heidel-
berg Digit (SHD) dataset25 (a keyword spotting task) achieve the
highest accuracy by incorporating delays as additional network para-
meters. In contrast, recurrent architectures perform poorly and
require a larger number of parameters (Fig. 1d). Such sensory pro-
cessing tasks require delays in the time scales of 10s–100s milli-
seconds, and sometimes even seconds.

To perform real-time sensory processing applications on the edge
using neuromorphic SNN hardware (Fig. 1e), on-chip representation of
such delay time scales is required. Examples of neuromorphic chips
that have dendritic circuits integrated with silicon neurons have been

presented in the past26,27. Indeed, previous work has shown how these
types of architectures can detect spatio-temporal patterns on-chip27–31.
However, most of these either do not use delays as a variable for
computation, or use circuits at accelerated time-scales that do not
support closed-loop real-time processing.

Implementation of delays are costly because each synapse
requires an additional memory element and a different set of network
parameters. A key to this memory is its short-term dynamics, to keep
the information of the incoming spike for the required amount of time.

Previous implementations of on-chip delays using Com-
plementary Metal-Oxide-Semiconductor (CMOS) technology have
used digital buffers23, active analog circuits28,32,33, or mixed-signal
solutions26. On the other hand, emerging memory technologies, e.g.,
RRAMs, are promising candidates for implementing these memory
elements efficiently, thanks to their non-volatile, small 3D footprint,
and zero-static power properties.

While resistive RAM technologies have extensively been used to
implement and store the weight parameters of neural networks34–43,
short-term dynamics44–46, eligibility traces47, and network connectivity
parameters48, their use for implementing delay elements for edge
applications has not yet been fully explored. Recently, we have lever-
aged thenon-volatility and controllable resistive stateofRRAMdevices
as a way to not only implement weights but also efficiently implement
delay lines49.

In this article, we present DenRAM, an RRAM-based dendritic
system that has been implemented on chip. We fabricated a prototype
dendritic circuit, integrating distributed weights and delay elements,
utilizing a hybrid CMOS-RRAMprocess. TheCMOSpart of the circuit is
manufactured using a low-power 130 nm process, with the RRAM
devices fabricated on top of the CMOS foundry layers. The RRAM
technology has been specifically developed to implement both
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Fig. 1 | Dendritic RRAM (DenRAM) concept. a Depiction of a biological Neuron,
receiving input spikes through multiple dendritic branches. The packet of neuro-
transmitters travels across the dendritic branchbefore reaching the neuron’s soma,
where it is integrated. b Scheme of the Dendritic Network, formed by several
Dendritic circuits grouped into Dendritic branches macro-circuits, highlighted by
different colors. The branches' outputs are integrated into a Leaky-Integrate-and-
Fire Neuron. c State-of-the-art results on the SHD dataset as a function of the
number of parameters. Delay-based networks show higher accuracy and lower

memory footprint compared to recurrent architectures (SRNN: recurrent spiking
neural networks, A-SRNN: augmented-SRNN). d Recurrent Neural Networks are
hard to train and yield low performance. Dendritic SNNs are feed-forward models
that perform better than RNNs despite reduced Memory Footprint and Power
Consumption. eApplications for theDendritic SNN includeKey-Word-Spotting and
Heartbeat anomaly detection, and possiblymany other sequence processing tasks.
Illustrations in a, d, and e were created with Inkscape.
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weights and delay lines in hardware. Notably, a thick 10 nm silicon-
doped HafniumOxide (Si:HfO) layer has been employed, resulting in a
wide range of resistance values, approximately six orders of magni-
tude, when the device transitions from its pristine state to the low
resistive state.

We experimentally demonstrate the spatio-temporal feature
detection capability (i.e., CD) of DenRAM, and complement it with a
novel algorithmic framework that performs the classification of sen-
sory signals strictly using feed-forward connections. By explicitly
representing temporal variables through the combination of RRAM-
capacitor (RC) elements, DenRAM is capable of preserving temporal
information without a need for recurrent connections. Calibrated on
our experimental results, we perform hardware-aware simulations to
benchmark our approach on two representative edge computing
tasks, namely keyword spotting and heartbeat anomaly detection,
showing how the introduction of passive delays in the network helps
with reducing the memory footprint and power consumption, com-
pared to a recurrent architecture (Fig. 1 d, e).

Results
Hardware measurements
The RRAM-based Dendritic Circuit. The basic building block of the
DenRAM architecture is the synaptic block called “Dendritic Circuit”,
shown in Fig. 2a. It consists of a delaying unit introduced through the
(RdC) combination and a Threshold unit, as well as a weighting unit
through the (Rw) value. Thedelay and theweighting functionality of the
synaptic circuit are both enabled by the use of two RRAM devices per
synapse. Each RRAM is connected to its own Bit Line (BL), Word Line
(WL), and Source Line (SL), which are controlled to either read or
program the memory device. RRAM devices can be either used in the
reading mode, or the programming mode, through the use of the
multiplexer (MUX) circuits. For the Delay RRAM, the MUX Prog

selection decides whether the SL is connected to the reading path
(transistor with the gate connected to IN), or to the programming path
SL1. The voltage on the BL1 can be adjusted based on program or read
processes. For the Weight RRAM, the MUX Prog selection decides
whether the gate of the transistor is connected to the reading path
from theoutput of theThesholdblock, or to theWL2. Voltageon the SL2
canbemodifiedbasedonprogrammingor reading.Moredetails on the
design of the Dendritic Circuit are provided in the Methods section.

We have built the Dendritic Circuit in a 130 nm CMOS process,
integrated with RRAM devices in the Back End of the Line (Fig. 2b,
more details on the Fabrication Process in the Method section). The
fabricated devices have been thoroughly tested in their three main
states (Supplementary Note 1, Supplementary Fig. S1): as fabricated,
RRAMdevices are in the pristine state, whereno conductivefilament in
oxide is present between the two electrodes, thus exhibiting the
highest resistance. A one-time forming operation is carried out by
applying a positive voltage across the device, causing a conductive
filament to form, bringing the device to the Low-Resistive State (LRS).
Then, the device becomes programmable between LRS and a High-
Resistive State (HRS). Concerning the capacitor in the Dendritic Cir-
cuit, we utilize a conventional transistor gate oxide capacitance, set-
ting the capacitance C to around 400 fF.

While in the read mode of the RRAM devices, the Prog selector is
turned off (0 V), connecting SL1 to the Vcap terminal, and the Threshold
unit output toWL2. BL1 is connected to the source voltage Vref, and BL2
is connected to the reading voltage (0.4 V in our experiments). An
input voltage pulse of 1.2 V height, and 1μs of width is applied to the IN
terminal. This causes the IN transistor to conduct, depolarizing the
voltage on the capacitor Vcap (Fig. 2c, green trace). As soon as the IN
pulse terminates, the voltage of the capacitor recharges through the
Delay RRAM,with the time-constant τ =RdC, set byRd. After some time,
Vcap crosses the threshold set by the Threshold unit, eliciting a spike,

Fig. 2 | Dendritic circuit, the building block of the DenRAM architecture.
a Detailed schematics of the Dendritic circuit, featuring the Delay and Weight
RRAM devices, a Capacitor, dedicated multiplexers (MUX) for switching between
programming and reading operations, and a Threshold circuit. b Scanning
Electron-Microscopy image of a HfxO-based RRAM device used in the Dendritic
circuit. c Measurement of the Dendritic Circuit, featuring the voltage on the
Capacitor (Vcap), and output (VOUT). The input voltage pulse IN is applied at t = 0 s
and is not shown in the plot. d Probability Distribution Function (PDF) of the delay
measurements, with a log-normal distribution fitting curve. e Effect of the Weight

RRAM on the output current IOUT measured from the Dendritic Circuit. Higher
values of conductance (conductance G8 larger than G4, referencing the con-
ductance levels in f) increase the output current IOUT. f Cumulative Distribution
Function (CDF) of theWeight RRAM conductance values measured in a 16kb array,
in different resistive states.gBreakdownof the dynamic power consumptionof the
dendritic circuit, showing the contributions from all the components in part (a).
The highest power is attributed to the Threshold block responsible for the 66.7% of
the total consumption.
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delayed by RdC compared to IN, at the output of the Dendritic Circuit.
Details on the design of the Threshold unit is provided in Supple-
mentary Fig. S3a). The delayed pulse is applied to the gate of the
Weight RRAM’s transistor (VOUT), allowing a current IOUT to flow
through Rw.

Delay characterization. We have characterized the delay of the RdC
block in 71 circuits with pristine Delay RRAMs, resulting in the dis-
tribution shown in Fig. 2d. Following a log-normal distribution, the
mean obtained delay is 22ms, with a standard deviation of 0.5ms on
the underlying normal distribution. With the conductances of our
pristine devices, the minimum delay achieved is 8.08ms and the
maximum is 58.26ms. Such rather long delays are the result of the
particularly large resistance in the Pristine state of Delay RRAMs
(Fig. 2c). Crucially, these values match the hypothesized delay pro-
duced by dendritic arbors50,51 and fall in the same order of magnitude
as the temporal feature of many temporal tasks, including speech
recognition25, biomedical signal processing52,53, and robotic control54.

Weight characterization. We provide experimental results showing
the effectiveness of the Weight RRAM in modulating the output cur-
rent IOUT. As shown in Fig. 2e, wemeasure the output current from the
Dendritic Circuit in two settings. First, we set Rw to low conductance,
with a weak SET operation at 1.6 V, yielding a small output current.
Afterward, we set the same device to higher conductance, with a
strong SET pulse at 2.0 V, resulting in a much larger current. As illu-
strated in Fig. 2f, we are capable of modulating the resistance of
RRAMs in a broad range of values, enabling the modulation of the
output current (IOUT). In this case, wemodulated the SETprogramming
pulse in 8 distinct levels, obtaining 8 different distributions across a 16
kbit RRAM array (refer to Supplementary Fig. S1 for more details).

Power consumption characterization. We characterized the dynami-
cal power consumption with thorough Spice circuit-level simulations,
analyzing the contribution of the different components of the circuit
(Fig. 2g). In anexample simulated scenario, the circuit is fedwith a single
input spike and produces a single output spike with 30ms delay which
is then weighted by the output RRAM device, set at Rw = 10 kΩ. The
energy produced to perform such computation is 58.5 pJ, yielding a
dynamical power consumption of 1.95 nW. Of such amount, 66.7% is
consumed in the Threshold block, responsible for capturing the tem-
poral evolution of the RdC circuit, and producing the delayed spike. The
RdC and Rw are together responsible for less than 10% of the power
consumption. The remaining amount is attributed to the MUX selec-
tors. A future iteration of thedesignwill address the energy efficiency of
the Threshold block, as well as removing the necessity for the MUX
selector, further improving the efficiency of the circuit.

The Dendritic architecture. The DenRAM architecture consists of an
array of the Dendritic Circuits of Fig. 2a, connecting to a downstream
Leaky Integrate and Fire (LIF) neurons, as shown in Fig. 3a, featuring
two of the N possible dendritic branches, each having multiple
synapses. Dendritic Branches can contain as many Dendritic Circuits,
with the practical limit being the voltage drop as a result of the wire
resistance (known as IR drop), and capacitive loading due to long
metal lines (shared Source and Bit Lines). Likewise, many dendritic
branches can be stacked together in parallel receiving many input
channels/signals. This forms the dendritic tree of a single output
neuron. Multiple dendritic trees from different output neurons can be
grouped forming a layer of DenRAM that links inputs (IN1,2,...,N) to
outputs (OUTi,j,...,k). Word Lines from all the dendritic trees can be
shared in DenRAM.

The same input spike train (INi) is shared across a dendritic
branch, which is a collection of N dendritic circuits. The SL of Weight
RRAMs is shared in a branch and, when operating, is connected to the

ground. Within a branch, the BL of Delay RRAMs are shared, as well as
the BL ofWeight RRAM. The current from all the weight RRAMs of one
branch sum with the current of the other branches, and is fed to a LIF
neuron (see Supplementary Fig. S3b for details on the LIF circuit). As
soon as the leaky integration value passes the neuron’s threshold, it
generates an output spike.

Therefore, the LIF neuron receives a pre-processed version of the
inputs, with a large spatio-temporal degree of freedom to adapt to a
given task.

DenRAM identifies the temporal features of the input by detecting
the coinciding spikes in one branch. With each input spike on each INi

branch passing through N delays, the neuron’s weight parameters can
be trained to select the combination of right delays, ensuring spike
coincidence (Fig. 3b). Precisely, each dendritic branch takes a spike
train xðtÞ=Pkδ t � tk

� �
where tk are the times at which spike occur.

Replicates x(t)N times and introduces different delays, Δi, sampled
from log-normal distribution, followed by weighing with wi to obtain
SðtÞ= PN

i = 1 wi �
P

kδ t � Δi � tk
� �

. It computationally performs a tem-
poral correlation-like operation involving counting coincidences of
spikes between the original and delayed trains, captured in S(t). This
architecture extends beyond the mere processing of immediate
inputs; it integrates signals over a temporal spectrum, thereby estab-
lishing a dynamic form of short memory, uplifting the neuronal
responsiveness to certain temporal sequences.

In real-time sensory processing settings, the temporal features in
the environment are in the order of 10s to 100s of ms, which neces-
sitates the Coincidence Detection (CD), and consequently, the delays,
to be within the same timing range. This requirement enforces the use
of our RRAM devices in their HRS. However, precise control of con-
ductances inHRS is typicallymuchmore difficult than in LRS, due to its
high variability (Fig. 2f)55. In-line with approaches that propose to
exploit variability and heterogeneity in neuromorphic circuits for
achieving robust computation56, DenRAM takes advantage of such
heterogeneity, by providing a population of analog delay elements per
input channel, thus enriching the circuitwith adelay spectrum that can
be tuned by the weight values.

We perform experiments on the fabricated DenRAM (layout view
in Fig. 3c), to showcase its temporal feature detection functionality,
through CD. The fabricated DenRAM circuit features 3 input channels
or branches, 64 dendritic circuits per branch connected to a single
output neuron. The task is to detect a temporal correlation of Tms
between the spikes of two input channels. In the DenRAM scheme, this
means that the delay of Tms between two input channels would make
the output neuron spike, and thus perform CD. Figure 3d shows the
experimental measurements. Two inputs are presented to two differ-
ent Dendritic Branches (IN1, purple and IN2, blue) with a temporal
differenceof~60ms (Fig. 3d, upper plot). To performCD, theDendritic
Network has to delay the input spike IN1 by a value close to 60ms using
Rd, and assign a high weight to its RW, so that the output LIF neuron
responds with an output spike due to the coincidence of the IN2 with
the delayed version of IN1. We selected four Dendritic Circuits in the
first branch (A toD), where each of themdelays the IN1 spike by a given
amount. Dendritic Circuit D produces a delay of 58 ms, making the
delay IN1 coincident with IN2 from Dendritic Circuit A. Therefore, we
program the RRAM Weight of the G circuit, RW,G to LRS to maximize
the current injected into the output neuron at the coincidence. We
set all the other Dendritic Circuits’ Weight RRAMs to HRS. This is
reflected in the measurements of the currents from the Dendritic
Circuits (Fig. 3d, middle plot). The current from the coincident spikes
of D1 and A2 are the highest, due to the corresponding Rw at their LRS,
and the rest have lower currents. These currents are integrated by the
neuron, and itsmembrane voltage ismeasured, shown in Fig. 3d, lower
plot. It can be seen that the neuron responds maximally to the coin-
cidence of spikes coming from Dendritic Circuit D1 and IN2, correctly
performing CD. To ensure the robustness of this functionality, we
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varied the temporal difference between the two inputs, such that the
network can also separate the two coincident input spikes that are not
correlated. The lower plot in Fig. 3d shows the response of the output
neuron when the input IN2 changes its arrival time, originally at 60ms.
If IN2 arrives too early or too late compared to D1, the output neuron’s
voltage will not be fully activated, and coincidence is not detected. An
additional measurement changing the weight configuration in Den-
RAM is shown in Supplementary Fig. S4.

Hardware-aware simulations
The biologically inspired temporal delay mechanism implemented
with analog resistive RAM brings superior efficiency to DenRAM. In
order to test its effectiveness on edge applicationswith temporally rich
inputs, we benchmarked DenRAM on two sets of experiments: heart-
beat anomaly detection for biomedical applications, and keyword
spotting for audio processing applications. For each benchmark, we
evaluated the accuracy,memory footprint, and power consumption of
DenRAM, and compared it to a conventional Spiking Recurrent Neural
Networks (SRNN) with an equivalent accuracy (heartbeat task), and
equivalent number of parameters (keyword spotting task). Both tasks
require the effective learning of entangled temporal features, which is
done by feed-forward synaptic weights of DenRAM that learn to utilize
their corresponding synaptic delays.

To deliver software-comparable accuracyon the benchmarkswith
our analog substrate, we resorted to several hardware-aware training
procedures40,57 (see Methods for details).

For the weights, to account for the imprecise programming
operation of RRAM devices and RRAM conductance relaxation58

(which restrains the mapping of full-precision simulation weights to
RRAM devices), we utilized noise-aware training40 by injecting a
Gaussian noise to trained network weights using the “straight-through
estimator" technique. The model of the noise is derived by con-
ductance measurements of our programmed RRAM devices after a
relaxation period (Fig. 2f) and set to 10%of themaximumconductance
value in the layer59. This approach makes sure that the obtained
simulationweights can bemappable on devices withminimal accuracy

drop after realistic programming stochasticity and device relaxation
effects.

For the delays, we used the same log-normal distribution shown in
Fig. 2d to sample, and then fixed the delays throughout the simulation
for the heartbeat anomaly detection task. However, our experiments
with the keyword spotting task below demonstrated that speech sig-
nals require longer delays than what could be implemented with our
proposed circuit (<60ms). Therefore for SHD, we use a log-normal
distribution with a higher mean (mean of 500ms for the highest
accuracy) to sample and fix delays to solve the task. This approach
provides guidance for what could be achieved using higher-resistance
RRAM devices in DenRAM neuromorphic architecture.

It is worth noting that in our scheme, delays are not trained and
RRAM weight parameters are the only trainable parameters.

Nevertheless, the network will learn to weight randomly delayed
versions of the input for performingoptimal CD todetect the temporal
features.

Heartbeat anomaly detection task. We first benchmark DenRAMon a
heartbeat anomaly detection task using the Electrocardiography (ECG)
recordings of the MIT-BIH Arrhythmia Database52. This is a binary
classification task to distinguish between a healthy heartbeat and an
arrhythmia. For the data to be compatible with DenRAM, we first
encode the continuous ECG time-series into trains of spikes using a
delta-modulation technique, which describes the relative changes in
signal magnitude60,61(see Methods for details on the dataset). This
encoding scheme produces two trains of spikes for a single streaming
input, one corresponding to the positive, and the other to the negative
changes of the input. Therefore, the network requires only two den-
dritic arbors corresponding to the IN1 and IN2 inputs in Fig. 3a.

We train the network with 10% noise injection on the RRAM
weights, sweep the number of synapses per channel, and evaluate the
accuracy of the network on the test set. The results are plotted in
Fig. 4a. DenRAM is plotted using the green curve, which is compared
against the SRNN shown in the purple curve. The error bar is variability
across 5 seeds.
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DenRAM architecture. Two input spikes are processed by different dendritic
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created with Inkscape.
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DenRAM is capable of solving this temporal task with a mean
accuracy of 95.30%, with 8 synapses (weights and delays) per dendritic
branch, corresponding to 16 parameters and 64 devices. The network
size is 35 times smaller than the iso-accuracy SRNN made of an input
layer of 2 neurons, a recurrent layer of 32 neurons, and 2 fully con-
nected output neurons (a total of 1152 parameters, 2304 devices). It is
worth noting that since the network is trained using the delay dis-
tribution of our measurements in Fig. 2d, this task is solvable with a
mean delay of 22 ms.

Avoiding the explicit recurrence in SRNN allows DenRAM to uti-
lize its parameters more efficiently. While the recurrent parameters in
SRNNs are tuned to create complex dynamics of neuron activity,
DenRAM leverages delay to explicitly process temporal features. The
parameters in the recurrent layer of the SRNN scale quadratically with
the number of neurons, while parameters scale linearly with input size
in DenRAM. This yields a great advantage for DenRAM in the model’s
Memory Footprint, as highlighted in Fig. 4b.

DenRAM’s efficient temporal processing is also reflected in the
estimation of power consumption. To estimate DenRAM’s power
consumption, we extend the Spice simulation presented in Fig. 2g
to the system level, yielding a power consumption of 5.30 nW dur-
ing inference. We compare DenRAM with an implementation of an
iso-accuracy SRNN built with the same 130 nm RRAM-enhanced
technological substrate. The iso-accuracy SRNN features 32 hidden
neurons and around 1.1k parameters (see Supplementary Fig. 5d).
We assume efficient implementation of LIFneurons (see Supple-
mentary Fig. 3b) and run Spice simulations based on this circuit. The

result reveals a reduction of 5 times in power in favor of the Den-
RAM architecture.

Keyword spotting. We next benchmark DenRAM on a more complex
task of keyword spotting using the SHD dataset, which consists of
spoken digits of 20 classes, fed through 700 Mel-spaced band-pass
filters, whose output is encoded into spikes (see Methods). To com-
pare the generalization performance of DenRAM compared to SRNN,
we implemented four networks: D1 (DenRAM with 16 delays per
channel, using 700 input channels), R1 (a SRNN with 700 input chan-
nels and 235 hidden neurons), and their hardware-optimized coun-
terparts, with smaller size: D2 (a network with 16 delays per channel,
using 256 input channels), and R2 (a SRNNwith 256 input channels and
180 hidden neurons). For the details of the sub-sampling of D2 and R2,
refer to the Methods. D1/R1 and D2/R2 have the same number of
trainable parameters: 224k in the former case, and 82k in the latter
case. Each trainable parameter translates to two RRAM devices to
implement theweight (positive andnegativeweights) in bothDenRAM
and SRNN, while DenRAM also features an additional Delay RRAM per
dendritic circuit, which is not a trainable parameter. We first compare
the four networks in their resilience against the analog RRAM noise.
Fig. 4d shows that DenRAMarchitectures of D1 andD2 are consistently
better performing compared to the SRNNofR1 andR2, for any amount
of noise injected into the network. D1 is the best-performing archi-
tecture with 90.88% without noise, and is resilient to noise, with only
3.3% of drop in accuracy for up to 10% of injected noise on the RRAM
weights, compatible with our hardware. This is compared to a drop of

a) b) c)

d) e) f )

Fig. 4 | Performance of DenRAM on Heartbeat Anomaly Detection and Key-
word Spotting. a Classification accuracy as a function of the number of synapses
per dendritic branch and comparison with a SRNN of 32 neurons (1.1k parameters).
Error bars capture the standard deviation over 10 trials. bMemory Footprint of the
DenRAM architecture solving ECG, compared with an iso-accuracy SRNN. c Power
consumption of DenRAM in the ECG task and comparison an iso-accuracy SRNN.
d Classification accuracy as a function of the noise introduced on the weights for
two delay architectures (D1: 700 inputs, 16 delays; D2: 256 inputs, 16 delays) and for

two SRNNarchitectures with one hidden layer (R1: 700 inputs, 235 hidden neurons;
R2: 256 inputs, 180 hidden neurons). e Classification accuracy (with RRAM-
calibrated noise on the weights) concerning the network’s number of parameters
for D1, D2 and R2, sweeping the number of synapses per branch for D1 and D2, the
number of hidden neurons for R2. f Power consumption of each network config-
uration (D1, D2 and R2) shown in e). In d–f error bars represent the standard
deviation over 3 trials.
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8.75% in accuracy, in the case of R1 for the same amount of noise (from
78.37% in the noise-less case). On the smaller networks with reduced
memory footprint, D2 and R2 accuracies achieve 81.43% and 66.7%,
confirming that the delay-based architectures provide more expres-
sive representations even with less number of parameters.

Next, we evaluate the accuracy of our networks as a function of
the number of parameters in the network by sweeping the number of
parameters of the D1, D2 and R2 networks, with 10% of noise on the
RRAM weights. Figure 4e shows that the DenRAM network has con-
sistently better accuracy compared to the SRNN architecture, for the
same number of parameters. D1 accuracy reaches the highest accuracy
of 87.5% using 224k parameters (700 input channels and 16 delays per
channel) while injecting 10% of RRAM noise. To the best of our
knowledge, this is the highest accuracy achieved on the SHD dataset,
taking into account the variability of the analog substrate (up to 10%).
Comparatively, R1 reaches 69.62% accuracy, with an equivalent num-
ber of parameters and noise conditions. We suspect this big perfor-
mance drop in SRNN might be due to the higher non-linear effects of
the noise in the SRNN as compared to the DenRAM, due to the
recurrent connections.

Finally, we evaluate the accuracy of D1, D2, and R2 networks by
varying their maximum power consumption, as determined from the
power estimations presented in Fig. 2g. The results are depicted in
Fig. 4f, where it is observed that the accuracy of the R2 network pla-
teaus at approximately 76%, regardless of increasing power con-
sumption. In contrast, theD2 network achieves an accuracy of 83.6% at
a power consumption of 6.15μW, while the D1 network attains an
accuracy of 87.5% with a power consumption of 8.41μW.

Discussion
Perspectives on the role of delays in temporal data processing
Delays are at the core of the spatio-temporal processing performed by
dendrites and their central importance has been demonstrated in
DenRAM. We have shown that delays, and dendritic computation in
general, are key to improving computational and energy efficiency of
spiking neural network chips. Delays explicitly enable the construction
of temporal computational primitives and allow avoiding/reducing
recurrent connections to induce temporal dynamic processing62. By
providing feed-forward networks the ability to carry out spatio-
temporal pattern recognition without having to use recurrent con-
nections we obtained several benefits; Firstly, we could minimize the
memory footprint and thus improve the computational efficiency;
Secondly, thesenetworks escape the vanishing and exploding gradient
problems present in Recurrent Neural Networkss (RNNs) trained with
the Backpropagation Through Time (BPTT) algorithm. Both of these
benefits are highlighted in Fig. 1c, where delay-based neural networks
reached superior accuracy compared to recurrent architectures on the
SHD task.

Evidently, for the same number of parameters, delay-based
models achieve higher accuracy in the SHD task, confirming the
greater computational efficiency of this type of architecture. Crucially,
delay-based computation is a relatively novel concept and it is likely
that the exploitation of the potential of delays has not yet been max-
imized. In the DenRAM architecture, similar to23, the delay parameters
are not trained and do not need to be optimized. Methods to adapt
delays via gradient descent were recently developed63, but the
exploration of the benefits of training delays is a recent trend21,22. In
particular, Hammouamri et al. link the delays to temporal causal con-
volutions, thus making use of modern deep learning techniques to
train a SNN, and achieve the highest classification accuracy on the SHD
task21.

Exploiting the techniques that have been developed in deep
learning to train suchnetworks is potentially very fruitful. For example,
we envision that delays can also implement temporal convolutions64,
and temporal causal Graph Neural Networks65, where past events can

be grouped into a graph representation and achieve impressive results
in vision tasks.

Furthermore, the hardware realization of the DenRAM archi-
tecture exhibits intriguing parallels with the concept of MLP-mixer,
which has demonstrated remarkable performance in vision tasks
without relying on convolution or attention mechanisms66. While the
MLP-mixer randomly mixes features across spatial locations and
channels in a two-step process, DenRAM introduces a unique form of
temporal shuffling by incorporating randomdelays to temporal inputs
within each channel before integration. These innovative architectural
approaches, which reorganize incoming data, whether spatially (as in
the case of MLP-mixer) or temporally (as in DenRAM), hold the pro-
mise of more effectively extracting complex patterns. This suggests a
compelling direction for network design, potentially leading tomodels
that are both computationally efficient and highly capable.

Grounding these novel algorithms on an energy-efficient hard-
ware substrate is thus crucial, and hence is in the the scope of this
work. Making an innovative use of the emergingmemory technologies
expands the functionality of the circuit as well as minimizing power
consumption.

Effect of heterogeneity on the performance of DenRAM
Similar to the computational neuroscience studies on the beneficial
role of heterogeneity on the performance of networks67, we have
performed an ablation study on the accuracy of DenRAM on our two
benchmarks, by varying the variability of the delay and weight
parameters.

We first vary the standard deviation of the underlying normal
distribution of delay RRAMs, while fixing the number of synapses per
dendritic branch, and fixing the noise of the weight RRAMs to 10%. We
find that the required mean delay, to solve the ECG task to 95% accu-
racy, increases when the standard deviation of the underlying normal
distribution decreases. This shows the beneficial role of heterogeneity
in loosening the hardware requirements: the higher the variability of
the underlying distribution, the lower the required resistance and
capacitance of the delay circuit of Fig. 2a) (Supplementary Figs. S5, S6
in Supplementary Note 4).

On the other hand, noise in the programming of RRAM weights
was controlled through sweeping the noise injection in terms of per-
cent of the maximum weight in the network. The accuracy of the
DenRAM was almost unaffected by noise values up to about 20%,
showing to be much more tolerant than the SRNN architecture of iso-
accuracy when no noise is injected.

Applying the same methodology used in the delay distribution
analysis to the SHD task, we observe parallel outcomes (Supplemen-
tary Note 4). This consistency underscores that the characteristics we
identified are not unique to a specific task but are, in fact, fundamental
attributes of the DenRAM architecture. Furthermore, our research
uncovers a significant aspect: the existence of an optimal mean delay
within this framework.

Also, we analyzed the effect of unbalancing the number of
synapses in each dendritic branch, promoting heterogeneity in the
“length" (or size) of dendrites. Setting theWeight-RRAM of a Dendritic
Circuit to HRS is equivalent to pruning the dendritic connection,
reducing the fan-in of the post-synaptic neuron, and potentially
implementing biologically inspired connectivity patterns.We analyzed
the effect of heterogeneous dendritic branch size on the performance
of DenRAM in Supplementary Fig. S7.

Delay analysis for keyword spotting
Leveraging both spatial parameters (weights) and temporal para-
meters (delays), DenRAM effectively utilizes a two-dimensional
approach for the separation and classification of spatio-temporal
inputs. This capability is elucidated in Supplementary Note 5 and
Supplementary Fig. S9, where, in order to discern between input
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patternswithin the SHDdataset, the network strategically employs two
distinct strategies. At times, it opts for “spatial segregation”, adjusting
the weighting of different channels to differentiate between patterns
(e.g., when distinguishing between digits “8” and “18”). Alternatively, it
introduces “weight dynamics” through the delayed replications of
inputs by dynamically altering the aggregated weight values of each
channel over time, thereby implementing “temporal segregation” to
distinguish between other patterns (e.g., when differentiating between
digits “8” and “17”).

Outlook
Long time scales represented on chip. Using RRAM technology, we
successfully implemented delay elements that achieved periods of up
to 60ms. This proved sufficient temporal memory for addressing the
heartbeat anomaly detection task. However, it fell short inmeeting the
demands of the keyword spotting task, where delays of up to 500ms
were necessary to reach a desirable accuracy. To accommodate these
extended time scales using the same approach, novel technologies are
required. Recent research has explored volatile resistive memory
devices with tunable time scales, albeit with limitations, typically
averaging in the range of 10s of ms45,46,68. Material engineering which
results in technologies with larger time scale in their decay would
prove extremely beneficial in implementing short-term dynamics and
delays withminimal area on analog chips. On the non-volatile memory
front, Ferroelectric Tunnel Junctions (FTJ)s present an opportunity for
the delay element in the next generation of DenRAM, as their resis-
tances is much higher than the RRAM devices (e.g., HRS of FTJ can go
beyond GΩOhms, as compared to 10–100s of MΩOhms for RRAM)69.
This is due to a different - compared with RRAMs - current conduction
mechanism of FTJ devices which is based on tunneling.

Training delays. Utilizing the FTJ technology in DenRAM would result
in enhanced delays and better control over the delay values in the
dendritic branches. This opens to the possibility of learning the delays
with gradient descent, as performed in63. Optimizing the delay values,
it is foreseeable that the number of required Dendritic Circuits per
dendritic branch would reduce drastically, further lowering the para-
meters ofDenRAM.As a consequence, we envision thatDenRAMcould
further improve its performance and power efficiency by exploiting
novel devices, enabling the training of delays.

Weight precision. As highlighted in Fig. 4d, the precisionof theweight
is an important parameter in determining the performance of Den-
RAM. RRAM devices offer relatively good control over the con-
ductance levels by modulating the WL voltage during the SET
programming operation. Yet, suchprogramming operations in RRAMs
yield a distribution of conductance with about 10% of standard
deviation, relative to the maximum conductance (Fig. 2f). To improve
the precision of weights in DenRAM, advanced read-verify program-
ming operations on RRAMs can be performed40,70. Alternatively, dif-
ferent memory technologies, with better control over their
conductance levels, can be used. An example technology is FeFET,
demonstrating up to 5-bit precise in its conductance levels71,72.

Non-linear integration in dendrites. Biological dendrites feature
multiple characteristics and dynamical behavior that have not been
accounted for in this work. For example, the non-linearity of dendritic
branches73 might further enhance the computational capacity of
neural networks74,75 and alone solve XOR task5. Such investigations are
the natural next step for DenRAM.

On-chip learning. The plasticity of resistive RAMs has not been inves-
tigated for on-chip learning in this work, despite that being a very
promising aspect of such hardware substrate. Dendrites have been
shown to play an important role in learning of the cortical circuits76, and

have been previously implemented in CMOS technology for stochastic
on-chip online learning77. DenRAM provides an ideal architecture for
implementing on-chip learning based on these concepts on RRAM
based systems, which is a facet we will be exploring in future work.

As elegantly proposed in a recent study byBoahen9,78, the concept
of dendrocentric computing and learning, where inputs are not only
spatially weighted but also temporally considered in accordance with
their arrival times, offers a compelling avenue to reduce energy con-
sumption in the next generation of Artificial Intelligence (AI) hardware.

DenRAM stands as a pioneering achievement in this direction,
being the first hardware implementation of dendrites that harnesses
the unique properties of emerging memory technologies, particularly
resistive RAM devices. This marks a significant milestone in advancing
dendrocentric computing and learning, setting the stage for more
efficient and innovative AI hardware solutions.

Methods
Design, fabrication of DenRAM circuits
Dendritic circuit design. The Dendritic Circuit (Fig. 2a) features two
main sections: one devoted to generating the delay and the second to
weight the output currents. The circuit takes input spikes in the form
of stereotypical voltage pulses, in our design of 1.2 V peak voltage and
1μs pulse width. The pulses are applied to the IN terminal, opening the
nMOS transistor. The charge on the capacitor, resting at Vref, is then
pulled to ground during the application of the spike, causing the vol-
tage Vcap to plummet to ground. Vref is set to 0.6 V, a value that
maximizes the dynamic range of the capacitorwhile reducing the read-
noise of RRAMdevices. As theMultiplexers’ selection (Prog) is low, the
capacitor is connected to the 1T1RDelaydevice, whoseBit Line is set at
Vref, forming an RC pair. During the operation of the circuit, the Delay
1T1R Word Line is open (set at 4.8V). For this reason, the capacitor’s
voltage Vcap recharges with a time constant τ =RC. A Thresholding
unit detects when Vcap relaxes back to the resting potential, crossing a
certain threshold voltage, in our case set at 250mV. Note that the
Thresholding unit is bypassedwhen the IN spike is applied so that only
the second crossing of the threshold by the Vcap potential is detected.
More details on the Thresholding unit are in Supplementary Informa-
tion, Fig. 3a. The output of the Thresholding unit is a spike of the same
shape as the input one, just at 4.8 V. This voltage pulse passes through
the second Multiplexer set by the selection Prog voltage, entering the
second section of the Dendritic Circuit. The output spike (VOUT), which
occurs with a certain delay compared to the input spike IN, is applied
to theWord Line of theWeight 1T1R. The Bit Line of the Weight RRAM
is pinned at the RRAM’s reading voltage (around 0.6 V).

As a consequence, an output current IOUT is generated, propor-
tional to the conductance of theWeight RRAM. This current is readout
and then fed to an output LIF neuron (details in the Supplementary
Information, Fig. 3b).

Fabrication/integration. We fabricated our circuits in a 130 nm tech-
nology, in a 200mm production line. The RRAM devices’ stack is
TiN/Si:HfO/Ti/TiN, formed by a 10 nm thick Si:HfO layer sandwiched by
two 4 nm thick TiN electrodes. Notably, we selected a thicker oxide
layer so that the pristine state’s resistance would be maximized while
the Si doping reduces the forming voltage. Also, local Si implantation
has been demonstrated to increase the resilience of RRAM devices at
high temperatures79. We perform a retention test in Supplementary
Fig. S2 in Supplementary Note 1, in Supplementary Information.

EachRRAMdevice is coupled to anaccess transistor, forming 1T1R
structures, that are used to select RRAM devices individually during
programming operations. The size of the access transistor is 650nm
wide. RRAMs are built between metal layers 4 and 5, allowing to inte-
grate them in the Back-End-of-Line, maximizing integration density.

To access RRAMs in DenRAM, peripheral circuits have been
designed. Each array row and column (Word Line, Bit Line, and Source
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Line) is interfaced by a multiplexer connecting the line either to
ground or to a pad, where a programming/reading voltage could be
applied. Multiplexers are operated by Shift Registers that store the
addresses of the lines to be connected to the pad’s programming/
reading voltage. All the circuits are featured in a 200mmwafer and are
accessed by a probe card connecting to pads of size of [50 × 90]
μm2 each.

RRAM characteristics
Smart programming of the devices can be reached to obtain more
precise conductance levels and stabilize thedeviceswith respect to the
filament relaxation resulting in a conductance shift57,59.

The resistive switching mechanisms employed in our paper’s
devices are based on the creation and dissolution of a conductive
pathway within the device, brought about by the application of an
electric field. This change in the pathway’s geometry leads to distinct
resistive stateswithin the device. To execute a SETor RESEToperation,
we apply either a positive or negative pulse across the device,
respectively. This pulse formation or disruption within the memory
cell results in a decrease or increase in its resistance. When the con-
ductive pathway is formed, the cell is in the Low Resistive State (LRS);
otherwise, it is in theHighResistive State (HRS). In a SET operation, the
bottom of the 1T1R structure is conventionally held at ground level,
while a positive voltage is applied to the top electrode of the 1T1R.
Conversely, in a RESET operation, the reverse is applied.

Dendritic circuit measurement setups
The tests of the circuit involved analyzing and recording the dynamical
behavior of analog CMOS circuits as well as programming and reading
RRAM devices. Both phases required dedicated instrumentation, all
simultaneously connected to the probe card. For reading the RRAM
devices, Source Measure Units (SMU)s from a Keithley 4200 SCS
machine were used while, for programming, a B1530A waveform
generator byKeysightwasused in order to send SET andRESETpulses.
To maximize the stability and precision of the programming opera-
tion, SET and RESET are performed in a quasi-static manner. This
means that a slow rising and falling voltage input is applied to either
the Top (SET) or Bottom (RESET) electrode, while the gate is kept at a
fixed value.

To the Vtop(t), Vbot(t) voltages, we applied a trapezoidal pulse with
rising and falling times of 50 ns, a pulsewidth of 1μs and picked a value
for Vgate. For a SET operation, the bottom of the 1T1R structure is
conventionally left at ground level, while in the RESET case the Vtop is
equal to 0V and a positive voltage is applied to Vbot. Typical values for
the SET operation are Vgate in [1.6–2.2]V, while the Vtop peak voltage is
normally at [2–2.6]V. Such values allow modulating the RRAM resis-
tance in an interval of [8–50]kΩ corresponding to the LRS of the
device. For the RESET operation, the gate voltage is instead at 4.5 V,
while the bottom electrode is reaching a peak at [1.8–2.4] V.

The HRS is less controllable than the LRS due to the inherent
stochasticity related to the ruptureof the conductivefilament, thus the
HRS level is spread out in a wider [60–1000]kΩ interval. The reading
operation is performed by limiting the Vtop voltage to 0.4 V, a value
that avoids read disturbances, while opening the gate voltage at 4.5 V.

Inputs and outputs of the dendritic circuit and the LIF neuron are
analog dynamical signals. In the case of the input, we have alternated a
HP 8110 pulse generator with a B1530A by Keysight combined with a
B1500A Semiconductor Device Parameter Analyzer by Keysight. As a
general rule, input pulses had a pulse width of 1μs and rise/fall time of
20 ns. This type of pulse is assumed as the stereotypical spiking event
of a SpikingNeuralNetwork. Concerning theoutputs, a 1 GHzTeledyne
LeCroy oscilloscope was utilized to record the output signals of the
various elements in the dendritic circuit and the LIF neuron. An
Arduino Mega 2560 board for collecting statistics on read-to-read
delay variability was used when testing the dendritic circuit alone,

using its built-in timers for recording the delay between the input spike
and the output spike, varying the timer scale in order to adapt to the
delay order of magnitude and avoid overflow problems in the board
registers. Due to the impossibility of reading resistances as high as
pristine (in the order of tens to hundreds of GΩ), the measures of the
pristine resistances are extracted from the delay measurements on 71
dies through the formula Ri =Di/C.

RRAM-aware noise-resilient training
The strategy of choice for endowing DenRAM with the ability to solve
real-world tasks is hardware-aware gradient descent. The conventional
backpropagation-based optimization utilized in machine learning is
tailored to the hardware substrate implementing DenRAM. In parti-
cular, DenRAMmakes use of RRAMs as synaptic weights: this imposes
constraints on the parameters of the network, that are accounted for
during the training phase. The main challenge is the stochasticity of
RRAMs, resulting in overprecise weights.

We propose to address this problem by introducing the non-
idealities of RRAM during the training phase. During inference, we
perturb the weights of the neural network with the same variability
measured on the RRAM devices. However, we apply the computed
gradients to the original unperturbed weights. This methodology is
similar to Quantization-Aware-Training80. Eventually, we perform a
pre-training phase without RRAM’s variability, so as to better initialize
the hardware-aware training. We also expand such a training proce-
dure in the case of faulty Weight-RRAM devices. We found that Den-
RAM re-trained in such a way is resilient to broken RRAM devices, as
shown in Supplementary Fig. S8 in Supplementary Note 4.

Heartbeat anomaly detection task description
For the Heartbeat anomaly detection task, we chose the MIT-BIH
dataset52. Such a database is composed of continuous Electro-Cardio-
Gram (ECG) 30-min recordingsmeasured frommultiple subjects. Each
ECG recording is annotated by different cardiologists indicating each
heartbeat as normal or abnormal, and the type of arrhythmia, when
present. The data for each subject contains the recording from two
leads, but it has been demonstrated that one lead is sufficient for
performing a correct classification81.

For the ECG task, patient 208 has been selected having the most
balanced label count between normal and abnormal heartbeats of all
the subjects. Labels have been grouped in normal heartbeats (labels
“L", “R" and “N") and anomalies (labels “e", “j", “A", “a", “J", “S", “V", “E",
“F", “/", “f" and “Q"). The 30-min recording has been divided into seg-
ments of 180 time steps each around the R peak82 and divided into a
train set and a test set of equal sizes. The input channel coming from
the measurements of lead A has been converted into spikes through a
sigma-delta modulator61 generating two different inputs for the NN:
one with the so-called up spikes and the other with the down spikes.

This data is fed to either the DenRAM architecture or an SRNN,
and outputs are encoded as the spiking activity of the single output
neuron. Large output spiking activity - above a predefined threshold -
signals the detection of arrhythmia.

Keyword spotting task description
The SHD dataset25 is based on Lauscher artificial cochlea model that
converts audio speech data to spike train representation with 700
channels, similar to spectrogram representation withMel-spaced filter
banks. It consists of 10,000 recordings (8156 training, 2264 test sam-
ples) for 20 classes of spoken digits from zero to nine in both English
and German languages. We divided the original training dataset into
according to a 80–20% train-val split. Each recording duration in the
dataset is maximum 1.4 s and converted spikes are time binned into
280 5ms bins, resulting in (700 × 280) dimensionality. We observed
only 2% of the samples have spikes after the 150th timestep, thus we
truncated the input duration to 750ms. Only on the simulations with
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256 dendritic arbors, we sampled three times along the channel
dimension without overlap to obtain three augmentations with 256
channels. This sampling improved the speed of our simulations by
reducing the total number of parameters in the network and increased
the both sizes of training and testing datasets. The network is trained
using BPTT with the cross-entropy loss where the logits are calculated
using the maximum potential over time non-linearity for each leaky-
integrator output neuron. We use a batch size of 64 for delay-based
architectures and 128 for SRNN. Each experiment reported was con-
ducted using 3 distinct random seeds. All experiment hyperpara-
meters (membrane decay time constants, spike threshold, weight
scaling and learning rates) are tuned separately to obtain maximum
performance.

Data availability
The MIT-BIH ECG dataset52 and the Spiking Heidelberg Datasets25

dataset are publicly accessible. All other measured data are freely
available upon request.

Code availability
All software programs used in the Article are available at https://
github.com/EIS-Hub/DenRAM.git.
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