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ABSTRACT: The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in
predicting protein−protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In
this study, we introduce PeSTo-Carbs, an extension of PeSTo specifically engineered to predict protein−carbohydrate binding
interfaces. We evaluate the performance of this approach using independent test sets and compare them with those of previous
methods. Furthermore, we highlight the model’s capability to specialize in predicting interfaces involving cyclodextrins, a biologically
and pharmaceutically significant class of carbohydrates. Our method consistently achieves remarkable accuracy despite the scarcity of
available structural data for cyclodextrins.

■ INTRODUCTION
Carbohydrates are the primary source of energy for all
organisms.1 Studying protein−carbohydrate interactions are
essential to understanding many fundamental biological
processes. Carbohydrates form interaction interfaces with
various proteins in metabolic pathways, but studying these
interactions through experimental techniques can be challeng-
ing due to their weak binding affinities.2 Now, with the
availability of large data sets containing experimentally solved
protein−carbohydrate complexes3,4 and the rapid development
of machine learning methods to learn from these data, there is
a motivation for developing computational methods to study
protein−-carbohydrate interactions.
In recent years, researchers have exploited various computa-

tional methods to study protein−carbohydrate interactions.
These methods have mainly used structure-based, sequence-
based, and homology-based approaches to predict protein−
carbohydrate binding sites.5 Taroni et al. made the first effort
in this direction, which predicted the binding sites through
structural analysis of protein−carbohydrate complexes in the
Protein Data Bank.6 Later iterations of structure-based
approaches involved various methods like docking,7 empirical
analysis,8 and energy-based analysis.9 The latest advancement
in structure-based methodologies by Canner et al.10 introduced

two deep learning models, CAPSIF:Voxel (CAPSIF:V) and
CAPSIF:Graph (CAPSIF:G). CAPSIF:V employs a 3D
voxelized approach to encode the β-carbon (Cβ) of each
residue into a voxel, enabling binary classification to determine
the presence of a carbohydrate binding site within each voxel.
On the other hand, CAPSIF:G leverages an equivariant graph
neural network (EGNN), where the nodes of the graph
correspond to the Cβ atoms of individual residues and edges
link neighboring residues within a 12 Å radius.
Various sequence-based methods have also been developed,

incorporating evolutionary information obtained from the
position-specific scoring matrix (PSSM). Since the inception of
the first sequence-based method by Malik and Ahmad in
2007,11 various methods incorporating modern machine
learning algorithms have been developed. Taherzadeh et al.
developed a support vector-based prediction model called
SPRINT-CBH.12 SPRINT-CBH is based on PSSM and
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additional properties like solvent accessible surface area
(SASA), secondary structure (SS), hydrophobicity, protein
disordered region, etc. Gattani et al. developed a stacking-
based model called StackCBPred13 incorporating various
features like PSSM, SASA, SS, physiochemical properties, etc.
More recently, MTDsite read sequence-based features using
LSTM to predict binding sites with DNA, RNA, carbohydrate,
and peptide.14

With the advent of AlphaFold,15 predicted protein structures
from sequence information became reliable. As the prediction
of the structure from sequence keeps improving, it creates an
opportunity to revisit structure-based tools for predicting
protein interfaces with other molecules. Various methods for
protein interaction prediction combining geometric deep
learning16 with transformers17,18 have been developed recently.
One such structure-based deep learning approach is the
Protein Structure Transformer (PeSTo), a protein interface
prediction method built on a geometric transformer.19 PeSTo
can predict protein interaction interfaces with other proteins,
nucleic acids, ions, ligands, and lipids with high confidence.
PeSTo is a geometric transformer that directly acts on protein
atoms which are described only using the coordinates and
atomic element information with no requirement for physical
parameters like mass, charge, and hydrophobicity. Therefore,
this approach does not require any preprocessing of the
structures, making it straightforward to apply to other tasks.
Importantly, since PeSTo was already trained to predict
various ligand binding interfaces with proteins including some
carbohydrates, we set out to extend and specialize it for
carbohydrate binding interface prediction.
Here, we introduce PeSTo-Carbs, an extension of PeSTo

trained to predict protein−carbohydrate interacting interfaces.
We present two models for PeSTo-Carbs. PeSTo-Carbs
General (PS-G) is a versatile model optimized to predict a
broad spectrum of protein−carbohydrate interfaces, encom-
passing various carbohydrate types and their biologically
significant derivatives, such as amino sugars, azide sugars, N-
linked glycans, etc. PS-G demonstrates impressive perform-
ances on a comprehensive test data set of 343 subunits.
Additionally, we provide PeSTo-Carbs specialized (PS-S),
tailored for more specific predictions by training on non-
homologous protein structures associated with only 21 types of
carbohydrate monomers. We tested PS-S on an independent
test set of 90 high-resolution subunits from Canner et al.,10

demonstrating state-of-the-art performance compared to
previously developed structure-based methods. The perform-
ance of both our models is consistent and comparable across
data sets.
Further, to showcase the flexibility of our method, we also

trained the PS-G to differentiate protein−cyclodextrin
interfaces specifically alongside protein−carbohydrate com-
plexes. Cyclodextrins have been shown to stabilize proteins in
liquid and dry states and inhibit the aggregation of proteins by
protecting hydrophobic regions of the peptides in their apolar
central cavity.20 This makes cyclodextrins important molecules
with various applications in pharmaceutics, drug delivery, and
chemical industries.21,22 Despite the limited data on protein−
cyclodextrin complexes in the Protein Data Bank, the method
demonstrated a promising performance in predicting protein-
cyclodextrin binding interfaces.

■ METHODS
The Protein Structure Transformer (PeSTo)19 architecture is
able to accurately predict protein binding interfaces with many
types of molecules such as proteins, nucleic acid, ions, small
molecules, and lipids. Therefore, it is an ideal choice of
approach for the predictions of protein binding interfaces with
carbohydrates.
PeSTo takes as input structures represented as an atomic

point cloud described by the coordinates and the atomic
element. It does not require any parametrization and can be
easily applied to any structure. At the core of the PeSTo
architecture is the geometric transformer19 (GT). The
geometric transformer operation possesses crucial properties:
it is translation-invariant and rotation-equivariant and
independent of the order of atoms and interactions. This key
operation updates the state of each atom by considering the
local geometry and the state of atoms within a predefined
neighborhood, defined by a set of nearest neighbors (nn). The
state of each atom is represented by a scalar state (q) and a
vector state (p), while the geometry is characterized by
pairwise distances (D) and normalized displacement vectors
(R). When the number of atoms in a structure is fewer than
the number of nearest neighbors, the additional, non-existent
interactions are directed to a sink node with both scalar and
vector states set to zero. In the PeSTo architecture, each layer
(l) of geometric transformer process and propagate the scalar,

Figure 1. Architecture of PeSTo-Carbs for the prediction of protein−carbohydrate binding interfaces. The model consists of several layers of
geometric transformers with a fixed number of nearest neighbors (nn) and residual connections. The structure is transformed into a residue
representation using a transformer-based geometric pooling. The residue states are then condensed, and a multilayer perceptron (MLP) is
employed to generate the final prediction.
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vector, and geometrical information on the structure as
described in eq 1.
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The geometric transformer leverages the attention mecha-
nism based on the queries, keys, and values approach17 as
described in eqs 2 and 3. The queries for the scalar and
vectorial tracks (Qq,Qp) are derived from the state of central
atom i (qi,pi). The keys (K) are encoded from the interactions
of the central atom i with its neighboring atoms j,
encapsulating the states of the central atom, the neighboring
atom, and their spatial relation ( { }q p q p D R, , , , ,i
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Scalar value vectors (Vq) and vector value vectors (Vp) are,
respectively, extracted from the computed scalar and vector
quantities of these interactions. The transformer allows a
flexible linear composition of the vector features and states
such that the resulting vector state is equivariant to a rotation
of the input vector. The attention is done over multiple heads
and projected using learned weights for the scalar and vector
tracks (Wq

l ,Wp
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Deep learning architecture. We employ a scaled-down
version of the PeSTo19 architecture for the training of PeSTo-
Carbs, aiming to prevent overfitting in the context of limited
data. First, we use a three-layer neural network to convert one
hot encoding of the atom element into a scalar state size of 32.
The initial vector state is initialized to a zero state. Then 24
geometric transformers are applied in series, each having two
attention heads, a key size of 3 and a neighborhood of 8 to 64
nearest neighbors as illustrated in Figure 1. Integrating residual
connections among geometric transformers allows us to train
deeper neural network architectures, while mitigating the
vanishing gradient problem. Lastly, a four-headed self-attention
within each residue aggregates the atomic-level encodings into
a residue description. A three-layer neural network decodes the
residue-level scalar and normed vector states to predict the
binding interfaces using a sigmoid activation function.

Data set. PeSTo-Carbs was trained, validated, and tested
on protein−carbohydrate complexes collected from the
Protein Data Bank (PDB).3 We collected all biological
assemblies containing carbohydrates and their derivatives
(see Supporting Information Table S1) and clustered the
subunits using a maximum of 30% sequence identity between
clusters. For PS-G, the training, validation, and testing data sets
contain 5251, 408, and 343 subunits, respectively. All of the
subunits in the test data set have a resolution of less than 3 Å.
Similarly, we collected biological assemblies containing
protein−cyclodextrin complexes from the PDB. The training,
validation, and testing data sets contain 138, 12, and 16
subunits for protein−cyclodextrin complexes, respectively. All
performance scores and examples in this work are obtained
from the test set.
For PS-S, we selected only the high-resolution (<3 Å),

nonhomologous subunits, which gave us 1082 and 98 subunits
for our training and validation data sets. To benchmark PS-S,
we collected an independent test data set of 90 high resolution
subunits derived from Canner et al.;10 this data set is
represented as TS90. We ensure that there are no structures

in TS90 with more than 30% sequence identity with the
training data set.

Structure processing. Every model of the structure is
loaded together into one entity. To distinguish them,
nonpolymer chemical molecules are given unique chain
names for their separate subunits. Water molecules and
hydrogen atoms are eliminated from the structures. In the
data set, cyclodextrin subunits are labeled distinctively from
other glucopyranoses.

Features and labels. The input structures are described
by using the atomic elements, a matrix representing the
pairwise distances between atoms, and the pairwise normalized
relative displacement between atoms. We restrict the atomic
element information to the 30 most common elements and
represent them using one-hot encoding. The models work
effectively without atom parametrization and can accommo-
date incomplete molecular structures.
The models aim to predict the residues that are in contact

with the carbohydrates. We define an interacting interface
between proteins and carbohydrates using a 4 Å cutoff
distance: amino acids within 4 Å of a carbohydrate are
considered to be in contact. This cutoff aligns with known
stacking interactions between proteins and carbohydrates,
falling within the 3.3−4 Å range.23

Training. Both models with the same architecture were
trained on interfaces between proteins and carbohydrates. We
employed binary cross-entropy loss (BCE)24 as the objective
function for the model. Adaptive Moment Estimation
(Adam)25 was used as the optimizer with a learning rate of
1 × 10−4. Furthermore, we assigned a weight of 0.9 to the
positive label in the loss function to account for the class
imbalance in our data set.

Evaluation. PeSTo-Carbs’ performances for both protein−
carbohydrate and protein−cyclodextrin interfaces were eval-
uated on the test data sets as mentioned previously. The
performance of our method is assessed by the area under the
receiver operating characteristic curve (ROC-AUC), Matthews
correlation coefficient (MCC), Dice coefficient, and F1 score,
along with various other metrics (see Supporting Information
Table S2).

■ RESULTS AND DISCUSSION
Structures with protein−carbohydrate and protein−cyclo-
dextrin interfaces were extracted from the PDB.3 The models
are trained to predict the residues that could be part of the
interface and flagged upon training as 0 (i.e., the residue is not
at a protein−carbohydrate interface) or 1 (i.e., the residue is at
an interface). On prediction, the farther the value is from 0.5,
the higher the confidence. The two models of PeSTo-Carbs are
trained on different sets of carbohydrates (see Methods for
details).
PeSTo-Carbs general (PS-G) is evaluated on 359 (with 343

carbohydrates and 16 cyclodextrins) randomly selected chains
while ensuring that the sequence identity between the training
and test sets was less than 30%. The method achieved a
median receiving operating characteristic (ROC) (Supporting
Information (SI) Figure S1) area under the curve (AUC) of
0.915 with a balanced accuracy of 0.823 and precision-recall
(PR) area under the curve (AUC) of 0.542 (SI Figure S2) for
protein−carbohydrate interfaces. To showcase the flexibility of
the method, we also trained the model to differentiate
protein−cyclodextrin interfaces, specifically alongside pro-
tein−carbohydrate complexes. For protein−cyclodextrin inter-
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faces, the model achieved a ROC-AUC of 0.849 (SI Figure S1)
with a BACC of 0.782 and a PR-AUC (SI Figure S2) of 0.282,
showing promising performance for potential applications even
with limited data availability. All of the evaluation metrics for
the model are shown in Table 1.

To illustrate the performance of the method, Figure 2 shows
the prediction of PS-G at the predicted interface with
carbohydrates or cyclodextrin for some selected structures.
Panels a−c of Figure 2 show the prediction on bacterial solute
receptor AcbH complexed with β-D-galactopyranose26 (PDB:
3OO6), GH10 endo-b-1,4-xylanase (XynB) from Xanthomonas
axonopodis complexed with xylotriose27 (PDB: 4PN2), and the
α-amylase from Malbranchea cinnamomea complexed with α-D-
glucopyranose28 (PDB: 3VM7), respectively. It also correctly
ignores noncarbohydrate binding sites, such as those with ions,
demonstrated in Figure 2b,c. For the α-amylase protein
(Figure 2c) the model identifies N161 as a carbohydrate-
binding site, aligning with its known status as an N-
glycosylation site. This suggests the potential of the model
for identifying glycosylation sites as well. In the case of the
glucose-dependent insulinotropic polypeptide29 (PDB:
2QKH), we show that the model can predict specifically
cyclodextrin binding; see Figure 2d,e. In this case, the model
predicts binding with cyclodextrin but not with other
carbohydrates.
We also trained a version of PeSTo-Carbs specialized (PS-

S), following the same set of carbohydrates as CAPSIF,10 on
21 types of carbohydrate monomers, to create a model for

Table 1. PeSTo-Carbs (PS-G) Benchmarking Results for
Protein−Carbohydrates and Protein−Cyclodextrin Binding
Interface Prediction

Evaluation metric Protein−carbohydrate Protein−cyclodextrin

TPR 0.713 0.655
TNR 0.934 0.909
PPV 0.365 0.278
ACC 0.922 0.897
BACC 0.823 0.782
NPV 0.984 0.980
MCC 0.475 0.381
F1 0.483 0.390
PR-AUC 0.542 0.282
ROC−AUC 0.915 0.849

Figure 2. Examples of protein−carbohydrate (a−d) and protein−cyclodextrin (e) interface predictions using PeSTo-Carbs. The model is applied
to the protein structure alone. The confidences of the predictions are shown with a gradient of color from blue for non-interfaces to red for
interfaces. The carbohydrates (yellow) and other small molecules (green) are subsequently added to assess the quality of the prediction visually. (a)
Bacterial solute receptor AcbH complexed with β-D-galactopyranose (GAL) (PDB ID: 3OO6). (b) Xylanase (XynB) complexed with β-D-
xylopyranose (XYP) and calcium ion (Ca) (PDB ID: 4PN2), (c) α-Amylase complexed with α-D-glucopyranose (GLC) and calcium ion (Ca). The
structure also contains a possible N-glycosylation site at Asn161 (PDB ID: 3VM7). Predicted protein−carbohydrate (d) and protein−cyclodextrin
(e) for the glucose-dependent insulinotropic polypeptide and receptor in complex with β-cyclodextrin (PDB ID: 2QKH).
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more specific cases. This model might be more fit for the
recognition of smaller carbohydrate binding pockets in
proteins, for example in the type 1 carbohydrate recognition
domain (CRD) in lectins.30 The performance of PS-S is
evaluated on the TS90 data set which contains 90 high
resolution subunits from Canner et al.,10 which has less than
30% sequence identity with our train data set. We benchmark
the performance of PS-S and compare it with PS-G, CAPSIF:V
and CAPSIF:G (Table 2).

PS-S demonstrated superior overall performance with a
higher balanced accuracy (BACC), MCC, Dice score, F1
score, and ROC-AUC values. These metrics collectively
underscore its excellence in classification accuracy, sensitivity,
and specificity and its ability to discriminate between positive
and negative instances of protein−carbohydrate binding.
However, it is noteworthy that PS-S exhibited a slightly
lower PR-AUC than CAPSIF:V, indicating a potential trade-off
with precision in situations where minimizing false positives is
paramount.
We also evaluated the performance of PS-S on the test data

set of sequence-based methods SPRINT-CBH12 and
StackCBPred.13 On this data set of 88 nonhomologous chains,
which were excluded from PeSTo-Carbs’s train data set at a
30% sequence identity, the method achieved an MCC of 0.556

and a ROC-AUC of 0.905. Despite the absence of trained
models of these methods for a thorough benchmark, it is worth
noting that PS-S consistently demonstrates superior perform-
ance when compared to the reported results of both SPRINT-
CBH (MCC, 0.257; ROC-AUC, 0.744) and StackCBPred
(MCC, 0.139; ROC-AUC, 0.752).
Finally, we compare the differential predictions of PS-G and

PS-S. As illustrated in Figure 3a,b, we examined their
predictions on the α-amylase28 (PDB: 3VM7) by PS-G and
PS-S, respectively. Both models correctly ignore the binding
interface with the calcium ion. PS-G predicts an interface at
N161 which binds to N-acetyl-D-glucosamine (NAG). This
interface is correctly ignored by PS-S, as NAG interfaces were
not a part of the training data for it. Furthermore, PS-S
showcased a smaller predicted binding pocket for α-D-
glucopyranose (GLC), resulting in fewer false positives
compared to the larger interface predicted by PS-G. This
suggests that using both models in tandem may improve
prediction accuracy for protein−carbohydrate interactions.
We also highlight the robustness of our method in effectively

handling the inherent conformational variability in protein
structures. Hevein, a protein with a notable 32-amino acid
segment serving as a carbohydrate binding domain31 was
studied through molecular dynamics simulations by Solanke et
al.32 This investigation focused on the binding mechanism
between the hevein-32 domain and N-acetylglucosamine
monosaccharide (GlcNAc), revealing insights into the
protein’s structural dynamics and its interactions with
carbohydrates. The Supporting Information (Figure S3)
presents a comprehensive analysis of the hevein-32 domain.
We show that the PS-S model successfully predicts
carbohydrate binding interfaces for hevein-32, including
instances with different interacting and non-interacting
conformations of protein with carbohydrates. This emphasizes
the method’s ability in accommodating conformational
variability within protein structures.

Table 2. PeSTo-Carbs (PS-G & PS-S) Benchmarking
Results on the TS90 Dataset

PeSTo-Carbs CAPSIF

Evaluation metric PS-G PS-S CAPSIF:V CAPSIF:G

BACC 0.813 0.823 0.810 0.765
DICE 0.527 0.638 0.608 0.513
MCC 0.509 0.624 0.622 0.549
F1 0.527 0.638 0.623 0.566
PR-AUC 0.619 0.600 0.623 0.518
ROC−AUC 0.918 0.930 0.810 0.919

Figure 3. α-Amylase complexed with α-D-glucopyranose (GLC) and calcium ion (Ca). (PDB: 3VM7). Predicted binding interfaces from (a) PS-G
and (b) PS-S.
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■ CONCLUSION
Despite the persistent challenge of accurately predicting
carbohydrate-binding residues, PeSTo-Carbs has achieved
noteworthy results, demonstrating its potential as a valuable
tool in this field. By leveraging advanced deep learning
techniques and incorporating relevant features, PeSTo-Carbs
has demonstrated a high level of accuracy in predicting both
carbohydrate binding and nonbinding residues, resulting in a
balanced and comprehensive predictor of carbohydrate
binding sites. These findings suggest that PeSTo-Carbs has
the potential to contribute significantly to ongoing efforts to
understand carbohydrate−protein interactions and their bio-
logical significance better.
PeSTo-Carbs was trained to predict binding interfaces

between proteins, carbohydrates, and their derivatives. This
model achieved a high MCC of 0.475 with an ROC-AUC of
0.915 on our extensive test data set of 343 subunits. Due to the
very flexible nature of parameter-free transformers, we could
apply the model to also specialize on a specific target�
cyclodextrins with very limited data. The method performed
moderately well on cyclodextrins (MCC, 0.381; ROC-AUC,
0.849), which shows that the method can be easily adapted for
specific applications with limited data. We also trained PeSTo-
Carbs specialized in a more specific set of protein−
carbohydrate interfaces with only 21 carbohydrate monomers.
This model is more fit to predict smaller binding pockets with
higher sensitivity while outperforming the previously devel-
oped structure-based as well as sequence-based methods.
The pretrained PeSTo-Carbs models on carbohydrates and

cyclodextrins and all of the data to reproduce the results are
available to the community at https://github.com/LBM-
EPFL/PeSTo-Carbs (accessed April 2024). PeSTo-Carbs
(PS-G and PS-S) along with PeSTo is available at the web
server: https://pesto.epfl.ch/(accessed April 2024) to make
protein binding interface predictions with proteins, DNA/
RNA, ligands, ions, lipids and now carbohydrates and
cyclodextrins.
While PeSTo-Carbs has achieved promising results, there is

still room for improvement in accurately predicting carbohy-
drate-binding residues. Ongoing research efforts continue to
explore new strategies and methodologies for enhancing the
performance of such predictors. Nonetheless, PeSTo-Carbs’s
performance represents a significant advancement in this field
and provides a strong foundation for further investigation and
development of more accurate carbohydrate-binding residue
predictors. We hope that the development of this method will
help in searching for protein−carbohydrate and protein−
cyclodextrin binding interfaces from protein structures and can
be utilized to develop target drugs. We also hope that the
specialization of PeSTo-Carbs on cyclodextrins motivates
further domain-specific applications with limited data.
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