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Neuronal Modeling of Cross-Sensory Visual Evoked
Magnetoencephalography Responses in the Auditory Cortex
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Previous studies have demonstrated that auditory cortex activity can be influenced by cross-sensory visual inputs. Intracortical laminar
recordings in nonhuman primates have suggested a feedforward (FF) type profile for auditory evoked but feedback (FB) type for visual
evoked activity in the auditory cortex. To test whether cross-sensory visual evoked activity in the auditory cortex is associated with FB
inputs also in humans, we analyzedmagnetoencephalography (MEG) responses from eight human subjects (six females) evoked by sim-
ple auditory or visual stimuli. In the estimated MEG source waveforms for auditory cortex regions of interest, auditory evoked response
showed peaks at 37 and 90 ms and visual evoked response at 125 ms. The inputs to the auditory cortex were modeled through FF- and
FB-type connections targeting different cortical layers using the Human Neocortical Neurosolver (HNN), which links cellular- and cir-
cuit-level mechanisms to MEG signals. HNNmodeling suggested that the experimentally observed auditory response could be explained
by an FF input followed by an FB input, whereas the cross-sensory visual response could be adequately explained by just an FB input.
Thus, the combined MEG and HNN results support the hypothesis that cross-sensory visual input in the auditory cortex is of FB type.
The results also illustrate how the dynamic patterns of the estimated MEG source activity can provide information about the charac-
teristics of the input into a cortical area in terms of the hierarchical organization among areas.

Key words: computational modeling; cross-sensory; feedforward/feedback; MEG

Significance Statement

Laminar intracortical profiles characterize feedforward- and feedback-type inputs to a cortical area. By combining magneto-
encephalography (MEG) and biophysical computational neural modeling, we obtained evidence of cross-sensory visual
evoked activity in the human auditory cortex driven by feedback-type input. The finding is consistent with previous intracor-
tical recordings in nonhuman primates. The results illustrate how patterns of MEG source activity can be interpreted in the
context of the hierarchical organization among cortical areas.

Introduction
Activity in sensory cortices is influenced by inputs from other brain
regions via layer-dependent feedforward (FF) and feedback (FB)
connections, which define a hierarchical organization among the
regions (Rockland and Pandya, 1979; Felleman and Van Essen,
1991; Zeki, 2018). In nonhuman primates, the laminar profiles of
early auditory cortex responses have FF-type characteristics,
whereas those of cross-sensory visual evoked activations are of FB
type (for reviews see Schroeder and Foxe, 2005; Ghazanfar and

Schroeder, 2006; Kayser and Logothetis, 2007). Human electro-
and magnetoencephalography (EEG, MEG) studies have revealed
that cross-sensory activations and multisensory interactions can
occur in low-order sensory areas very early, within a few tens ofmil-
liseconds from the stimulus onset (Giard and Peronnet, 1999; Foxe
et al., 2000; Molholm et al., 2002, 2004; Teder-Sälejärvi et al., 2002;
Lakatos et al., 2007; Talsma et al., 2007; Raij et al., 2010). In line with
evidence from studies in other cognitive domains (Polimeni et al.,
2010; Muckli et al., 2015; Kok et al., 2016; Fracasso et al., 2018;
Klein et al., 2018; Finn et al., 2019; Norris and Polimeni, 2019;
Lawrence et al., 2019b), recent high-field functional MRI (fMRI)
studies have shown evidence of FF- and FB-like intracortical depth
profiles of auditory cortex hemodynamic signals (De Martino et al.,
2015; Ahveninen et al., 2016; Moerel et al., 2018, 2019; Wu et al.,
2018; Gau et al., 2020; Chai et al., 2021; Lankinen et al., 2022).
However, detailed neurophysiological analysis and computational
modeling of cross-sensory effects are still lacking in humans.

Biophysically realistic computational models have been used to
investigate laminar connections and cellular and circuit level
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processes of the neurons in detail, and they can also be used to
simulate MEG and EEG signals (Jones et al., 2007; Kiebel et al.,
2009; Sanz Leon et al., 2013; Hagen et al., 2018; Neymotin et al.,
2020). The Human Neocortical Neurosolver (HNN; Neymotin et
al., 2020) provides a cortical column model with FF- and FB-type
inputs targeting different layers. With HNN, the cellular and net-
work contributions to MEG and EEG signals from a source-
localized region of interest (ROI) can be modeled. HNN has
been used to interpret mechanisms of sensory evoked responses
and oscillations in healthy and clinical populations (Jones et al.,
2007, 2009; Ziegler et al., 2010; Lee and Jones, 2013; Khan et al.,
2015; Sherman et al., 2016; Pinotsis et al., 2017; Sliva et al., 2018;
Bonaiuto et al., 2021; Kohl et al., 2022; Law et al., 2022).
Recently, Kohl et al. (2022) showed that sensory-specific auditory
responses in the auditory cortex could be modeled by activating
the neocortical circuit through a sequence of layer-specific FF–
FB–FF inputs, similar to a prior simulation of somatosensory
evoked responses in the somatosensory cortex (Jones et al.,
2007). These results are consistent with studies suggesting
that, in general, early components of sensory-specific evoked
responses are related to FF processes, whereas later compo-
nents reflect FB influences in activity evoked by auditory
(Inui et al., 2006; Kohl et al., 2022), visual (Aine et al., 2003;
Inui and Kakigi, 2006), and somatosensory (Cauller and
Kulics, 1991; Inui et al., 2004; Jones et al., 2007) stimuli. In
the present study, we applied HNN to examine FF and FB
influences in cross-sensory evoked activity.

We investigated visual evoked responses in the auditory cor-
tex by comparing the experimentally observed MEG responses
with simulated source waveforms from a computational model
(HNN). We hypothesized that the cross-sensory visual evoked
response observed with MEG can be explained by FB-type input
to the auditory cortex.

Material and Methods
Subjects. Eight healthy right-handed subjects participated (six

females, age 22–30 years). All subjects gave written informed consent,
and the study protocol was approved by the Massachusetts General
Hospital institutional review board and followed the guidelines of the
Declaration of Helsinki.

Stimuli and experiments. The subjects were presented with noise/
checkerboard and letter stimuli in separate runs while MEG was recorded.
Here we reanalyzed data from the noise/checkerboard experiment used in
our earlier publication (Raij et al., 2010), together with the previously
unpublished data from the letter experiment. Equiprobable 300 ms audi-
tory, visual, and audiovisual (simultaneous auditory and visual) stimuli
were delivered in an event-related design in pseudorandom order. The
auditory noise stimuli were white noise bursts (15 ms rise and decay)
and the visual checkerboard stimuli static checkerboard patterns (visual
angle 3.5° × 3.5° and contrast 100%, with a peripheral fixation crosshair).
The letter stimuli were spoken and written letters of the Roman alphabet
(“A,” “B,” “C,” etc.). The subjects’ task was to respond to rare (10%) audi-
tory, visual, or audiovisual target stimuli with the right index finger move-
ment as quickly as possible. In the noise/checkerboard experiment, the
target stimulus was a tone pip, a checkerboard with a gray diamond pattern
in the middle, or a combination of the two. In the letter experiment, the
target stimulus was the letter “K,” spoken and/or written. Data were
recorded in three runs with different stimulus-onset asynchrony (SOA;
mean 1.5, 3.1, or 6.1 s, all jittered at 1.15 s). There were 375 stimuli per cat-
egory (auditory, visual, and audiovisual): 150 in the short, 125 in the inter-
mediate, and 100 in the long SOA runs. All subjects were presentedwith the
same order of experiments and stimuli. The auditory stimuli were pre-
sented with MEG-compatible headphones, with the intensity adjusted to
be as high as the subject could comfortably listen to. The visual stimuli

were projected onto a translucent screen. The stimuli were controlled using
Presentation 9.20 (Neurobehavioral Systems).

MEG and MRI acquisition and coregistration. MEG was recorded
with a 306-channel instrument with 204 planar gradiometer and 102
magnetometer sensors (VectorView; MEGIN) inside a magnetically
shielded room (Cohen et al., 2002). Simultaneous horizontal and vertical
electro-oculograms (EOG) were also recorded. All signals were
bandpass-filtered to 0.03–200 Hz and sampled at 600 Hz.

Structural T1-weighted MRIs of the subjects were acquired with a
1.5 T Siemens Avanto scanner (Siemens Medical Solutions) and a head
coil using a standard MPRAGE sequence. Cortical surfaces were recon-
structed using the FreeSurfer software (http://www.surfer.nmr.mgh.
harvard.edu; Fischl, 2012).

Prior to the MEG recording, the locations of four small head position
indicator coils attached to the scalp and several additional scalp surface
points were determined with respect to three fiducial landmarks (nasion
and two preauricular points) using a 3-D digitizer (Fastrak Polhemus).
For the MRI–MEG coordinate system alignment, the fiducial points
were first identified from the structural MRIs, and then this initial core-
gistration was refined using an iterative closest-point search algorithm
for the scalp surface locations using the MNE Suite software
(Gramfort et al., 2014; http://www.martinos.org/mne/).

Neural currents underlying MEG signals. Macroscopically, the sources
of MEG and EEG signals can be described in terms of primary currents,
which represent the net effect of active neural currents within a small vol-
ume of the brain (for reviews, see Hämäläinen et al., 1993; Lopes da Silva,
2010; Ilmoniemi and Sarvas, 2019; Supek and Aine, 2019). The same pri-
mary currents contribute to both MEG and EEG, but with different
location- and orientation-dependent weighting. The goal of MEG and
EEG source estimation is to identify the spatiotemporal distribution of
the primary currents. The primary currents can be assumed to be per-
pendicular to the cortex, and thus, their physical orientation depends
on the sulcal and gyral folding patterns. Notably, MEG is insensitive to
the radial component of the primary currents, whereas EEG is sensitive
to sources of all orientations. The primary currents in the auditory cortex
in the superior temporal lobe are mostly tangentially oriented and thus
well suited to be studied by MEG (Gutschalk, 2019). The selective sensi-
tivity of MEG to tangential source components can help to separate
source waveforms from multiple simultaneously active regions, such as
the cross-sensory visual evoked activity in the auditory cortex and the
coinciding widespread occipital activity in the present study.

At the mesoscopic level, the primary currents can be modeled in
terms of postsynaptic intracellular currents within a local neural cir-
cuitry, with the main contribution coming from the vertical (i.e., perpen-
dicular to the cortex) component of intracellular currents within cortical
pyramidal neurons. For symmetry reasons, the net effect of transmem-
brane currents, horizontally oriented intracellular currents, and any cur-
rents within interneurons are expected to largely cancel out (Thio and
Grill, 2023). The direction of the vertical currents in a pyramidal cell
depends on the locations of the synaptic input, whether the input is excit-
atory or inhibitory, the dendritic structure, and the dynamics of the
transmembrane currents and potentials. For example, excitatory synap-
tic input to the upper part (tuft) of the apical dendrite of a pyramidal cell
results in an initial downward current, whereas excitatory input to the
basal dendrites results in an upward current (Linden et al., 2010; Lopes
da Silva, 2010; Ahlfors and Wreh, 2015).

Because FF and FB-type connections into a cortical area have char-
acteristic laminar distributions, FF and FB inputs are expected to result
in MEG/EEG source waveforms reflecting different patterns of upward
and downward intracellular current flow, thereby linking effects at the
mesoscopic and macroscopic spatial scales (Ahlfors et al., 2015).
Considering typical laminar locations of the soma and the dendrites
of pyramidal cells, the FF and FB laminar input patterns can be trans-
formed to characteristic spatial distributions of synaptic inputs into
the cells (Jones et al., 2007). In the present study, we estimated MEG
source waveforms (primary currents) in the auditory cortex and
used HNN to model them as potentially resulting from the sum of
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vertical intracellular currents in response to FF- and FB-type inputs to
the local cortical circuitry.

MEG preprocessing and source estimation. The MEG data were ana-
lyzed using MNE-Python (Gramfort et al., 2013). After excluding channels
and time segments with excessive noise, independent component analysis
was used to identify and remove artifacts related to eyeblinks, eye move-
ments, and cardiac activity. The signals were then low-pass filtered at
40 Hz, and event-related responses were averaged separately for the audi-
tory and visual trials, combining the long, intermediate, and short SOA
runs. After excluding epochs contaminated by artifacts, an average of
368.4 (SD 7.6; noise/checkerboard experiment) and 371.5 (SD 4.7; letter
experiment) epochs per subject remained in response to auditory and
369.0 (SD 5.7; noise/checkerboard experiment) and 371.4 (SD 4.1; letter
experiment) to visual stimulation. In the present study we did not analyze
the audiovisual or target trials. The zero level in each channel was defined as
the mean signal over the 200 ms prestimulus baseline period.

Source activity was estimated at 4,098 discrete locations per hemisphere
on the cortical surface, with an average separation of the source elements
being∼4.9 mm. Each source element was a current dipole oriented normal
to the cortical surface, with the positive direction defined as pointing out-
ward, toward the pial surface (called “upward” in HNNmodeling). For the
forward solution, a single-compartment boundary element model was
used. Forward solutions were first computed separately for the three runs
with different SOAs and then averaged (Uutela et al., 2001). Minimum
norm estimates (MNEs; Hämäläinen and Ilmoniemi, 1994) for the cortical
source currents were calculated (Fig. 1A). Both the gradiometer and the
magnetometer channels were included in the source estimation. We used
depth weighting 0.8 to reduce bias toward superficial currents. For ROI
selection, the MNE values were noise-normalized to obtain dynamic statis-
tical parametric maps (dSPMs; Dale et al., 2000).

ROIs and MEG source time courses. Auditory evoked potentials and
magnetic fields typically have three main deflections: P50-N100-P200 (or
P50m-N100m-P200m for MEG), peaking approximately at 50, 100, and
180 ms, respectively, after the auditory stimulus onset (Picton et al., 1974;
Hari et al., 1980; Hämäläinen et al., 1993). The ROIs were determined
based on the auditory evoked N100m response, because the

signal-to-noise ratio (SNR) of the visual evoked response over the audi-
tory cortex was too low to reliably determine auditory cortex ROIs from
the visual evoked data. We identified functional ROIs for the auditory
cortex in each hemisphere, separately for each subject, based on the
N100m peak of the auditory evoked response. First, anatomically defined
regions were selected using the Destrieux atlas parcellation from
FreeSurfer (Fischl et al., 2004; Destrieux et al., 2010): Heschl’s gyrus,
Heschl’s sulcus, and the lower part of the planum temporale (masked
with the supramarginal gyrus) were combined to cover the primary audi-
tory areas. Then, from these regions the source element with the largest
negative deflection between 60 and 110 ms (except for manually set
105 ms in one subject) in the dSPM source time course was identified.
Using that source element as a seed point, all source elements that had
a magnitude of 30% or more of the peak dSPM value and formed a con-
tinuous area around the seed point were selected. The average number of
selected elements across subjects, hemispheres, and experiments for the
auditory cortex ROIs was 19 (standard deviation, 8.7; range, 3–38). The
same procedure was used to determine also additional control ROIs in
the occipital cortex (V1, V2, and MT based on the FreeSurfer atlas;
Fischl et al., 2008).

The source waveform for an ROI was defined as the sum of the MNE
time courses over the selected source elements. Note that the magnitude
of the response depends on the number of the source elements that were
included in the ROI. Because MNE solution gives a distributed source
estimate across the entire cerebral cortex, only a subset of the source ele-
ments showing estimated activity is within the ROI. Therefore, in gene-
ral, the magnitude is expected to be lower than what would be found by
the use of a single equivalent current dipole to represent the auditory cor-
tex activity (as used, e.g., by Kohl et al., 2022). Although equivalent cur-
rent dipoles are usually well suited to describe auditory evoked responses,
here the use of a distributed source model (MNE) facilitated the extrac-
tion of the cross-sensory visual evoked responses in the auditory cortex
occurring simultaneously with strong widespread activity in the occipital
visual areas.

Neural modeling with HNN. Activity in the auditory cortex evoked
by the auditory and visual stimuli was modeled using HNN (https://
jonescompneurolab.github.io/hnn-core/; Neymotin et al., 2020). HNN

Figure 1. Source estimation and computational modeling of MEG data. A, An example of MEG data. Auditory evoked MEG sensor data (left) in one subject at 50 ms after auditory stimulus
onset (isocontour line step 5.0 fT) are shown with the corresponding noise-normalized MNE (dSPM) source estimate over an inflated cortical surface (middle) and the estimated time course for
the left hemisphere auditory cortex (right, vertical line at 50 ms). B, The HNN model. The MEG response is modeled using a network of neurons in a local cortical area (left). Local network
structure (right) consists of pyramidal cells (blue) and interneurons (orange). Excitatory and inhibitory coupling is indicated by a circle and a bar, respectively. The network is activated by proximal
(red) and distal (green) drives by input spike trains. Modified from Neymotin et al. (2020).
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is a software for simulating neocortical circuits and linking cellular- and
circuit-level physiology to the electrical source currents measured by
MEG and EEG. Thus, HNN allows developing and testing hypotheses
on the neural origins of MEG/EEG signals. The neural currents contrib-
uting to theMEG/EEG signals from a source region aremodeled in terms
of the local network dynamics driven by layer-specific inputs (Fig. 1B).
Simulated MEG/EEG source currents are represented as current dipole
waveforms calculated from the distribution of intracellular currents in
the dendrites of the pyramidal cells. MEG/EEG signals originate mostly
from postsynaptic currents in cortical pyramidal neurons (Hämäläinen
et al., 1993; Okada et al., 1997), and the magnitude and direction of
the source current depends on the type of the synaptic input and its den-
dritic location (Allison et al., 2002; Jones et al., 2007; Linden et al., 2010;
Lopes da Silva, 2010; Ahlfors et al., 2015; Ahlfors and Wreh, 2015), pro-
viding a link between the laminar distribution of synaptic inputs and the
MEG/EEG source waveforms.

In HNN, a local cortical circuit model has a layered structure with
pyramidal neurons whose somata are in the supragranular (layer 2/3)
or infragranular (layer 5) layers and whose dendrites span across the lay-
ers. The model also includes inhibitory interneurons. External input to
the circuit arrives through characteristic layer-specific FF- and FB-type
connections. FF-type inputs consist of proximal drives to the basal den-
drites of the pyramidal cells (assumed to arrive via the middle cortical
layer), whereas FB inputs are represented by distal drive to the apical
dendrites of the pyramidal cells. The model has 100 pyramidal neurons
in each of layers 2/3 and 5; a scaling factor is used to match the simulated
dipole to the magnitude of the recorded evoked response. The parame-
ters of the HNNmodel originate from known anatomical and physiolog-
ical cell properties, and the local connectivity within and between cortical
layers is based on a large body of literature from animal studies (Jones et
al., 2007; Neymotin et al., 2020).

We used HNN to explain the MEG responses to auditory and visual
stimuli by different sequences of FF and FB inputs to the auditory cortex.
Previously, Kohl et al. (2022) used HNN to model auditory evoked
responses in humans, explaining the initial part of the response with a
combination of FF and FB inputs. In the present study, we sought to rep-
licate the sensory-specific findings of Kohl et al. and additionally hypoth-
esized that the cross-sensory visual response can be explained by FB-type
input alone.

We created two main HNN models for event-related activity in the
auditory cortex: one for the response to auditory stimuli and one for
the response to visual stimuli. For the HNN modeling, we averaged the
MEG source waveforms across subjects, hemispheres, and experiments
to improve the SNR of the experimental data. The averaging was justified
by the lack of significant effects of hemisphere or experiment on the peak
magnitudes in linear mixed-effects (LME) model analysis (see below,
Statistical analyses). As a starting point, we used the auditory cortex
model by Kohl et al. (2022) for activity in the right hemisphere evoked
by auditory stimuli presented to the left ear. Because HNN has a large
number of user-defined parameters, we made the following assumptions
to limit the parameter space: (1) only the timing parameters of the FF/FB
spike-train inputs (mean and standard deviation of a Gaussian distribu-
tion) were adjusted, in addition to the overall scaling factor for the sim-
ulated source waveforms; all the other parameters were kept unchanged.
(2) For those other, internal, model parameters, we used the values opti-
mized by Kohl et al. (2022) for sensory-specific auditory evoked
response; here we assumed these values to be the same for the responses
to both visual and auditory stimuli. (3) The simulations were limited to
the time window of 0–130 ms for the auditory and 0–150 ms for the
visual response, to focus on the early part of the responses. All simulated
HNN waveforms were smoothed in the default 30 ms window
(Hamming window convolution).

We first manually adjusted the timing of the FF/FB inputs to achieve
a close initial fit to the MEG responses. Thereafter, we further tuned the
model parameters using Bayesian optimization implemented in
scikit-optimize (gp_minimize function, “expected improvement” as the
acquisition function; Head et al., 2020) for estimating m (mean input
spike timing) and s (temporal distribution of input spikes) for each
model by minimizing the root-mean-square-error (RMSE) between the

simulated signals smodel(t) and the measured signal smeas(t):

�������������������������������
1
T

∑
t

(smeas(t) – c smodel(t))
2

√
,

where the optimal non-negative linear scaling factor is

c = max 0,
∑
t

smeas(t) · smodel(t)/
∑
t

smodel(t)
2

( )
, (1)

and T is the number of time points in the simulated time window. The
bounds for the search space were: for auditory model mFF, 20…50;
mFB, 55…95; mFF2, 90…130; for visual model mFF, 25…55; mFB, 80…120;
for both models sFF, 1…5; sFB, 5…20; sFF2, 5…20.

As HNN has a large number of parameters, it is possible that even
after optimizing our main models, some other combination of parameter
values could explain the waveforms equally well or better. Therefore, we
formed alternative models by varying the number and timing of the FF
and FB inputs.We focused on the comparison of FF + FB versus FBmod-
els for explaining the early part of the MEG activity evoked by auditory
and visual stimuli.

Statistical analyses. To determine whether the magnitudes of the
estimated MEG source waveforms (averaged across experiments and
hemispheres for each subject) were significantly different from zero,
we used t-tests with a threshold p < 0.05 at each of the 150 time points
in the 0–250 ms window. The p-values were Bonferroni adjusted by a fac-
tor of 300 (for the two stimulus types and 150 time points). To evaluate
between-subject consistency of the magnitudes of the largest defections
in the evoked responses in each hemisphere and experiment, the average
value over time points within ±10 ms windows around the peak latencies
were calculated for each subject.

To evaluate whether there were significant effects between hemi-
spheres and experiments in the measured MEG data, we calculated an
LME model for each peak of interest. We applied an LME model with
fixed effects for the hemisphere (left, right) and experiment (noise/check-
erboard, letter) and a random effect for subjects by using the fitlme func-
tion in Matlab with the following model (in Wilkinson notation):

magnitude � 1+ hemisphere+ experiment+ (1|subject). (2)

To evaluate the HNNmodels, we compared the goodness of fit, as quan-
tified by the RMSE between the measured and modeled MEG source
waveforms, with the variability in the estimated MEG source waveforms.
To obtain null distributions, the MEG source waveforms for auditory
and visual evoked responses were resampled by drawing from 32 signals
(8 subjects × 2 hemispheres × 2 experiments) 10,000 times with replace-
ment, and for each resample the RMSE deviation from the average source
waveform was calculated. The same was done for waveforms from 32
simulation runs for each HNN model (FF + FB and FB), and the
RMSE between each of the 10,000 resampled simulations and the average
of the MEG source waveforms was calculated. The distributions of the
RMSE values for each model were compared with the corresponding
experimental MEG null distributions. The model was considered overfit
(RMSE smaller than experimental variability) if the median of its distri-
bution was within the 5th percentile of the MEG null distribution.

Results
MEG source waveforms in the auditory cortex in response to
auditory and visual stimuli
Estimated MEG source waveforms for auditory and visual
evoked activity in the auditory cortex ROIs, averaged over sub-
jects, experiments, and hemispheres, are shown in Figure 2.
The auditory evoked response showed a characteristic biphasic
P50m-N100m waveform, with a positive (upward current,
directed toward the pial surface) peak at 37 ms and a negative
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(downward, toward the white matter) peak at 90 ms after the onset
of the auditory stimuli. These peak latencies are similar to those
reported previously for auditory noise burst stimuli (Hari et al.,
1987). The cross-sensory visual evoked response in the auditory
cortex had a monophasic peak at 125 ms after the appearance of
the visual stimuli. The source magnitudes at the peak latencies
were significantly different from zero (t-test; p<0.05; Bonferroni
adjusted; Table 1). The magnitude of the visual evoked response
was ∼13% of the magnitude of the auditory N100m. The down-
ward direction of the source current for the visual response was
opposite to that of the early auditory P50m response, but the
same as the direction of the prominent auditory N100m.

The estimated MEG source waveforms are illustrated sepa-
rately for the noise/checkerboard and letter experiments in the
left and the right hemispheres in Figure 3. The magnitude of
the auditory N100m was larger for the letter than that for the
noise stimuli in the left hemisphere, but similar in the right hemi-
sphere; this lateralization is expected for responses to phonetic
versus nonverbal stimuli (Gootjes et al., 1999; Parviainen et al.,
2005). The anatomical overlap of ROIs across subjects (Fig. 3,
middle panel) suggested that the prominent auditory evoked
responses originated mostly in the Heschl’s sulcus and the

anterior part of the planum temporale. There were no clear
differences in the location of the ROIs between the noise/
checkerboard and letter experiments; however, for the letter sti-
muli, the location extended to the Heschl’s gyrus in half of the
subjects. The peak latencies of the auditory evoked responses
were similar within a few milliseconds in both experiments.
For the visual evoked response, there was a negative deflection
with the peak latency within the range from 110 to 135 ms in
both experiments in both hemispheres.

Variability of the estimated source waveforms among individ-
ual subjects is illustrated in Figure 4. The magnitudes at the peak
latencies for each subject (Fig. 4, black dots) were submitted to
LME models, separately for each of the three peaks (Table 2).
The LME analysis confirmed the statistical significance of each
peak (intercept p < 0.05) but indicated no significant differences
between the hemispheres or experiments. Since no hemisphere-
or experiment-specific differences were found in the magnitudes
of the MEG source waveforms, we used the grand average MEG
source waveforms (averaged over hemispheres, experiments, and
subjects) in the subsequent HNN modeling.

The observed weak visual evoked activity in the auditory cor-
tex partially coincided with strong activity in occipital visual cor-
tical regions (Fig. 5). The estimated auditory cortex source
waveforms could potentially reflect artifactual spread in the
MEG source estimates due to activity in other cortical regions
responding to the visual stimuli. We examined this possibility
into two ways. First, we observed that the time course of the esti-
mated sources for visual cortex ROIs had prominent deflections
for both the onset (with peak latencies at ∼100 ms) and the offset
(∼400 ms) of the visual stimuli, whereas in the auditory cortex
the response was mainly seen for the onset only (Fig. 5A).
If the onset and offset responses share a common spatial distribu-
tion in the occipital cortex, then also the potential artifactual
spreading to the auditory cortex is expected to be the similar after
the onset and the offset of the visual stimuli. However, this was
not found in the data. Second, the spatial maps of the source esti-
mates for the visual evoked responses had a gap between the weak
auditory cortex activity and the strong occipital cortex activity
(Fig. 5B). Artificial spread would be expected to be spatially uni-
form rather than forming separate foci in the auditory cortex.
These observations argue against the possibility of the cross-
sensory visual evoked response in the auditory cortex to artifac-
tually result from spread from visual cortex.

Neural modeling with HNN
HNN was used to construct computational models for the
observed grand average MEG source waveforms in the auditory
cortex. In accordance with our a priori hypothesis, the main
HNN model for the response to auditory stimuli had a combina-
tion of FF and FB inputs, whereas the main model for the cross-
sensory response to visual stimuli had only FB input (Fig. 6).

Table 1. Peak magnitudes of the MEG source estimates for the auditory and visual
evoked responses in the auditory cortex

Auditory
Visual

P50m N100m N125m

Magnitude ± SD (nAm) 0.24 ± 0.29 −1.8 ± 1.32 −0.24 ± 0.26
t(31) 4.63 −7.67 −5.18
p value 6.3 × 10−5 1.2 × 10−8 1.3 × 10−5

Mean, standard deviation (SD), and statistical significance (t-test; p-values Bonferroni adjusted by the factor of
300) are shown. Negative values indicate downward-directed source current.

Figure 2. MEG source activity in the auditory cortex. The estimated source waveforms in
response to the auditory (blue) and visual (orange) stimuli: mean and standard deviation
(colored shading) across subjects, hemispheres, and experiments. Positive and negative values
correspond to upward and downward cortical currents, flowing in the direction toward the
pial matter and the white matter, respectively. The gray shading indicates time points that
differed significantly from zero (t-test, p< 0.05, Bonferroni adjusted).
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The initial manual tuning values for the Gaussian time distri-
bution of the inputs were µFF = 35 (σFF = 3.0) ms for the FF and
µFB = 75 (σFB = 13.3) ms for the FB input in the auditory model,
and µFB = 105 (σFB = 13.3) ms for the FB input in the visual
model. The initial scaling factor was found to be 53 for the audi-
tory and 5 for the visual simulation, reflecting the large overall
difference in the response magnitudes. These scaling factors are
considerably smaller than those in the work by Kohl et al.
(2022). This was expected because a different method for estimat-
ing the sources was used, as noted in the Materials and Methods.
It is noteworthy that the scaling factor does not affect the HNN
simulation itself but is used to bring the simulation result to the
same scale as the measurement.

Fine-tuning with Bayesian hyperparameter optimization
resulted in only minor adjustments to the timing parameters.
The optimized values were µFF = 35 (σFF = 1.0), µFB = 74 (σFB =
12.6), and scaling factor, 50, in the auditory model, and µFB =
107 (σFB = 18.9), scaling factor, 5, in the visual model (Table 3).
The temporal distributions of the inputs are illustrated in
Figure 6B. For both the auditory responses (P50m-N100m)
and the visual responses (negative deflection peaking at
125 ms), the simulated source waveforms captured the main
features of the experimentally observed MEG results (Fig. 6A).

Further insights to the generation of the source currents can
be obtained by plotting separately the contributions from layer
2/3 and in layer 5 pyramidal cells (Fig. 6C) and the sequences
of the spiking activity of the four cell types included in the
HNN model (Fig. 6D). The simulated source waveforms in
Figure 6A are the sums of the layer 2/3 and layer 5 currents. In
the model for the auditory evoked response, the FF input was

Figure 3. MEG source waveforms in the left and right hemisphere auditory cortex in response to auditory and visual stimulation, shown separately for the noise/checkerboard and letter
experiments. The source waveforms were averaged over subjects. The locations of the functional ROIs morphed to common anatomical space (“fsaverage” from FreeSurfer) are shown in the
middle; the color bar indicates how many subjects’ individual ROIs overlapped at each cortical location. The black lines illustrate the Heschl’s gyrus (anterior), Heschl’s sulcus (middle), and part of
planum temporale (posterior).

Figure 4. Individual variability of the estimated MEG source waveforms. A, Noise/check-
erboard experiment. B, Letter experiment. Continuous lines and shading, mean ± standard
deviation across subjects; black dots, response magnitudes for individual subjects, calculated
as the average over ±10 ms time windows around the peak latencies in the grand average
data. LH, left hemisphere; RH, right hemisphere.

Table 2. LME model p-values for the magnitude of the peaks in the MEG source
waveforms

Auditory
Visual

P50m N100m N125m

Intercept 0.042 4.7 × 10−8 3.6 × 10−5

Hemisphere 0.34 0.41 0.22
Experiment 0.14 0.26 0.72

No significant effects of hemisphere (left vs right) or experiment (noise/checkerboard vs letter) were found, but
the intercept was significant for each peak.
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assumed to arrive through the middle cortical layer and then
excite the basal dendrites of the pyramidal cells in both layers
2/3 and 5 (Fig. 6C, left). The net result of the FF input was an ini-
tial upward (positive) peak. The subsequent arrival of the FB
input to the distal parts of the apical dendrites of the pyramidal
cells resulted in the reversal of the net current to be downward
(negative). These results for sensory-specific auditory responses
are consistent with Kohl et al. (2022), who reported µFF (σFF) =
47 (3.0) ms and µFB (σFB) = 81 (13.3) ms for the first two inputs
for the auditory evoked response. In the model for the cross-
sensory visual evoked response in the auditory cortex, the FB
input arriving distally drove the net source current downward
within the apical dendrites of both layer 2/3 and layer 5 pyrami-
dal cells (Fig. 6C, right). In both the auditory and the visual
evoked response, the net current in layer 5 was negative.
However, the current in layer 2/3 stayed initially positive for
the auditory but not for the visual evoked response.

As HNN has a large number of parameters, it is possible that
our chosen models are not the only ones that can reproduce the

experimentally observed MEG source waveforms. However,
HNN can serve us as a valuable hypothesis testing tool for testing
different models. Alternative models with different combinations
of FF and FB inputs are shown in Figure 7, and the corresponding
optimized HNN parameters are listed in Table 3.

For the auditory evoked responses, inclusion of a later second
FF input to the model had only little effect on the simulated
source waveforms within the 0–130 ms time window (A: FF +
FB + FF2 vs A: FF + FB; Fig. 7A). Removing the initial FF input,
however, resulted in a notable difference in the early part of
the response (A: FB, 30–80 ms), during which the first upward
deflection (P50m) was seen in the MEG data. Models with FF
alone (A: FF, V: FF) could not produce the shape of the promi-
nent negative deflections in the measured MEG response wave-
forms. For the FF only models, the optimization procedure
resulted in “0” for the optimal non-negative scaling factor, imply-
ing that a flat line would give an equally small RMSE for the
responses as any source waveform generated by an FF input
alone. The rightmost column in Figure 7 shows the FF models

Figure 5. Evaluation of potential artifactual spatial spread in the estimated MEG source activity from visual cortex to the auditory ROIs. A, Source time courses (MNE, averaged across subjects
and experiments) in response to visual stimuli for occipital areas V1, V2, MT (green), and the auditory cortices (V AC, orange). B, Spatial maps of the MNE source estimate for the visual evoked
activity at the time of the largest peak in the response to visual stimuli in the auditory cortex.
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Figure 6. HNN simulations of the auditory cortex activity in response to auditory (left) and visual (right) stimuli. A, Simulated source waveforms (gray) overlaid with the experimentally
observed grand average MEG source waveforms (blue, auditory; orange, visual). Simulated waveforms with the optimized (thick gray, average; thin gray, 10 individual simulation runs) model
parameters are shown. B, Histograms of the timing of the inputs sampled from a Gaussian distribution with a model-specific mean and standard deviation (red, FF; green, FB). C, Layer-specific
contributions to the simulated source waveforms after optimization (green, layer 2/3; purple, layer 5; gray, 10 respective individual simulation runs). Positive values correspond to upward
(toward pial surface) and negative values to downward (toward white matter) flowing intracellular currents within the model pyramidal cells. D, Spiking activity of the pyramidal and basket
cells in layers 2/3 and layer 5 (10 simulation runs).
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scaled up to illustrate the mostly positive magnitude shape of the
waveform.

For the visual evoked response, the difference between models
with and without an FF input (V: FF + FB vs V: FB) was most
pronounced in the early part (30–80 ms) of the simulated source
waveforms (Fig. 7B). As expected, the V: FF + FB, which has
more free parameters, gave a slightly better fit to the measured
MEG signal than V: FB. However, considering the magnitude
of the response with the baseline noise level (Fig. 2) suggests
that the additional FF input in the model for the response to
the visual stimuli may be explaining merely noise in the data
(overfit).

We evaluated the FF + FB and FB models statistically by com-
paring their RMSE values with the MEG null distributions

(Fig. 8). Variability in the resampledMEG responses is illustrated
in Figure 8A. The resampled simulated source waveforms for the
FF + FB and FB models, together with the MEG average, are
shown in Figure 8B. The histograms of RMSE between the
resampled simulations and the MEG average are shown in
Figure 8C, overlaid with the MEG null distribution (i.e., the
RMSE between the resampled MEG signals and their average).
The median RMSE of the auditory FB model was just within
the 95th percentile of the MEG null distribution (median
RMSE for FB = 0.11; 95th percentile of MEG null distribution
= 0.26). Adding the FF drive improved the model fit, but it did
not overfit, staying above the 5th percentile (median RMSE for
FF + FB = 0.078; 5th percentile of MEG null distribution =
0.052). The visual FB model provided a good fit, with the median
RMSE being above the 5th but below the 95th percentile of the
MEG null distributions (median RMSE for FB, 0.023; 5th and
95th percentiles of MEG null distribution = 0.018 and 0.060,
respectively). However, the visual FF + FB model was within
the 5th percentile (median RMSE for FF + FB = 0.017), suggest-
ing an overfit to the data. To summarize, including the early FF in
the model improved the fit in the auditory case but resulted in
model overfit in the visual case. Thus, these results support our
main hypothesis that the cross-sensory visual response can be
explained with just FB input to the auditory cortex.

Discussion
The MEG data indicated a cross-sensory event-related response
in the auditory cortex, peaking at ∼125 ms after the appearance

Figure 7. Alternative models for auditory (A) and visual (B) responses. The main models (auditory, FF + FB, and visual, FB) are framed. The experimentally observed MEG source waveforms
(blue, auditory stimulus; orange, visual stimulus) are overlayed with the simulated waveforms (thin gray, 10 individual simulation runs; thick gray, average of the individual runs). Histograms
below the waveforms show the temporal distribution of FF (red) and FB (green) inputs to the HNN model of the auditory cortex neural circuit. In rightmost column, FF only simulations are
additionally scaled (auditory ×100, visual ×15) to illustrate their waveforms compared with the MEG signal: However, the optimal non-negative scaling factor in these cases was actually 0
(dashed line).

Table 3. Optimized HNN parameters for auditory and visual models

Model mFF (sFF) mFB (sFB) mFF2 (sFF2) Scaling RMSE

A: FF + FB + FF 35 (1.0) 76 (14.7) 90 (15.2) 60 0.15
A: FF + FB 35 (1.0) 74 (12.6) - 50 0.23
A: FB - 81 (18.0) - 42 0.22
A: FF 35 (2.9) - - 0 0.73
V: FF + FB 44 (1.0) 101 (15.1) - 6 0.041
V: FB - 107 (18.9) - 5 0.042
V: FF 40 (2.9) - - 0 0.087

The mean m and standard deviation s (milliseconds) describe the temporal distribution of the inputs. The scaling
factor was used to match the simulated waveform to the experimentally observed evoked response waveform.
RMSE, root-mean-square error calculated between simulated and measured waveform. The main models are
highlighted in bold.
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Figure 8. Evaluation of the model fit for auditory (left panels, blue) and visual (right panels, orange) models. A, Resampled MEG source waveforms; the black line shows the average of the
resamples. B, Resampled simulations for the FF + FB and FB models (in color), together with the MEG average (black). C, Histograms of the MEG null distributions, calculated as the RMSE
between the resampled simulations and the MEG average source waveforms, superimposed with histograms of the RMSE for the HNN models. The histograms are visualized as kernel density
plots (continuous probability density curve). The vertical dashed lines indicate the 5th and 95th percentiles of the MEG null distributions.
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of the visual stimuli. The direction of the estimated source cur-
rent for this response was the same as that for the auditory
N100m response, pointing downward, toward the white matter.
The main shape of the visual evoked response waveform could be
reproduced by an HNN model with FB-type input. In contrast,
for the biphasic P50m-N100m auditory evoked response, a
model with both FF and FB inputs were needed, as reported pre-
viously (Kohl et al., 2022). The experimental and modeling
results are consistent with the hypothesis that cross-sensory
visual input to the auditory cortex is of FB type (Schroeder and
Foxe, 2002).

Characterization of cross-sensory visual evoked activation in
auditory cortex
Recently, Kohl et al. (2022) presented an HNN model with a
sequence of FF and FB inputs explaining several properties of
auditory evoked responses in the auditory cortex. With only
minor adjustments to the input timings and the overall scaling,
the model could be adapted to explain the MEG source wave-
forms for the auditory evoked responses observed in the present
study. A sequence of FF–FB (and –FF) inputs has been shown to
model well also somatosensory responses in the somatosensory
cortex (Jones et al., 2007). In contrast, to explain the early part
of the cross-sensory visual response in the auditory cortex, we
found that a model with FB input only, without a preceding FF
input, was adequate. Models with only FF input failed to repro-
duce the prominent negative deflections in the MEG source
waveforms. Thus, FB inputs appear to have an essential role in
the generation of the evoked responses, as has also been con-
cluded previously from studies using dynamic causal modeling
(see Garrido et al., 2007).

The FB-type characteristics in response to visual stimuli are
consistent with previous primate electrophysiological studies
(Schroeder and Foxe, 2002). Multicontact electrode recordings
in the macaque have shown early activity in the granular (mid-
dle) layer of auditory cortex in response to auditory stimuli, sug-
gesting FF-type input, whereas cross-sensory visual evoked
activity appeared first in supra- and infragranular layers, consis-
tent with FB-type characteristics (Schroeder and Foxe, 2002).
Similar laminar properties in the auditory cortex have also
been seen in human fMRI studies (Gau et al., 2020; Chai et al.,
2021; Lankinen et al., 2022). In the high-field laminar fMRI study
of Lankinen et al. (2022), in which we used the same stimuli as in
the noise/checkerboard experiment of the present MEG study,
blood oxygenation level dependent signal depth profiles in the
auditory cortex showed different curvature for auditory versus
visual stimuli, consistent with the hypothesized FF- versus
FB-type input patterns.

There are several possible neural pathways for the visual
information to reach the auditory cortex. Anatomical tract-
tracing studies in nonhuman primates have demonstrated ana-
tomical pathways from V2 and prostriata to nonprimary audi-
tory areas (Cappe and Barone, 2005; Smiley and Falchier, 2009;
Falchier et al., 2010), but not from low-level visual areas to pri-
mary auditory cortex. Another possible pathway is through
higher-level auditory association areas or polysensory regions,
such as superior temporal gyrus or sulcus, which receive input
from visual areas and then project that to the auditory cortex
as a FB-type laminar pattern (supragranular layers) (Cappe
and Barone, 2005; Smiley and Falchier, 2009). In addition, several
thalamic, limbic, and cortical association areas have multisensory
responses and could mediate cross-sensory inputs to auditory
cortex (Smiley and Falchier, 2009). The relatively long latency

of the visual response observed here is consistent with what
would be expected from input from polysensory areas such as
the superior temporal sulcus (Foxe and Schroeder, 2005).
However, the present analyses focused on activity within audi-
tory cortex only and thus did not attempt to identify the origin
of the inputs. That type of information could be deduced, for
example, from Granger causality measures between estimated
source waveforms in multiple cortical areas (Milde et al., 2011;
Michalareas et al., 2016; Gow et al., 2021). Another way to trace
the possible pathways of the visual information to auditory cor-
tex would be to use repetitive transcranial magnetic stimulation
to temporarily suppress local brain activity, thus enabling causal
inferences.

Electrophysiological studies in primates have shown different
characteristics for visual and somatosensory cross-sensory inputs
to the auditory cortex: FB type for visual input to auditory asso-
ciation and primary cortices (Lakatos et al., 2009) and somato-
sensory input to primary auditory cortex (Lakatos et al., 2007),
but FF type for somatosensory input to auditory association cor-
tex (Schroeder and Foxe, 2002). The role of different types of
cross-sensory inputs to the auditory cortex may have important
implications to theories of multisensory processing. FB-type
inputs are commonly associated with modulatory influences,
whereas FF-type inputs are more directly related to active sensory
processing (Giard and Peronnet, 1999; Molholm et al., 2002;
Schroeder and Foxe, 2005; Smiley and Falchier, 2009;
Ahveninen et al., 2024). In the present study, however, we only
examined responses to stimuli presented in a single sensory
modality at a time, and the cortical circuit was assumed to be
in a quiet state when the input arrived; thus, our model did not
address modulation of ongoing or multisensory activity.

Complementary approaches to noninvasive detection of FF
and FB processes
The present approach of combiningMEG and cellular-level com-
putational modeling complements other noninvasive methods
for studying the organization of cortical processes in the human
brain. The millisecond-scale time resolution of MEG and EEG
allows the investigation of fast dynamics of brain activity, which
is not attainable with hemodynamic fMRI. High-field fMRI,
however, can provide laminar-level spatial resolution for making
inferences about FF and FB activity (De Martino et al., 2018;
Norris and Polimeni, 2019; Lawrence et al., 2019a). With certain
strong assumptions about the location and extent of the spatial
distribution, layer-specific source localization in MEG has also
been demonstrated (Bonaiuto et al., 2018a,b). FF/FB influences
can also be inferred from directed connectivity measures for
MEG source estimates at specific frequency bands (Michalareas
et al., 2016). Although we here used MEG to measure brain activ-
ity, the present analysis and modeling approaches would be
applicable also to the more widely available EEG.

The present results also support the view that the direction of
MEG source currents can be useful for inferring information
about the hierarchical organization of cortical processing
(Ahlfors et al., 2015). In particular, FB-type input to the supra-
granular layer, with excitatory synaptic connections to the distal
part of the apical dendrites of pyramidal cells, is likely to be a
major contributor to the downward-directed MEG source cur-
rents (Lopes da Silva, 2010; Ahlfors and Wreh, 2015). There
was a general correspondence between the source direction and
the type of input in the HNNmodel: the upward-directed source
current during the auditory P50m response was associated with
FF input in HNN, whereas FB inputs were needed to model
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the downward source currents during the auditory N100m and
the visual response peaking at 125 ms. A close relationship
between the direction of MEG source currents and FF- versus
FB-type inputs has also been found in HNN modeling of soma-
tosensory response in the primary somatosensory cortex (Jones
et al., 2007). Furthermore, the direction of the MEG source cur-
rents in inferior occipitotemporal cortex has been found to
reverse between two experimental conditions for which a cogni-
tive neuroscience theory for visual object recognition predicted
FF versus FB inputs to the area (Ahlfors et al., 2015).

Limitations of the current study
Localizing weak cross-sensory visual evoked activity in the audi-
tory cortex is challenging because of potential long-range inter-
ference in the MEG source estimates from coinciding occipital
cortex activity. In the present study, however, both the shape of
the time courses and the patterns in the spatial distributions of
the source estimates (Figs 5, 6) suggested that it was unlikely
that the visual evoked activity in the auditory cortex was due to
artifactual long-range cross talk caused by spatial spread in the
source estimates. Short-range spread in the source estimates
can also confound the interpretation of the source waveforms.
If the true location of the visual responses were not within the
auditory cortex ROI but, for example, in the opposite side of
the superior temporal gyrus, the source direction could become
incorrectly identified. Combining MEG with high-resolution
fMRI could help to confirm the location of the activity. As the
MEG signals are mainly due to source currents oriented normal
to the cortex (Hämäläinen et al., 1993), the individual anatomy of
a subject can affect the resulting source estimates through cortical
folding and signal cancellation/superposition depending on the
local geometry of the cortex (Mosher et al., 1993; Ahlfors et al.,
2010). For example, a greater degree of cortical folding, and
thus possible signal cancellation, in the left auditory cortex can
result in bias toward stronger responses in the right hemisphere
(Shaw et al., 2013), and the orientations and strengths of equiv-
alent current dipoles can vary substantially between subjects in
the auditory cortex (Edgar et al., 2003). Thus, the average source
waveforms give information only about the most prominent fea-
tures in a typical response. It is also possible that there was simul-
taneous activity in multiple auditory areas in the supratemporal
plane. Most of the individual subjects’ ROIs were located directly
at the primary auditory regions, at or near the at Heschl’s sulcus,
whereas Schroeder and Foxe (2002) recorded from an auditory
association area just posterior to primary auditory region in
the macaque. In nonhuman primates, FF-type patterns are typi-
cal throughout the core and belt regions of auditory cortex
(Schroeder et al., 2001). Without further data, for example, intra-
cranial recordings, it is difficult to conclusively resolve the exact
locations of the sources of the observed cross-sensory MEG
response.

In biophysical computational neural modeling, one has to
find a balance between the complexity associated with a large
number of adjustable parameters and the simplified representa-
tions of the cortical circuitry. We used neural circuit parameters
of the pre-tuned HNN model for auditory evoked responses in
the auditory cortex by Kohl et al. (2022) and only adjusted a small
number of selected parameters, focusing on the timing of the FF
and FB inputs. Given the limited SNR of the experimental source
waveforms, we did not attempt to vary the neural connectivity
parameters. We cannot exclude the possibility that there could
be some combinations within the high-dimensional parameter
space that could explain the responses with a very different

circuit model than the one reported here. Useful for future stud-
ies, it has been recently demonstrated that combining
simulation-based inference to HNN modeling can help in
parameter estimation (Tolley et al., 2023).

We modeled only one local region (auditory cortex) receiving
one-directional external inputs. Avenues for future research
could include connecting other areas of interest to the network,
calculating directed (effective) connectivity measures between
cortical areas, and combining complementary information
from MEG/EEG data with layer-specific fMRI to build a more
detailed picture of the FF and FB influences.

Conclusions
The combined MEG and HNN modeling results support the
hypothesis that cross-sensory visual input to the auditory cortex
is of FB type. The results also illustrate how the dynamic patterns
of the estimated MEG source activity can provide information
about the characteristics of the input into cortical areas in terms
of hierarchical organization.
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