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Despite major advances, our understanding of the neurobiology of life course socioeconomic conditions is still scarce.
This study aimed to provide insight into the pathways linking socioeconomic exposures—household income, last known
occupational position, and life course socioeconomic trajectories—with brain microstructure and cognitive performance
in middle to late adulthood. We assessed socioeconomic conditions alongside quantitative relaxometry and diffusion-
weighted magnetic resonance imaging indicators of brain tissue microstructure and cognitive performance in a sample
of community-dwelling men and women (N = 751, aged 50–91 years). We adjusted the applied regression analyses and
structural equation models for the linear and nonlinear effects of age, sex, education, cardiovascular risk factors, and
the presence of depression, anxiety, and substance use disorders. Individuals from lower-income households showed
signs of advanced brain white matter (WM) aging with greater mean diffusivity (MD), lower neurite density, lower
myelination, and lower iron content. The association between household income and MD was mediated by neurite
density (B = 0.084, p = 0.003) and myelination (B = 0.019, p = 0.009); MD partially mediated the association between
household income and cognitive performance (B = 0.017, p < 0.05). Household income moderated the relation between
WM microstructure and cognitive performance, such that greater MD, lower myelination, or lower neurite density
was only associated with poorer cognitive performance among individuals from lower-income households. Individuals
from higher-income households showed preserved cognitive performance even with greater MD, lower myelination,
or lower neurite density. These findings provide novel mechanistic insights into the associations between socioeconomic
conditions, brain anatomy, and cognitive performance in middle to late adulthood.
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Significance Statement

Pathways linking socioeconomic conditions, brain anatomy, and cognitive performance have rarely been investigated. Using
multicontrast imaging, we found that individuals from lower-income households had markers of advanced brain white matter
(WM) aging with a lower neurite density, lower myelination, and lower iron content, alongside a greater mean diffusivity
(MD). Greater MD (reflecting myelin and neurite density) contributed to the association between household income and
cognitive performance. Household income also buffered the observed WM effects, such that a greater MD, lower index of
myelin content, or lower neurite density were only associated with poorer cognitive performance among individuals from
lower-income households. These findings provide a detailed neurobiological understanding of socioeconomic differences
in the brain anatomy and associated cognitive performance.

Introduction
Exposure to chronic socioeconomic disadvantage is associated
with dysregulation in multiple physiological systems, which con-
tributes to age-related diseases, cognitive decline, and mortality
(Cunliffe, 2016; Belsky et al., 2017; Kim et al., 2018; Berger
et al., 2019; Schrempft et al., 2022). On the contrary, living in
an enriched environment, characterized by, for example, higher
levels of educational attainment and engagement in complex
occupations, is thought to support neurodevelopment and com-
pensate for age-related decline (Stern, 2009; Ihle et al., 2018).

Existing studies examining associations between socioeco-
nomic conditions and brain health have primarily focused
on macrostructural measures, such as brain volume, cortical
thickness, and surface area rather than the underlying tissue
microstructure. These studies have generally found that socioe-
conomic disadvantage in both childhood and adulthood predicts
reduced total gray and white matter (WM) volume, reduced
cortical surface area and cortical thickness, and reduced volume
of regions implicated in cognitive and emotional processing (see
Farah, 2017, and Yaple and Yu, 2020, for a review).

Changes in the underlying tissue microstructure may precede
macrostructural and functional changes in brain health and may
be better predictors of age and cognitive decline (Bartzokis, 2004;
Metzler-Baddeley et al., 2019; Hayek et al., 2020). Indeed, with
increasing age, there is significant demyelination in human
WM (Draganski et al., 2011; Callaghan et al., 2014; Slater et al.,
2019), as well as a decreased axonal density (Cox et al., 2016;
Slater et al., 2019) and increased fiber dispersion (Slater et al.,
2019). These tissue property changes lead to inefficient signal
transmission between cortical regions and are believed to under-
lie aging-related cognitive decline, such as reduced processing
speed, executive dysfunction, poorer memory, and decline in
fluid intelligence (Bennett and Madden, 2014; Ritchie et al.,
2015).

Although WMmicrostructure is known to be integral to cog-
nitive function, little is known about the role it plays in the rela-
tionship between socioeconomic disadvantage and cognitive
performance. Previous studies using diffusion tensor imaging
(DTI) found that socioeconomic disadvantage in childhood
(Gullick et al., 2016; Ursache and Noble, 2016; Dufford and
Kim, 2017; Johnson et al., 2021) and adulthood (Gianaros et
al., 2013; Johnson et al., 2013; Noble et al., 2013; Shaked et al.,
2019) is associated with a lower fractional anisotropy (indicative
of fiber orientation) in multiple brain regions. However, the
robustness and interpretation of fractional anisotropy have
recently been questioned given the inability of the underlying
tensor model to deal with the abundant fiber crossings in the

human brain’s WM (Jeurissen et al., 2013; Figley et al., 2022).
Differences in DTI-derived indices are open to several biological
interpretations, including changes in axonal dispersion, myelina-
tion, and/or axonal densities (Beaulieu, 2002; Jones et al., 2013).

The advent of new, advanced magnetic resonance imaging
(MRI) techniques can provide further insight into the neurobiol-
ogy of processes relevant to aging. Quantitative magnetic reso-
nance imaging (qMRI) relaxometry allows for the estimation of
parameters indicative of the brain tissue myelin and iron content
across cortical areas, subcortical areas, and within the WM
(Draganski et al., 2011; Weiskopf et al., 2021). Additionally, it
reduces the probability of spurious morphometric findings that
may result when using the conventional T1-weighted MRI
(Lorio et al., 2016). Neurite orientation dispersion and density
imaging (NODDI) uses data collected at different diffusion
weightings (shells) and a biophysical model where diffusion is
modeled as isotropic in free water, hindered in the extracellular
space, and restricted within neurites. The latter provides the
microstructural metric of the intracellular volume fraction
(ICVF), indicative of the packing density of neurites (Zhang
et al., 2012). It is complementary to the widespread tensor
model using single diffusion weighting (shell), which provides
indices of mean diffusivity (MD) and fractional anisotropy
(Basser and Pierpaoli, 2011). Here, the interpretation is that
the MD increases in areas with structural (cell) loss, whereas
differences in fractional anisotropy (indicative of fiber direction-
ality) are open to a wider range of interpretations, particularly
in WM areas with crossing fibers (Jones et al., 2013). Recent
research using qMRI found that disadvantaged socioeconomic
conditions are associated with lower levels of myelin
(Loued-Khenissi et al., 2022) and reduced myelin growth
across adolescence and young adulthood (Ziegler et al., 2020),
thereby potentially contributing to socioeconomic differences
in cognitive function (Schrempft et al., 2023).

The present study therefore aims to combine information
from multicontrast MRI to provide novel insights into associa-
tions between socioeconomic conditions, brain WM anatomy,
and cognitive performance in middle- and older-aged adults.
Specifically, the study aims to examine whether (1) socioeco-
nomic conditions are associated with more specific measures of
brain microstructure including myelin, axonal density, and tract
complexity, in addition to the magnitude of water diffusion; (2)
differences in myelin, axonal density, and tract complexity
explain (mediate) socioeconomic differences in the magnitude
of water diffusion; (3) differences in WM microstructure explain
(mediate) associations between socioeconomic conditions and
cognitive performance; and (4) socioeconomic conditions shape
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(moderate) associations betweenWMmicrostructure and cogni-
tive performance.

Materials and Methods
Data source
The data stemmed from the BrainLaus study (Trofimova et al., 2021,
2023; Loued-Khenissi et al., 2022), which is part of the CoLaus|
PsyCoLaus longitudinal cohort (Firmann et al., 2008; Preisig et al.,
2009) recruited from 35- to 75-year-old residents of the city of
Lausanne, Switzerland (N= 6,734). Physical and psychiatric baseline
assessments conducted between 2003 and 2006 were followed by first
(2009–2013), second (2014–2018), and third (2018–2021) follow-up
evaluations. All participants of the psychiatric evaluation were invited
to take part in BrainLaus at the second and third follow-ups. At the third
follow-up, BrainLaus participants completed a cognitive test battery at
the time of the brain scan. In total, 1,324 individuals participated in
BrainLaus at the second follow-up (mean age, 60.5 years; SD, 9.4; 52%
women), and 823 individuals participated in BrainLaus at the third
follow-up and provided cognitive data (mean age, 63.1 years; SD, 8.9;
50% women). When comparing those who participated in BrainLaus
at the second follow-up (N= 1,324) with the 823 participants at the third
follow-up, there were no significant differences in the distributions of age
(5-year age groups), sex, educational level, last known occupational
position, or gross household income.

The data from 71 participants were excluded after MRI data quality
assessment (as described below), and 1 participant was missing a study
ID, which resulted in 751 participants included in the analyses. There
were no differences in age, sex, educational level, last known occupa-
tional position, or gross household income when comparing the analysis
sample (N= 751) with those who did not pass the MRI data quality
assessment (N= 71).

Given the absence of substantive differences in tract characteristics
between right- and left-handed subjects (Cox et al., 2016), handedness
was not assessed. The CoLaus|PsyCoLaus and BrainLaus studies received
approval from the local ethics committee, and participants provided
written informed consent prior to inclusion in the study.

Socioeconomic conditions
Measures of socioeconomic conditions in adulthood included educa-
tional level, last known occupation, and household gross income.
Education level was categorized as primary (none or compulsory school),
secondary (secondary school or apprenticeship), and tertiary (univer-
sity). Occupation was measured using the European Socioeconomic
Classification framework (Rose and Harrison, 2007) and categorized as
lower (lower clerical, services, and sales workers, skilled, semiskilled,
and unskilled workers), middle (small employers and self-employed,
farmers, lower supervisors, and technicians), and higher (higher profes-
sionals and managers, higher clerical, services, and sales workers). The
questionnaire item assessing household income had seven different
response options with varying increments of income between them:
<30,000 CHF, 30,000–49,999 CHF, 50,000–69,999 CHF, 70,000–89,999
CHF, 90,000–109,999 CHF, 110,000–199,999 CHF, and >200,000
CHF. As such, household income could not be implemented as a contin-
uous variable and was instead categorized into tertiles, reflecting lower
(≤69,999 CHF), middle (70,000–109,999 CHF), and higher (≥110,000
CHF) gross household incomes. A similar approach has been used in
previous research examining links between socioeconomic indicators
and brain markers (Dennis et al., 2022), and allowed us to simplify our
statistical models without losing nuance. Individuals in the higher tertile
had a gross household annual income close to or above the average
amount for all households in the canton of Vaud in 2020 (117,000
CHF), at the time of data collection (Statistique Vaud, 2023), while those
in the lower tertile were well below the average.

Life course socioeconomic trajectories were calculated using father’s
occupational position during childhood and participant’s last known
occupational position, as in previous international epidemiological
research (Ben-Shlomo and Kuh, 2002; Melchior et al., 2006; Pearce
et al., 2009; Stringhini et al., 2013, 2015; Rocha et al., 2020).

Trajectories were defined as stable-low (disadvantaged in childhood
and adulthood), downward (advantaged in childhood and average or dis-
advantaged in adulthood; or average in childhood and disadvantaged in
adulthood), stable-mid (average in childhood and adulthood), upward
(disadvantaged in childhood and average or advantaged in adulthood;
or average in childhood and advantaged in adulthood), and stable-high
(advantaged in childhood and adulthood). For analyses using father’s
occupational position and participant’s last known occupational posi-
tion, participants or fathers who had never worked (due to health or
other reasons) were excluded. For each socioeconomic variable, values
ranged from 0 (higher) to 1 (lower).

MRI data acquisition and processing
All brain MRI data were acquired on a 3T whole-body MRI system
(Magnetom Prisma, Siemens Medical Systems), using a 64-channel
radio-frequency (RF) receiver head coil and body coil for transmission.

Multiparametric mapping. The qMRI protocol comprised three mul-
tiecho 3D fast low-angle shot (FLASH) acquisitions with magnetization
transfer-weighted (MTw; TR, 24.5 ms, α= 6°), proton density-weighted
(PDw; TR, 24.5 ms, α= 6°), and T1-weighted (TR, 24.5 ms, α= 21°) con-
trasts at 1 mm isotropic resolution (Draganski et al., 2011). The B1 map-
ping data was acquired using a 3D EPI spin-echo/stimulated echo
technique (Lutti et al., 2010, 2012) to correct for the effects of RF transmit
field inhomogeneities on the qMRI maps (4 mm3 resolution; TE,
39.06 ms; TR, 500 ms). We acquired the B0-field mapping data using a
2D double-echo FLASH sequence to correct for distortions in the EPI
scans of slice thickness, 2 mm; TR, 1,020 ms; TE1/TE2, 10/12.46 ms;
and α= 90°.

The qMRI maps were calculated from the raw data using the voxel-
based quantification toolbox (Draganski et al., 2011; Tabelow et al.,
2019). The magnetization transfer (MT) maps were calculated as
described in Helms et al. (2008a,b). Themaps of the transverse relaxation
rate (R2*= 1/T2*) were estimated from the regression of the log signal of
the raw FLASH images with the corresponding echo times (Weiskopf
et al., 2014).

Diffusion-weighted imaging (DWI). The diffusion-weighted MRI
data were acquired using a 2D EPI sequence with the following param-
eters: TR/TE, 7,420/69 ms; generalized autocalibrating partially parallel
acquisition acceleration factor, 2; FOV, 192 × 212 mm2; matrix size, 96
× 106; 70 axial slices; 2 mm ISO voxel dimension; 118 isotropically dis-
tributed diffusion sensitization directions (15 at b= 650 s/mm2, 30 at b
= 1,000 s/mm2, and 60 at b= 2,000 s/mm2); and 13 b= 0 images inter-
leaved throughout the acquisition (Slater et al., 2019). The DWI data
were preprocessed with MRtrix3 for denoising (Veraart et al., 2016)
and Gibbs-ringing artifact removal (Kellner et al., 2016). To correct for
eddy current distortions and subject motion, we used the FSL 5.0
EDDY tool (Andersson and Sotiropoulos, 2016), including correction
of the gradient directions for subject movement (Leemans and Jones,
2009). We used the B0 maps acquired as part of the qMRI session to cor-
rect for EPI susceptibility distortions (Hutton et al., 2002). The bias field
was estimated from the mean b= 0 images and corrected for in all the
DWI data. The DWI data were then rigid body aligned to the MT images
with the aid of the mean b= 0 image.

We estimated the MD maps using the b= 0 s/mm2, b= 650 s/mm2,
and b= 1,000 s/mm2 data and MRtrix3 (Veraart et al., 2013). The
NODDI model (Zhang et al., 2012) and the AMICO toolbox implemen-
tation (Daducci et al., 2015) used the multishell data (all acquired b val-
ues) to provide maps for ICVF (a measure of neurite density), isotropic
volume fraction (ISOVF; a measure of extracellular water diffusion), and
orientation dispersion index (OD; the degree of fanning or angular var-
iation in neurite orientation).

For delineating WM tracts, we used the TractSeg convolutional neu-
ral network–based approach (Wasserthal et al., 2018). We estimated the
average MD, MT, R2*, ICVF, ISOVF, and OD values across 20 bilateral
and callosal tracts of interest: anterior, posterior, and superior thalamic
radiations; arcuate, inferior longitudinal, inferior fronto-occipital, supe-
rior, and uncinate fasciculi; cingulum; and genu and splenium of the
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corpus callosum. Tracts were selected based on their hypothesized asso-
ciations with cognitive performance. The number of voxels was used as a
proxy for the tract volume.

All structural data were processed in the framework of Statistical
Parametric Mapping 12 (SPM12; www.fil.ion.ucl.ac.uk/spm; Wellcome
Trust Centre for Neuroimaging) using customized MATLAB tools
(Mathworks). We performed automated tissue classification using the mul-
tichannel option of the SPM12 “unified segmentation” with MT and PD
maps and enhanced tissue priors (Lorio et al., 2016) that yielded graymatter
(GM),WM, and cerebrospinal fluid (CSF)maps. Total intracranial volumes
were calculated as the sum of GM, WM, and CSF volumes.

Structural imaging data quality assessment. For the present study, we
report the quality of the qMRI data using the validated motion degrada-
tion index (MDI; Castella et al., 2018). Consistently with Lutti et al.
(2022), MDI values from the MT-weighted images are higher than those
from the PD- and T1-weighted images by∼1 s−1* due to the lower num-
ber of echo images and lower signal-to-noise of the raw data. The distri-
bution of the MDI values across the cohort is shown in Extended Data
Figure 1-1A. Datasets with MDI values below 6 s−1 for the PD- and
T1-weighted images, and below 7 s−1 for the MT-weighted images are
empirically considered of sufficient quality. For completion, we also pro-
vide values of the rigid body transformation parameters for coregistra-
tion of the MT- and T1-weighted images to the reference PD-weighted
images, which are metrics of head motion between image volumes
(Extended Data Fig. 1-1B; Tabelow et al., 2019).

Cognitive performance
Processing speed was the time in seconds needed to correctly connect
numbers 1–25 in ascending order [trail making test (TMT) part A;
Reitan, 1958]. Cognitive flexibility was the time in seconds needed to cor-
rectly connect numbers 1–13 in ascending order and letters A to L in
alphabetic order while alternating between numbers and letters (i.e.,
1-A-2-…12-L-13; TMT B; Reitan, 1958). To assess abstract reasoning
ability, we used performance on the abbreviated form of Raven’s
Standard Progressive Matrices (nine matrices) to estimate performance
on the full form of the test (60 matrices; Bilker et al., 2012). The scores
indicate the estimated number of correct items out of 60.

Covariates
An aggregate measure of cardiovascular risk was calculated by counting
instances of hypertension (blood pressure, ≥140/90 mmHg or antihy-
pertensive drug treatment), diabetes (fasting plasma glucose,
≥7.0 mmol/L, or antidiabetic drug treatment), or dyslipidemia (high-
density lipoprotein, <1.0 mmol/L; triglycerides, ≥2.2 mmol/L; low-
density lipoprotein, ≥4.1 mmol/L; or hypolipidemic treatment), having
ever smoked, having a BMI > 25, and having a high waist-to-hip ratio
(WHR) (>0.85 for females and >0.90 for males; Cox et al., 2019). A
description of the clinical data collection methods can be found else-
where (Firmann et al., 2008). Depressive disorder (diagnosed current
major depressive disorder or dysthymia), anxiety disorder (diagnosed
current generalized anxiety disorder, panic disorder, agoraphobia, social
phobia, specific phobias, posttraumatic stress disorder, or obsessive-
compulsive disorder), and alcohol or illicit substance use disorder were
assessed using the Diagnostic Interview for Genetic Studies
(Nurnberger et al., 1994). Ethnicity was not included in the analyses as
94% of the sample were Caucasian and 6%were from several other ethnic
subgroups.

Experimental design and statistical analyses
As previous research has reported a high degree of covariance among
WM microstructural properties across the brain (Penke et al., 2010,
2012; Cox et al., 2016, 2019; Lee et al., 2017; Telford et al., 2017), mea-
sures of global WM tissue properties were derived using Principal
Component Analysis (PCA). For each of the WM microstructure mea-
sures (MD, MT, R2*, ICVF, ISOVF, and OD), the 20 tracts were entered
into a PCA, and the first unrotated component was extracted and used in
further analyses. Within all WM measures, tracts correlated positively;
for instance, those with higher MT in one tract tended to have higher
MT in all other tracts. Means of between-tract correlations were 0.83 ±

0.07 for MD, 0.84 ± 0.06 for MT, 0.80 ± 0.09 for R2*, 0.88 ± 0.06 for
ICVF, 0.71 ± 0.11 for ISOVF, and 0.48 ± 0.18 for OD. For MD, MT,
R2*, ICVF, and ISOVF, initial scree plots of the tract data provided evi-
dence for a strong single component capturing common variance across
the tracts. This was less clear for OD, which had a comparatively weaker
first component and a stronger second and third component than the
other measures. The first component explained 84% of the total variance
in MD, 85% inMT, 81% in R2*, 89% in ICVF, 73% in ISOVF, and 52% in
OD. All variables within each PCA correlated highly with the first prin-
cipal component (≥0.9 for MD, MT, ICVF; ≥0.8 for R2* and ISOVF;
≥0.5 for OD).

Associations between socioeconomic conditions and the global WM
microstructure measures, and between socioeconomic conditions and
cognitive performance, were first examined with regression models
that included age, age2, and sex as covariates [plus total intracranial vol-
ume (TIV) to correct for head size when examining associations with
WM microstructure]. As different socioeconomic factors represent dis-
tinct constructs that may have different roles in development and aging
(Braveman et al., 2005; Duncan and Magnuson, 2012; Noble et al., 2015;
Basto-Abreu et al., 2018), each socioeconomic indicator (last known
occupational position, household income, and social mobility) was
examined in separate regression models.

Structural equation modeling with maximum likelihood estimation
was then used to examine (1) the degree to which the effect of socioeco-
nomic conditions on the generally greater magnitude of water diffusion
(MD) across tracts was attributable to neurite density (ICVF), the
amount of tract complexity/fanning (OD), and/or myelin (MT) in a mul-
tiple mediator model, and (2) whether WM microstructure (MD) medi-
ated associations between socioeconomic conditions and cognitive
performance (represented by a latent variable, comprising TMT A,
TMT B, and Raven’s matrices performance). Amediating effect was indi-
cated by the presence of a significant indirect effect (the product of the
direct paths; Zhao et al., 2010). TheMonte Carlo method (5,000 samples)
was used to estimate standardized indirect effects with 95% CI
(Mehmetoglu, 2018).

To examine whether socioeconomic conditions moderate associa-
tions between the WMmicrostructure and cognitive performance, inter-
action terms were created by multiplying the socioeconomic indicators
by theWM component scores (MD, MT, R2*, ICVF, ISOVF, OD). A sta-
tistically significant interaction term in the prediction of cognitive per-
formance indicates the presence of a moderating effect. Interaction
effects were probed using simple slope analysis.

In each model, the socioeconomic indicator (household income,
occupation, or social mobility) was included alongside age, age2, sex,
education, and TIV (independent variables). A second series of models
additionally included cardiovascular risk factors, anxiety disorder,
depressive disorder, and substance use disorder as covariates.

Supplementary analyses included (1) the adjustment for the number
of people depending on the household income, using the modified
OECD equivalence scale (income bracket midpoints were weighted by
the number of dependents, for example, the household income of a cou-
ple with two children is divided by 2.1 (1 + 0.5 + 0.3 + 0.3); (2) running
the models by age group (<65 vs ≥65 years), as well as adding an inter-
action term (age group multipled by the socioeconomic conditions) in
predicting WM microstructure characteristics, as research indicates
that social inequalities in biological risk are reduced at older ages
(Crimmins et al., 2009); (3) testing the other WM measures that were
significantly associated with socioeconomic conditions as mediators
(in separate models); (4) examining whether household income moder-
ates the relationship between the WMmicrostructure and cognitive per-
formance on each of the individual cognitive tasks. Analyses were
performed using Stata version 16 (StataCorp).

Results
Descriptives
Participants were on average 63 years old, 49% were women,
and 26% were educated to tertiary level. Of the total sample,
61% (N= 455) were younger than 65 years, and 39% (N= 296)
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were aged 65 years and above. The summary statistics for the
total sample and by age group are presented in Table 1.
Household income and last known occupational position were
positively and moderately correlated (r= 0.40, p < 0.05), indicat-
ing that the constructs are not redundant measures of socioeco-
nomic position.

The results below are based on single component measures of
the WM microstructure, as described in Materials and Methods,
Experimental design and statistical analyses.

Socioeconomic differences in WM microstructure
Table 2 shows the associations between the socioeconomic
indicators and WM measures for the total sample. Of the
different socioeconomic measures, only household income

was associated with WM microstructure. Participants who
had lower household income had a greater mean water diffu-
sivity (MD), lower myelination (MT), lower iron content
(R2*), and lower neurite density (ICVF), than those of partic-
ipants who had higher household income. The extracellular
water content (ISOVF) and tract complexity/fanning (OD)
were not associated with household income. The results were
the same when adjusting for the number of people depending
on the household income (β range for MD, MT, R2*, and
ICVF, 0.089–0.102; p < 0.05). See Extended Data Figure 1-2
for a graphical display of the associations between household
income and the WM measures.

A mediation model, which included neurite density and mye-
lin as mediators of the association between household income

Table 1. Descriptive statistics for the total sample and by age group

Total (N= 751) <65 years, (N= 455) ≥65 years, (N= 296)

p value <65 vs ≥65 years NM (SD) or % (n)

Age at MRI scan 63.5 (8.9) 57.5 (4.1) 72.7 (5.6) <0.001 751
Sex 0.003 751

Women 49.4 (371) 45.1 (205) 56.1 (166)
Men 50.6 (380) 54.9 (250) 43.9 (130)

Educational level 0.052 743
Tertiary 26.1 (194) 29.2 (131) 21.4 (63)
Secondary 62.0 (461) 59.8 (268) 65.4 (193)
Primary 11.8 (88) 10.9 (49) 13.2 (39)

Last known occupation 0.026 688
Higher 15.8 (109) 17.9 (75) 12.6 (34)
Middle 37.2 (256) 39.0 (163) 34.4 (93)
Lower 46.9 (323) 43.1 (180) 53.0 (143)

Household gross income (CHF p.a.) <0.001 579
Higher (110,000+) 33.2 (192) 44.2 (157) 15.6 (35)
Middle (70,000–109,999) 34.0 (197) 33.8 (120) 34.4 (77)
Lower (≤69,999) 32.8 (190) 22.0 (78) 50.0 (112)

Social mobility <0.001 667
Stable-high 7.0 (47) 6.6 (27) 7.7 (20)
Upward 19.2 (128) 24.6 (100) 10.8 (28)
Stable-mid 19.2 (128) 17.9 (73) 21.2 (55)
Downward 38.8 (259) 36.4 (148) 42.7 (111)
Stable-low 15.7 (105) 14.5 (59) 17.7 (46)

Smoking status 0.001 700
Never 45.1 (316) 46.3 (198) 43.4 (118)
Former 38.1 (267) 33.6 (144) 45.2 (123)
Current 16.7 (117) 20.1 (86) 11.4 (31)

BMI 26.2 (4.6) 26.1 (4.6) 26.3 (4.6) 0.71 735
WHR 0.88 (0.1) 0.87 (0.1) 0.89 (0.1) 0.016 733
Hypertensiona <0.001 737

Yes 43.3 (319) 33.1 (148) 59.0 (171)
Dyslipidemiab 0.092 732

Yes 22.7 (166) 24.8 (110) 19.4 (56)
Diabetesc <0.001 733

Yes 7.4 (54) 4.5 (20) 11.8 (34)
Anxiety disorderd 0.58 751

Yes 7.5 (56) 7.0 (32) 8.1 (24)
Depressive disordere 0.045 751

Yes 6.7 (50) 8.1 (37) 4.4 (13)
Substance use disorder 0.35 751

Yes 2.4 (18) 2.0 (9) 3.0 (9)
TMT A score, seconds 41.1 (17.1) 36.2 (12.5) 48.6 (20.4) <0.001 731
TMT B score, seconds 74.8 (43.2) 66.2 (37.0) 88.3 (48.5) <0.001 726
Raven’s matrices estimated score 39.3 (12.2) 42.2 (11.5) 34.9 (12.0) <0.001 751

χ2 tests were used to compare categorical variables across cohorts; t tests were used to compare continuous variables; CHF, Swiss Francs; WHR, waist-to-hip ratio; TMT, trail making test.
aBlood pressure ≥140/90 mmHg or receiving treatment for the condition.
bHigh-density lipoprotein <1.0 mmol/L; triglycerides, ≥2.2 mmol/L; and/or low-density lipoprotein, ≥4.1 mmol/L.
cFasting plasma glucose ≥7.0 mmol/L or receiving treatment for the condition.
dDiagnosed current generalized anxiety disorder, panic disorder, agoraphobia, social phobia, specific phobias, posttraumatic stress disorder, or obsessive-compulsive disorder.
eDiagnosed current major depressive disorder or dysthymia.
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and MD had an acceptable fit (χ2(10) = 43.85; p < 0.001; compara-
tive fit index (CFI), 0.97; Tucker-Lewis index (TLI), 0.92; root
mean square error of approximation (RMSEA), 0.08), and there
was a significant indirect effect, indicating that the association
between household income and MD was mediated by neurite
density (β= 0.084; 95% CI, 0.029–0.141; p= 0.003) and myelin
(β= 0.019; 95% CI, 0.006–0.034; p= 0.009; Fig. 1).

Supplementary analyses showed that socioeconomic effects
on WM were only observed in those younger than 65 years
(Table 3); in this age group, social mobility also predicted MD.
Participants who had experienced a stable-low occupational tra-
jectory had a greater global water molecule diffusion than those
who had experienced a stable-high trajectory (β= 0.132; 95%
CI 0.018–0.245; p= 0.023). However, the interaction terms (age
group multiplied by the socioeconomic conditions) did not reach
statistical significance in predicting WM microstructure
characteristics.

Socioeconomic differences in cognitive performance mediated
by WM microstructure
Table 4 shows associations between the socioeconomic and cog-
nitive measures. Participants who experienced socioeconomic
disadvantage performed worse on tests of processing speed, cog-
nitive flexibility, and general cognitive ability than those who
experienced more advantaged socioeconomic conditions; these
effects were apparent in each age group. For household income,
results were the same when adjusting for the number of people
depending on the income (β range, 0.163–0.236; p < 0.001). See

Extended Data Figure 1-3 for a graphical display of the associa-
tions between household income and cognitive performance.

A mediation model, which included MD as a mediator of the
association between household income and cognitive perfor-
mance (represented as a latent factor) had an acceptable fit:
χ2(10) = 43.66; p < 0.001; CFI, 0.97; TLI, 0.93; and RMSEA, 0.08.
There was a significant indirect effect (β= 0.017; 95% CI,
0.003–0.035; p= 0.040), indicating that MD partially mediated
the association between household income and cognitive perfor-
mance (Fig. 2). This pathway became borderline significant when
taking into account cardiovascular risk factors, anxiety disorder,
depressive disorder, and substance use disorder (β= 0.012; 95%
CI, 0.002–0.027; p= 0.064), and when examining the model by
age group. Myelin or neurite density alone did not mediate the
association between household income and cognitive performance.

Socioeconomic differences moderate associations between the
WM microstructure and cognitive performance
There was a significant income–WM interaction predicting cog-
nitive performance for MD (β= 0.023; 95% CI, 0.009–0.037; p <
0.01), myelination (β=−0.015; 95% CI, −0.028 to −0.001;
p < 0.05), and neurite density (β=−0.019; 95% CI, −0.032 to
−0.007; p < 0.01), but not for the other components. Simple slope
analysis showed that a greater MD (β= 0.015; 95% CI, 0.008–
0.023; p < 0.001), lower myelination (β=−0.008; 95% CI,
−0.016 to −0.000; p < 0.05), and lower neurite density (β=
−0.013; 95% CI, −0.019 to −0.006; p < 0.001) were associated
with poorer cognitive performance among those with a lower
household income, but there were no significant associations
between the WM measures and cognitive performance among
those with a middle or higher household income. See Figure 3
for a graphical display of the interaction effects. These moderat-
ing effects remained when adding cardiovascular risk factors,
anxiety disorder, depressive disorder, and substance abuse disor-
der to the models (apart from myelin). Supplementary analyses
showed that moderating effects of household income on WM
only reached statistical significance in those younger than 65
years. When examining the moderating effects for each cognitive
test separately, the reported effects were apparent for TMT A and
B (β range, −0.020 to 0.028; p < 0.05), but not Raven’s alone.
There were no statistically significant interaction effects when
examining the other socioeconomic indicators (education, occu-
pation, or social mobility).

Discussion
Using information from multicontrast MRI, we provided an
in-depth neurobiological understanding of associations between
socioeconomic conditions, brain WM anatomy, and cognitive

Figure 1. The association between household income and global MD (path C) is mediated
(note the lower value of path C’) by a combination of global neurite density (ICVF) and global
myelin (MT). The majority of the mediation takes place through gICVF rather than MT (respec-
tive indirect effects are β=−0.084 and β= 0.019). Standardized βs reported. *p< 0.01,
**p< 0.01, ***p< 0.001.

Table 2. Associations between socioeconomic conditions and the measures of WM microstructure

MD MT R2* ICVF ISOVF OD

Last known occupation 0.041, (−0.035, 0.116) −0.020, (−0.095, 0.054) −0.027, (−0.112, 0.057) −0.031, (−0.120, 0.057) 0.017, (−0.058, 0.093) −0.032, (−0.119, 0.055)
p value 0.293 0.590 0.530 0.487 0.651 0.467
N= 661

Household income 0.111 (0.036, 0.187) −0.088 (−0.163, −0.012) −0.099, (−0.184, −0.014) −0.118, (−0.207, −0.029) 0.040, (−0.038, 0.118) −0.000, (−0.089, 0.088)
p value 0.004 0.023 0.023 0.009 0.314 0.992
N= 556

Social mobility 0.071, (−0.002, 0.145) −0.032, (−0.105, 0.041) −0.024, (−0.107, 0.058) −0.048, (−0.134, 0.039) 0.050, (−0.024, 0.124) −0.012, (−0.098, 0.073)
p value 0.058 0.389 0.564 0.279 0.183 0.782
N= 641

The results are standardized regression coefficients and 95% CI in parentheses for the lowest versus highest socioeconomic group; models adjusted for age, age square, sex, and total intracranial volume; MD, mean diffusivity; MT,
magnetization transfer; R2*, transverse relaxation rate; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; OD, orientation dispersion index.
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performance in middle- and older-aged adults. We found that
individuals from lower-income households had markers of
advanced brain aging, including lower levels of MRI parameters
indicative of myelin and iron content, and reduced neurite den-
sity, paralleled by a greater MD of water. Differences in myelin
and neurite density explained differences in the magnitude of

water diffusion between lower- and higher-income households,
and differences in the magnitude of water diffusion partially
explained associations between household income and cognitive
performance. Household income also shaped associations
between the WM microstructure and cognitive performance,
such that a greater MD, as well as lower myelin, and neurite

Table 3. Associations between socioeconomic conditions and the measures of WM microstructure by age group

MD MT R2* ICVF ISOVF OD

<65 years
Last known occupation 0.113 (−0.002, 0.228) −0.048 (−0.162, 0.066) −0.061 (−0.178, 0.056) −0.096 (−0.215, 0.024) 0.041 (−0.072, 0.153) −0.012 (−0.126, 0.101)

p value 0.055 0.408 0.308 0.117 0.479 0.827
N= 406

Household income 0.144 (0.036, 0.252) −0.128 (−0.236, −0.020) −0.143 (−0.254, −0.032) −0.132 (−0.245, −0.018) 0.051 (−0.053, 0.156) −0.027 (−0.135, 0.082)
p value 0.009 0.020 0.012 0.023 0.336 0.630
N= 343

Social mobility 0.132 (0.018, 0.245) −0.059 (−0.172, 0.054) −0.028 (−0.144, 0.088) −0.094 (−0.213, 0.024) 0.089 (−0.021, 0.200) 0.020 (−0.091, 0.132)
p value 0.023 0.308 0.634 0.119 0.113 0.720
N= 395

≥65 years
Last known occupation −0.031 (−0.165, 0.103) −0.011 (−0.146, 0.124) −0.007 (−0.150, 0.137) 0.065 (−0.084, 0.214) 0.004 (−0.127, 0.136) −0.074 (−0.210, 0.063)

p value 0.652 0.869 0.925 0.391 0.947 0.288
N= 255

Household income 0.097 (−0.037, 0.231) −0.044 (−0.177, 0.090) −0.049 (−0.191, 0.094) −0.095 (−0.242, 0.052) 0.043 (−0.093, 0.180) 0.061 (−0.080, 0.202)
p value 0.155 0.518 0.500 0.205 0.534 0.396
N= 213

Social mobility 0.027 (−0.103, 0.156) −0.017 (−0.148, 0.113) −0.039 (−0.177, 0.100) 0.014 (−0.131, 0.159) 0.024 (−0.104, 0.152) −0.063 (−0.197, 0.071)
p value 0.687 0.794 0.584 0.849 0.714 0.355
N= 246

The results are standardized β coefficients and 95% CI in parentheses for the lowest versus highest socioeconomic group; models adjusted for age, age square, sex, and total intracranial volume; MD, mean diffusivity; MT, magnetization
transfer; R2*, transverse relaxation rate; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; OD, orientation dispersion index.

Table 4. Associations between life course socioeconomic conditions and cognitive performance

TMT A TMT B Raven’s matrices

Last known occupation 0.212 (0.141, 0.283) 0.288 (0.217, 0.360) −0.243 (−0.315, −0.171)
p value <0.001 <0.001 <0.001
N 668 665 688

Household income 0.177 (0.097, 0.258) 0.250 (0.168, 0.331) −0.223 (−0.305, −0.140)
p value <0.001 <0.001 <0.001
N 560 556 579

Social mobility 0.191 (0.119, 0.264) 0.263 (0.190, 0.336) −0.234 (−0.308, −0.161)
p value <0.001 <0.001 <0.001
N 647 644 667

<65 years
Last known occupation 0.242 (0.145, 0.340) 0.346 (0.252, 0.441) −0.245 (−0.341, −0.150)

p value <0.001 <0.001 <0.001
N 406 406 418

Household income 0.092 (−0.014, 0.199) 0.201 (0.096, 0.306) −0.218 (−0.322, −0.115)
p value 0.090 <0.001 <0.001
N 344 344 355

Social mobility 0.223 (0.126, 0.324) 0.340 (0.244, 0.436) −0.250 (−0.347, −0.154)
p value <0.001 <0.001 <0.001
N 395 395 407

≥65 years
Last known occupation 0.200 (0.081, 0.319) 0.217 (0.097, 0.337) −0.261 (−0.381, −0.142)

p value 0.001 <0.001 <0.001
N 262 259 270

Household income 0.294 (0.165, 0.423) 0.319 (0.189, 0.449) −0.223 (−0.359, −0.087)
p value <0.001 <0.001 0.001
N 216 212 224

Social mobility 0.172 (0.050, 0.293) 0.154 (0.031, 0.277) −0.234 (−0.357, −0.111)
p value 0.006 0.014 <0.001
N 252 249 260

TMT, trail making test; the results are standardized β coefficients and 95% CI in parentheses for the lowest versus highest socioeconomic group; models adjusted for age, age square, and sex.

Schrempft et al. • Socioeconomic Differences in Brain White Matter Microstructure J. Neurosci., April 24, 2024 • 44(17):e1231232024 • 7



density were associated with poorer cognitive performance
among those from lower-income households. Individuals from
higher-income households showed preserved cognitive perfor-
mance in the face of greaterMD, lowermyelin, or neurite density.

Socioeconomic differences in WM microstructure
Our findings critically extend previous reports of socioeconomic
differences in tract-specific and global measures of fractional
anisotropy (Gianaros et al., 2013; Johnson et al., 2013, 2021;
Noble et al., 2013; Gullick et al., 2016; Ursache and Noble,
2016; Dufford and Kim, 2017; Shaked et al., 2019), which are
assumed to be due to differences in fiber density, diameter, or
myelination but have limited neurobiological specificity and reli-
ability (Jeurissen et al., 2013). We found socioeconomic differ-
ences in global MD, which is more robust to the issue of fiber
crossing (Figley et al., 2022); and these differences were explained
by global myelin and neurite density. We did not see

socioeconomic differences in extracellular water content or neur-
ite dispersion, suggesting socioeconomic effects in WM are not
driven by these features. However, given the scarcity of research
using NODDI to examine socioeconomic differences in WM
microstructure, further research is needed to replicate this
finding.

Socioeconomic differences in cognitive performance mediated
by WM microstructure
Our study is one of the few to empirically assess potential neuro-
biological pathways linking socioeconomic conditions and cog-
nitive performance and, to our knowledge, the first one to offer
insights from the most recent levels of neurobiological specificity.
Extending previous studies on children and young adults (Noble
et al., 2013; Johnson et al., 2021), we found that the association
between household income and cognitive performance was par-
tially mediated by MD, but not by myelin or neurite density
alone, suggesting that the combination of myelin and neurite
density, reflected in MD, partially explains the association
between income and cognitive performance. One interpretation
of these results is that higher household income may contribute
(directly or indirectly) to differences in WM development, which
in turn supports cognitive performance. Themediation effect was
not independent of cardiovascular risk factors and psychiatric
disorders, as it became borderline significant when adding these
factors to the model. This is unsurprising given that socioeco-
nomic disadvantage is associated with an increased risk of psy-
chiatric disorder and cardiovascular disease (Kivimäki et al.,
2020), and the latter are also associated with poorer cognitive
outcomes (Pal et al., 2018; Semkovska et al., 2019), as well as
differences in brain macro- and microstructure (Cox et al.,
2019; Grosu et al., 2022).

Socioeconomic differences moderate associations between the
WM microstructure and cognitive performance
Our finding that income moderated associations between WM
and cognitive performance dovetails with previous studies

Figure 2. The association between household income and global cognitive performance
(path C) is partially mediated (note lower value of path C’) by global MD. The indirect
effect is β= 0.017. Standardized βs reported. **p< 0.01, ***p< 0.001. TMTA, trail making
test part A; TMTB, trail making test part B; RM, abbreviated form of the Raven’s Standard
Progressive Matrices.

Figure 3. Predicted values of cognitive performance at each level of household income [higher (≥110,000 CHF per annum), middle (70,000–109,999 CHF per annum), lower (≤69,999 CHF
per annum)] setting MD, MT, and ICVF at 1 SD below the mean, the mean, and 1 SD above the mean. Higher scores indicate poorer cognitive performance. Models adjusted for age, age square,
sex, education, and total intracranial volume.
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indicating that more advantaged socioeconomic conditions may
buffer individuals from a range of potentially detrimental cogni-
tive outcomes (Czernochowski et al., 2008; Mortamais et al.,
2014; Ursache and Noble, 2016). Individuals from higher-
income households may have increased access to means that
enable them to use different neural resources or strategies in
order to exhibit a high level of behavioral performance (Stern,
2009). From the present findings, we cannot identify the precise
mechanisms by which household income might contribute to
differences in WM and cognitive performance, as well as their
association. However, there are a number of possible contribut-
ing factors that may accumulate over the life course (Evans and
Kim, 2010), including differential access to appropriate health-
care (Schröder et al., 2016) and adequate nutrition (Prado
and Dewey, 2014), exposure to psychosocial stressors (Chen
and Miller, 2013) and environmental pollution (Evans and
Kantrowitz, 2002; Binter et al., 2022), workplace conditions
and cognitive demands (Then et al., 2014), and gene–environ-
ment interaction (Ryan et al., 2011). The experience of chronic
stress can have deleterious effects on the brain. In animal models,
early stress exposure has been associated with reduced neuro-
genesis and enhanced apoptosis (Lemaire et al., 2000; Heine
et al., 2004; Mirescu et al., 2004), which may lead to a reduction
in the density of neuronal axons. Stress exposure has also
been shown to impair oligodendrogenesis in rodents (Teissier
et al., 2020), which could explain the hypomyelination of
WM tracts and cognitive impairment seen in animal models
of stress (Bordner et al., 2011; Yang et al., 2017). On the
contrary, environmental enrichment, such as training and
stimulation, has been associated with increased neurogenesis
(Nilsson et al., 1999) and promotes oligodendrogenesis and
myelination (Gibson et al., 2014). Future studies should examine
the potential operative pathways through which socioeconomic
disadvantage impacts WM microstructure and cognitive
performance.

Our supplementary analyses indicated that the moderating
effects of household income were primarily evident for process-
ing speed (TMT A) and cognitive flexibility (TMT B) perfor-
mance, rather than abstract reasoning (Raven’s matrices).
However, previous research has reported moderating effects of
socioeconomic conditions on other cognitive domains including
memory (Czernochowski et al., 2008) and executive function
(Ursache and Noble, 2016), as well as mild cognitive impairment
(Mortamais et al., 2014), so we cannot conclude that the moder-
ating effects are specific to any cognitive domain. Future research
should examine whether the effects observed in this study gener-
alize to other cognitive domains including episodic memory,
verbal fluency, and inhibitory control.

Socioeconomic differences in WM microstructure by age
group
Household income was the only socioeconomic measure that pre-
dictedWMmicrostructure in the total sample. Occupational posi-
tion has been associated with brain structure and function among
adults (Johnson et al., 2013; Chan et al., 2018) but is usually
acquired in early- or mid-adulthood and therefore may not reflect
socioeconomic resources as well as current household income.
When stratifying by age group, associations between household
income and WM were observed among those younger than 65
years, but not among those aged 65 years and above; and social
mobility of occupational position additionally predicted WM in
the younger age group. Similarly, another study found socioeco-
nomic differences in cortical GM thickness inmiddle but not older

adulthood (Chan et al., 2018). Social inequalities in the process of
aging may be visible up to a certain age (Crimmins et al., 2009),
since higher-risk individuals die at younger ages or become too
unwell to participate in surveys, resulting in greater similarity
among participants who reach old age. In the present study, the
observeddifferences between age groups could also bedue to differ-
ences in the sample size and statistical power, as a smaller propor-
tion of the sample was aged 65 years and above, and the interaction
terms (age group multiplied by the socioeconomic conditions) did
not reach statistical significance in predicting WMmicrostructure
characteristics. Wealth or indicators of deprivation are likely the
most precise indicators of socioeconomic resources at older ages
(Henretta andCampbell, 1978;Grundy andHolt, 2001) and should
be included in future studies examining common and unique asso-
ciations between different socioeconomic indicators and WM
microstructure.

Strengths and limitations
Our study has several strengths, including the use of data from a
large-scale monocentric cohort and data acquisition using the
same MRI machine without any major hardware or software
changes, alongside a unique multicontrast imaging approach.
Methodological strengths include relaxometry-based MRI sensi-
tive to brain tissue properties; the careful adjustment for transmit
field inhomogeneities that ensures the quantitative character of
the data; the use of individual diffusion-based tractography
instead of atlas information to provide a reliable delineation
and sampling across WM tracts; and the quantitative assessment
of data quality (Castella et al., 2018).

We cannot rule out the possibility of cohort-specific effects,
but it is noteworthy that the associations between socioeconomic
factors and cognitive performance, and between socioeconomic
factors and previously examined WM parameters, are consistent
with findings from different cohorts (Gianaros et al., 2013;
Johnson et al., 2013; Shaked et al., 2019; Schrempft et al.,
2023). Our single-center study is complementary to multisite ini-
tiatives given that we provide a deeper brain anatomy phenotype
due to fewer time constraints for MRI data acquisition.
Multicenter studies can obtain a larger sample size, with greater
power to detect true effects, but the harmonization of MRI data
from different sites and scanners can be difficult and costly to
coordinate (e.g., correction for different acquisition protocols
may be needed). Although replication studies are needed, our
study is an important first step in investigating neurobiological
pathways linking social adversity and cognition.

The design of this study was cross-sectional, which limits the
interpretation in terms of the direction of the observed effects.
Longitudinal research is needed to test whether changes in socio-
economic conditions, including financial resources, in middle to
late adulthood are associated with changes in the WM micro-
structure. Recent research in adults found no association between
education and change in cortical or hippocampal volume
(Nyberg et al., 2021). In other research, older adults without a
college education showed a decline in resting-state brain system
segregation over time compared with their college-educated
peers (Chan et al., 2021). Across adolescence and young adult-
hood, neighborhood deprivation was associated with reduced
myelin growth, but not with changes in macroscopic measures
such as GM volume or cortical surface area (Ziegler et al.,
2020). Alongside measures of brain function, measures of WM
microstructure may be more sensitive markers of brain aging
than macrostructural measures and should be included in future
longitudinal studies.
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The present study cannot identify the genetic and environ-
mental contributions to the observed socioeconomic differences
in the brain WM and cognitive performance, nor can it distin-
guish between social causation and social selection accounts of
the findings. However, research indicates that both genetic and
environmental factors contribute to brain and cognitive health
(Belsky et al., 2018; Judd et al., 2020). For example, a recent study
on adolescents found that brain and cognitive development was
independently influenced by socioeconomic status and polygenic
scores for educational attainment (Judd et al., 2020). Future
research examining socioeconomic differences in the brain
WM microstructure and cognitive performance should take
into account genetic factors.

The data in this study were from the metropolitan city of
Lausanne in Switzerland, home to 345,000 inhabitants, ∼40%
of whom are foreign citizens with a variety of different national-
ities. Switzerland has one of the highest average salaries among
OECD countries, and the income gap is not as wide as other
European countries and America (Swiss Inequality Database,
2023;World Inequality Database, 2023). However, the cost of liv-
ing is also particularly high in Switzerland (Nakamura et al.,
2020), with a large part of income being spent on taxes, housing,
and compulsory health insurance (Federal Office for Statistics,
2020). The high cost of living in Switzerland puts lower-income
families at a particular disadvantage. Households with a gross
monthly salary of <5,000 CHF (60,000 CHF per year) can’t set
aside any savings (Federal Office for Statistics, 2020).
Moreover, living costs tend to increase while wages remain stable,
putting a strain on low-paid workers. Health inequalities are seen
within high-income countries such as Switzerland, but the effects
observed in this study may be stronger in other countries where
income inequality is greater and lower-income families have lim-
ited access to adequate healthcare, education, and quality food.

Most participants in our study were Caucasian; therefore it
was not possible to test for interaction effects between ethnicity
and socioeconomic conditions. This is an important future
research endeavor as stress related to ethnic minority status
may accelerate aging, and we may see stronger effects among
individuals with both ethnic minority status and lower household
income. Our study focused on individual-level socioeconomic
factors in relation to WM and cognitive performance. Research
examining socioeconomic effects at the neighborhood level is
also warranted.

Conclusion
An individual’s household income relates to their WM brain
anatomy and associated cognitive performance in middle to
late adulthood. These findings provide novel insights into the
neurobiological mechanisms underlying socioeconomic inequal-
ities in brain anatomy and cognitive performance, and present an
important baseline from which to further investigate pathways
linking adversity, WM microstructure, and cognition.
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