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Abstract 

DNA v ariation analy sis has become indispensable in man y aspects of modern biomedicine, most prominently in the comparison of normal 
and tumor samples. Thousands of samples are collected in local sequencing efforts and public databases requiring highly scalable, portable, 
and automated w orkflo ws f or streamlined processing. Here, w e present nf-core / sarek 3, a w ell-established, comprehensiv e v ariant calling and 
annotation pipeline for germline and somatic samples. It is suitable for any genome with a known ref erence. W e present a full rewrite of the 
original pipeline showing a significant reduction of storage requirements by using the CRAM format and runtime by increasing intra-sample 
parallelization. Both are leading to a 70% cost reduction in commercial clouds enabling users to do large-scale and cross-platform data analysis 
while keeping costs and CO 2 emissions low. The code is available at https:// nf-co.re/ sarek . 
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enomic variation analysis of short-read data has become a
ey step for modern personalized medicine as well as for fun-
amental biomedical research. In particular, for biomedical
ssessment, it is used for characterizing genomes of samples
aken from both healthy or tumor tissue. In clinical applica-
ions, the resulting information can be used to classify tumors
nd support treatment decisions ( 1–3 ) or research questions,
uch as drug development ( 4 ) or identify variations of inter-
st in larger cohorts for further studies ( 5 ,6 ). The technolo-
ies and protocols for generating DNA sequencing data vary
 lot. Each of the technologies comes with different specialties
anging from targeted gene panels and whole exomes (WES)
o whole genomes (WGS) resulting in raw data files from a few
o hundreds of gigabytes (GB). Various project-specific factors
lay a role in choosing the appropriate sequencing technolo-
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gies, such as the particular type of genomic variations of inter-
est, the cost for sequencing, analysis, and data storage or turn-
around times ( 7 ). Panel and exome sequencing is cheaper than
WGS ( 8 ). Targeting defined regions allows for having high
coverage in these regions. Hence, single nucleotide variants
(SNVs) and small insertions and deletions (Indels) can be de-
termined with high confidence. WGS, on the other hand, can
be used to additionally investigate more complex alterations
such as non-coding variants, large structural variants (SV) and
copy-number variations (CNV). Another aspect is ethical con-
siderations on how to handle ‘accidentally detected’ genomic
variation in non-targeted genes which had been identified dur-
ing the whole genome or whole exome sequencing ( 9 ,10 ). 

Examples of large-scale genomics collection projects are
TCGA / ICGC or the 100 000 Genomes Project. Some 6800
whole-genome samples from the former were uniformly
ch 23, 2024 
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processed for the ‘Pan Cancer Analysis of Whole Genomes’
study to obtain a consistent set of somatic mutation calls ( 11 ).
More than 12 000 whole-genome samples from the latter were
analyzed with respect to their mutational signatures to gain in-
sights into tissue-specific markers ( 12 ). There are several na-
tional and international initiatives that aim at gathering more
and more sequenced genomes, such as the Estonia Genome
Project, the German Human Genome-Phenome Archive, the
Iceland Genome Project ( 13 ), or the European ‘1+ Million
Genomes’ Initiative. Such studies often encompass many pa-
tients and their samples are often collected over longer pe-
riods of time at multiple sites. This requires stable, and re-
producible pipelines that can be run on a variety of differ-
ent high-performance clusters and cloud setups with differ-
ing scheduling system for distributed and homogeneous data
processing ( 14 ). 

Several pipelines ( 11 ,15–18 ) have been published in differ-
ent workflow languages to automatically process reads from
FastQ files to called (and annotated) variants accompanied by
countless in-house workflows. With a certain variety of tools,
the workflows usually encompass: quality control steps, read
trimming, mapping, duplicate marking, base quality score
recalibration, variant calling, and possibly annotation (see
Figure 1 ). 

While there are many workflows available, nf-
core / sarek ( 15 ) stands out with its ability to process germline,
tumor-only, and paired samples in one run. It can perform
SNV / Indel, SV and CNV calling, as well as micro-satellite
instability (MSI) analysis of WGS, WES, and panel data
with currently 12 different tools. Since the pipeline is written
in Nextflow ( 20 ), it benefits from the portability to any
supported infrastructure, in particular several cloud vendors
and common HPC schedulers enabling cross-platform ho-
mogeneous data processing. Furthermore, the pipeline allows
the processing of non-model organisms. While the reference
genomes and databases are most comprehensively provided
for human and mouse genomes as well as subsets for many
other organisms, they can be generated and saved for future
runs for non-supported species. nf-core / sarek is part of the
nf-core community project ( 21 ) and has a growing user base
with now 242 stars on GitHub and 47.47K unique repository
visitors since July 2019 (as of 1 June 2023) who additionally
contributes with supporting and improving the code base
either by direct contributions, suggesting features, or raising
issues. 

The pipeline has been used within the field of cancer re-
search ( 22–27 ) and beyond, such as the identification of rare
variants in tinnitus patients ( 28 ), finding SNPs in driver genes
related to stress-response in cowpeas ( 29 ), the genomic profil-
ing of wild and commercial bumble bee populations ( 30 ), or
the Personal Genome Project-UK ( 31 ). 

Here, we present a re-implementation of the nf-core / sarek
pipeline using the Nextflow DSL2 framework, an extension
of the Nextflow syntax allowing to develop pipelines in a
modular fashion, which increases user-based customization to
maintain a modern pipeline. The re-implementation is focused
on reducing required compute resources for efficient runs on
different infrastructures. Minimizing required computing re-
sources has always been of large interest. In particular, in the
genomics space, more users run their calculations on several
commercial and non-commercial cloud platforms ( 14 ). Com-
mercial platforms usually come with a pay-per-use model, thus
there is a high interest to reduce costs due to finite funding.
For non-commercial platforms or local clusters, direct costs 
are possibly of lower interest, however, reducing required re- 
sources allows for processing more samples in a shorter time 
frame. Furthermore, all used tools have been updated to their 
latest version upon release. For various steps, new tool options 
have been added, i.e. mapping with DragMap or variant call- 
ing with DeepVariant ( 32 ), or fastP ( 33 ) for adapter trimming.

Using this re-implementation, we show for the first time 
that population-scale homogeneous recomputing of WGS on 

commercial clouds is possible. 
Our findings demonstrate a 69% reduction in compute 

costs when utilizing the nf-core / sarek 3.1.1 pipeline, in com- 
parison to a previous version, nf-core / sarek 2.7.2. This trans- 
lates to costs of just $20 for comprehensive germline short and 

structural variant calling, and annotation. 

Materials and methods 

Implementation 

nf-core / sarek is a Nextflow-based pipeline that has been part 
of the nf-core project since release 2.5. Thus, nf-core / sarek 

is based on the nf-core template, which provides a code and 

documentation skeleton to ensure current best practices. The 
pipeline was one of the first to be ported from Nextflow’s 
domain specific language version 1 (DSL1) to DSL2. The 
DSL2 framework allows modularization and code sharing.
78 of 80 modules used in nf-core / sarek have been made 
available in the nf-core community’s shared repository, nf- 
core / modules, implementing Nextflow wrappers around ide- 
ally individual tools. The tools are typically accessible through 

(bio)conda ( 34 ) and have a corresponding docker and sin- 
gularity container provided by the Biocontainers ( 35 ) com- 
munity enabling portability and reproducibility for each such 

‘module’. This single-tool-per-process approach ensures that 
previously occurring dependency conflicts are mitigated. nf- 
core / tools, a helper tool for users and developers, allows easy 
creation, installation and re-use of these modules, which will 
be important for further extensions of nf-core / sarek. 

Data sets and compute environments 

In order to evaluate the computational requirements of the 
pipeline, five tumor-normal paired samples from the ICGC 

LICA-FR ( 36 ) cohort are used (see Table 1 ). The unaligned 

BAM files are downloaded and converted to paired-end 

FastQ files using nf-core / bamtofastq v1.0.0 (formerly qbic- 
pipelines / bamtofastq) with Nextflow version 20.10.0 and sin- 
gularity. 

Unless otherwise indicated, evaluations are done with 

Nextflow version 22.10.2 build 5832 and Singularity 3.8.7- 
1.e18 on a shared HPC cluster. A parallel BeeGFS filesys- 
tem ( 37 ) is used with one metadata and two storage nodes.
Each storage node has two raid systems with 10 

* 14 TB disks 
respectively. The data systems are connected with a 50 GB eth- 
ernet connection. The HPC is using Slurm as scheduler and 

consists of 24 nodes with 32 cores and 64 threads each (2 

* 

AMD EPYC 7343) with 512GB RAM and 2TB NVMEe disks 
as well as four nodes with 64 cores and 128 threads each (2 

* 

AMD EPYC 7513) with 20248GB and RAM and 4TB NVMe 
disks, these NVMes are utilized via Nextflow scratch option.
To increase the speed and decrease the load on the filesystem,
calculations are therefore performed directly on the NVMe,
and only the results are written back to the BeeGFS. The clus- 
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Figure 1. There are many published and countless unpublished variant calling pipelines written in dedicated workflow languages like Nextflow (NF), 
Snak eMak e (SM) ( 19 ), and Roddy. All pipelines align the reads, duplicate mark them, and employ various QC metrics (see Supplementary Table S1 . 
nf-core / sarek, Ov arflo w, and TOSCA ha v e additional option f or base quality score recalibration. All pipelines allo w v ariant calling and annotation. T he 
varying supported variant calling types are highlighted for each pipeline respectively. For the One-touch pipelines (OTP), separate workflows have to be 
triggered for each variant calling type with build-in annotation. nf-core / sarek stands out by covering germline, tumor-only, and paired variant calling 
f ollo w ed b y annotation across whole genome, whole-e x ome, and panel sequencing data. T he code is a v ailable online and w ell-documented, 
implemented in Ne xtflo w to enable port abilit y to various infrastr uct ures and supported by an active community. 

Table 1. Datasets used for benchmarking are part of the LICA-FR cohort. 
The BAM files are downloaded and converted to FastQ files. The respec- 
tive donor IDs and file sizes of the converted FastQ files are listed below 

Normal Tumor 

Donor ID 

File size 
[GB] 

Median 
co ver age [X] 

File size 
[GB] 

Median 
co ver age [X] 

DO50970 88 36 152 65 
DO50974 101 54 173 84 
DO50933 92 49 154 78 
DO50935 116 60 166 90 
DO50936 97 51 174 88 
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er is shared and resources per user are allocated by a Fair-
hare policy. At any time 100 tasks can be run at most by a
ser in parallel. 
All jobs are submitted using -profile cfc

roviding a cluster-specific configuration,
hich is stored in the GitHub repository nf-

ore / configs ( https:// github.com/ nf-core/ configs/ blob/
709be3b599d463fcfa82196fd4c9c5fa1e99513/ conf/ cfc. 
onfig ). 

Resource usage for all experiments was evaluated by
upplying: 

Listing 1: Trace.config 
trace fields = ’task _ id,hash,native _ id,pr 
cess, tag, name, status, exit, module, containe 
, cpus, time, disk, memory, attempt, submit, s 
art, complete, duration, realtime, queue, rc 
ar, wchar, syscr, syscw, read _ bytes, write _ byt 
s, vol _ ctxt,inv _ ctxt,workdir,scratch,erro 
 _ action’ raw = true 
in a custom configuration file and collecting the file sizes of

he work directory with: 
Listing 2: storage.sh 

du -hb --all --max-depth=4 〈 absolute/pat 
/to 〉 /work/ 〉 folder _ sizes.tsv 
Reducing storage requirements 

In this release, the internal file format following duplicate
marking is changed to using CRAM files. To evaluate the
required compute resources and the actual data footprint
for both file formats, five paired ICGC genomes are run
through all tools part of nf-core / sarek 3.1.1 and an al-
tered version of nf-core / sarek 3.1.1 that uses the BAM for-
mat instead. For each process, singularity containers from
the Biocontainers registry are used. Each run configura-
tion is repeated three times. Unless otherwise specified,
the default parameters for nf-core / sarek 3.1.1 are used.
We evaluate the pre-processing and variant calling steps
independently. 

We evaluate all processes corresponding to FastQ quality
control, aligning the reads to the reference genome, duplicate
marking, base quality score recalibration (BQSR), and quality
control of aligned reads. The command for running the pre-
processing steps is the following: 

Listing 3: Pre-processing 
nextflow run nf-core/sarek -r 3.1.1 -profil 

e cfc - - input ./input.csv 
The memory requirements for BWA-MEM are increased to

60 GB, as well as the runtime for GATK4 Markduplicates and
SAMtools merge to 16h and 8h respectively from the provided
defaults. 

Secondly, we evaluate variant calling with all tools for all
germline and paired somatic variant calling for all samples: 

Listing 4: Variant calling 
nextflow run nf-core / sarek -r 3.1.1 -profile 

cfc -input recalibrated.csv –tools deep- 
variant,haplotypecaller,mutect2,strelka, 
freebayes,ascat,controlfreec, cn- 
vkit,manta,tiddit,msisensorpro –step vari- 
ant_calling 

The requested time for all processes is increased to 144h to
mitigate interruptions due to runtime time-outs by providing
a custom configuration file. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://github.com/nf-core/configs/blob/c709be3b599d463fcfa82196fd4c9c5fa1e99513/conf/cfc.config
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section. 
Evaluation of pipeline runtime and resource usage 

In order to evaluate the impact on runtime and storage re-
quirements, ten samples are run with different sizes of scat-
tered groups: 1, 10, 21, 40, 78 and 124 (default). In order to
generate the respective interval group sizes the parameter –
nucleotides_per_second is set to 5 000 000, 400 000,
200 000, 70 000, 10 001, 1000 (default). For read splitting,
fastP is run with various numbers of CPUs specified (respec-
tively, 0, 4, 8, 12 (default), and 16) since the tools gener-
ates chunks firstly by number of CPUs and secondly by the
maximum number of entries per file as defined by a param-
eter. Here, it is set to 500 000 000 to prevent any further
subdivision. 

Example command for 40 interval groups and 8 FastQ file
chunks: 

Listing 5: Intra-sample parallelization 

nextflow run nf-core/sarek -r 3.1.1 -profil 
e cfc - - input input.csv - - tools deepvarian 
t, haplotypecaller, mutect2, strelka, freebaye 
s, ascat, controlfreec, cnvkit, manta, tiddit 
, msisensorpro - nucleotides _ per _ second 70000 
-split _ fastq 500 000 000 -c ressource.config 

The memory requirements for BWA-MEM are increased to
60GB for all tests. The memory for FreeBayes is increased to
24 GB, for one interval group it is reduced again to 18 GB.
For GATK4 ApplyBQSR the memory is increased to 16 GB
when all intervals were processed in one group. For a full list
of configs, see https:// github.com/ qbic-projects/ QSARK . 

Benchmarking of short variants against truth VCFs 

In order to benchmark the variants called by the pipeline,
both the germline and paired variant calling tools are eval-
uated on three datasets each: for the germline callers the GiaB
datasets HG002–HG004 ( 38 ) are used, for the paired somatic
callers three WES datasets from the Sequencing Quality Con-
trol Phase II Consortium ( 39 ). Comparisons are made only
in the high-confidence regions defined for the benchmark, i.e.
omitting difficult-to-call regions. 

Germline variant calling 
The whole-genome germline GiaB samples from an Illumina
NovaSeq are downloaded from the GiaB consortium’s ftp-
server. Downsampling to 40x is done using the seqtk( https:
// github.com/ lh3/ seqtk ) tool. nf-core / sarek is run with default
parameters. The parameter –nucleotides_per_second is
increased to 200 000. All eligible variant callers are combined
with all three mappers. Comparisons are calculated using
hap.py ( https:// github.com/ illumina/ hap.py ), version v0.3.14:

Listing 6: Evaluation of germline calls 
hap.py HG002, 3, 4 _ GRCh38 _ 1 _ 22 _ v4.2.1 _ bench 

mark.vcf.gz query.vcf.gz -o results/ -V --e 
ngine=vcfeval - - engine- vcfeval- template grc 
h38.sdf - - threads 3 - f HG002, 3, 4 _ GRCh38 _ 1 _ 2 
2 _ v4.2.1 _ benchmark _ noinconsistent.bed - - log 
file results/ - - scratch- prefix. 

Short variant calls from Haplotypecaller, Deepvariant, Free-
bayes and Strelka2 mapped with Dragmap (base quality re-
calibration is skipped), BWA-MEM, and BWA-MEM2 are
included in the analysis. Deepvariant is evaluated only on
HG003. 

Furthermore, reads for the sample HG002 sequenced with
MGISEQ and BGISEQ500 are downloaded from the manu-
facturer. They are downsampled to 20 ×, 30 ×, 40 × and 50 ×
using seqtk and subsequently processed with nf-core / sarek 

3.1.1 using default parameters and all eligible variant callers.
Evaluation against the truth VCF is done using hap.py. 

Somatic variant calling 
The somatic short variant calls are evaluated on three whole- 
exome sequencing datasets: SRR7890919 / SRR7890918 

(EA), SRR7890878 / SRR7890877 (FD),
SRR7890830 / SRR7890846 (NV) run on an Illumina 
HiSeq 1500 (EA), 4000 (FD), 2500 (NV). The data is 
downloaded using nf-core / fetchngs v1.10.0. nf-core / sarek 

is run on default parameters. In addition, trimming is 
enabled with –trim_fastq . When using DragMap –
skip_tools baserecalibrator is set. The VCFs are 
PASS filtered using bcftools v1.10.2. The calls are evaluated 

using RTGTools ( 40 ) for a combination of each mapper with 

all available variant callers: Strelka2 together with Manta,
Freebayes and Mutect2. 

Listing 7: Evaluation of somatic calls 
bcftools view -f ’PASS,.’ results.vcf.g 

z -o query.vcf 
rtg vcfeval -c query.vcf.gz -b high-confid 

ence _ sSNV _ in _ HC _ regions _ v1.2.vcf.gz -o ./ou 
t/ -t grch38.sdf -e High-Confidence _ Regions 
_ v1.2.bed - - squash- ploidy - - all- records - - s 
ample=ALT - - bed- regions S07604624 _ Padded _ A 
gilent _ SureSelectXT _ allexons _ V6 _ UTR.bed 

Comparison of copy number calls against PCAWG 

samples 

In order to evaluate the copy number calls, WGS align- 
ment files for five PCAWG patients (DO44888, DO44930,
DO44890, DO44919, DO44889) were downloaded and re- 
processed with nf-core / sarek. In addition, the provided copy 
number calls were downloaded from the ICGC portal for each 

patient. The calls are compared by dividing the calls from each 

tool into two groups: amplifications and deletions. For each 

base, it is then determined how many other tools identified 

for a given the same group. Visualization of the respectively 
called copy numbers is done using karyoploteR ( 41 ) and 

CopyNumberPlot ( 42 ). 
Listing 8: storage.sh 

nextflow run nf-core/sarek -r 3.4.0 -pro 
file cfc - - input input.csv - - outdir results 
- - tools ascat, controlfreec, cnvkit - - only _ p 
aired _ variant _ calling -c ressources _ cnv.con 
fig 

Portability to AWS cloud and computing cost 

In order to evaluate the costs for running nf-core / sarek 

on AWS batch, the compute environments are created us- 
ing Tower Forge ( https:// cloud.tower.nf/ ), with the follow- 
ing settings: spot instance, max CPUs 1000, EBS Auto 

scale, and fusion mounts enabled. Instance types are cho- 
sen by using strategy ‘optimal’ with the allocation strategy 
spot_capacity_optimized . The computation is run in 

AWS region us-east-1. The pipeline runs are launched with 

Nextflow Tower setting the Nextflow version to 22.10.3 

by adding export NXF_VER = 22.10.3 to the pre-run script 
and process.afterScript = ‘ sleep60 ’ to the config 

https://github.com/qbic-projects/QSARK
https://github.com/lh3/seqtk
https://github.com/illumina/hap.py
https://cloud.tower.nf/
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The pipeline is run on the normal sample for DO50970 us-
ng default settings together with Strelka2, Manta and VEP.
or one paired sample evaluation, the pipeline was run the
umor-normal pair (DO50970 / DO50970). 

nf-core / sarek 3.1.1 is run with –
ucleotides_per_second 200 000 . For the paired
un, we set –only_paired_variant_calling . 

The costs for nf-core / sarek 2.7.1 are evaluated on the same
ormal sample using Strelka2, Manta and VEP on default pa-
ameters. Compute resources for mapping (372 GB memory,
8 cpus), duplicate marking (30 GB memory, 6 cpus), qual-
ty control with BamQC (372 GB memory, 48 cpus), GATK4
aseRecalibrator (4GB memory, 4 cpus) and GATK4 Apply-
QSR (4 GB memory) is increased. 

esults 

ipeline overview and summary of new tools and 

eatures 

n overview of nf-core / sarek v3.1.1 is shown in Figure 2 . The
nput data is an nf-core community standardized samplesheet
n comma-separated value (CSV) format, that provides all rel-
vant metadata needed for the analysis as well as the paths
o the FastQ files. The pipeline has multiple entry points to
acilitate (re-)computation of specific steps (e.g. recalibration,
ariant calling, annotation) by providing a samplesheet with
aths to the intermediary (recalibrated) BAM / CRAM files.
he pipeline processes input sequencing data in FastQ file for-
at based on GATK best-practice recommendations ( 43 ,44 ).

t consists of four major processing units: pre-processing, vari-
nt calling, variant annotation and quality control (QC) re-
orting. 

re-processing 
nabling homogeneous processing of global genomic re-
ources requires flexibility on the genomic ‘raw’ input data.
o cope with the fact that different data repositories provide
heir ‘primary’ data in different formats, nf-core / sarek sup-
ort both BAM and FastQ as input. When BAMs are pro-
ided as starting input, they are converted to FastQ via SAM-
ools ( 45 ) which allows for fully homogenous processing in-
ependent of the provided input format. 
The FastQ files are then split into shards with fastP in-

luding optional adapter trimming allowing the subsequent
lignment step to be run on smaller machines. FastP has been
ntroduced with the release v3.0 and is advantageous over
ther splitting and adapter removal tools as it combines FastQ
harding and adapter removal into one step, speeding up the
omputation. With this new implementation, we no longer
eed to rely on Trim Galore! and Nextflow’s native split-
astq() function. 
Version 3.1.1 of nf-core / sarek can handle UMI barcodes,

hich are used in some protocols to detect low allele
requency variants ( 46 ). The user can opt for using Ful-
rumgenomics’ fgbio ( https:// github.com/ fulcrumgenomics/
gbio ) tool, which generates a consensus read among the ones
arrying the same UMI. It will then use these reads as input
or the remaining pre-processing steps. 

The split FastQ files are aligned with one of the avail-
ble mappers, which include BW A-MEM ( 47 ), BW A-
EM2 ( 48 ) or DragMap,( https:// github.com/ Illumina/
RAGMAP )) and name- or coordinate-sorted with SAM-
tools. By adding DragMap support, we comprehensively
cover the community’s needs. We added the missing pre-
computed reference indices for BWA-MEM2 and DragMap
for GRCh38 and GRCh37 to speed up the computation. As
recommended by GATK guidelines, we use the entire genome
during mapping. Off-target reads for WES and panel analysis
are removed according to the provided BED file during the
base quality score recalibration (BQSR) step. 

By default, the aligned BAMs are then merged, duplicates
are marked with GATK4 Markduplicates, and converted to
CRAM format in one process to reduce runtime and storage
needs. The duplicate marking step was improved by provid-
ing name-sorted alignment files to GATK4 MarkDuplicatesS-
park. If duplicate marking is skipped, SAMtools is used for
merging and conversion to CRAM format. BQSR on the re-
sulting CRAM files is run with GATK4 BaseRecalibrator and
GATK4 ApplyBQSR. For both, the GATK Spark implementa-
tion is available. Both steps can be skipped, in which case the
mapped BAMs are converted to CRAMs using SAMtools. 

In order to speed up the computation, genomic regions are
processed in parallel following the duplicate marking step.
Small regions are grouped and processed together to reduce
the number of jobs spun up. By default, interval lists for
the complete reference genome provided by GATK are used,
enabling scattering by chromosome, and removing unresolved
and difficult regions. For targeted sequencing data, we have
added support to use the respective target bed files for par-
allelization as recommended by the GATK guidelines ( https:
// gatk.broadinstitute.org/ hc/ en-us/ articles/ 360035889551- 
When- should- I- restrict- my- analysis- to- specific- intervals- , 
last accessed: 2023-07-17). Previously, BQSR was always run
on the intervals provided for WGS, which led to recalibrating
off-target reads increasing computational resources needed.
We have added further support to allow users to control
group size not just for custom interval files, but also for the
ones generated from the genomic regions, allowing a more
tailored setup. 

Variant calling 
nf-core / sarek includes a comprehensive set of variant callers
to obtain SNPs / Indels, SV, MSI, and / or CNV values using a
total of 12 tools (Figure 2 ). The variant calling tools have to
be selected by the user to ensure the resource footprint is kept
low and only necessary tools are run. They are executed in
parallel. Newly included tools in the v3.1.1 release are Deep-
variant, CNVKit ( 49 ), and Tiddit ( 50 ). Furthermore, Haplo-
typecaller supports both single sample or joint-germline call-
ing ( 51 ). When both Strelka2 ( 52 ) and Manta ( 53 ) are selected,
the candidate Indels from Manta are used for SNP / Indel
calling according to the Strelka2 best-practices. We added
a new parameter that allows skipping germline-only variant
calling for paired samples to further reduce time, costs, and
compute resources for somatic variant calling. Furthermore,
scatter-gathering is now supported for all applicable variant
calling tools across intervals (see Supplementary Figure S1 ).
The sharded VCF files are then merged with the GATK4
MergeVCF tool. In this way, we reduce computing demands,
by avoiding repeated cycles of (de)compressing the files. 

Variant annotation 

The resulting VCF files can be annotated with VEP ( 54 ),
snpEff ( 55 ) or both either separately or by merging the out-
put annotations. The annotation tool VEP has been extended

https://github.com/fulcrumgenomics/fgbio
https://github.com/Illumina/DRAGMAP)
https://gatk.broadinstitute.org/hc/en-us/articles/360035889551-When-should-I-restrict-my-analysis-to-specific-intervals-
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data


6 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 2 

Figure 2. Ov ervie w o v er nf-core / sarek. T he pipeline consists of three sections: pre-processing based on G ATK B est-practice recommendations 
(mapping, duplicate marking, and base quality score recalibration), variant calling supporting tools for SNP / Indel, SV, CNV, MSI calling and annotation. 
Throughout the pipeline, various quality control tools are run and collated into a comprehensive MultiQC report. The variant calling tools can be mixed in 
any combination and are all run in parallel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with new plugins allowing more comprehensive annotation:
the previously used plugin CADD ( 56 ) has been superseded by
dbNSFP ( 57 ) providing 36 additional prediction algorithms.
Furthermore, the plugins LOFTee ( 58 ), spliceAI ( 59 ) and
spliceRegion ( https:// github.com/ Ensembl/ VEP _ plugins/ blob/
release/ 109/ SpliceRegion.pm , last accessed: 2023-07-17) have
been added. 

QC reporting 
Throughout the pipeline, quality control tools are run, includ-
ing FastQC before alignment, mosdepth ( 60 ), and SAMtools
post-duplicate marking and BQSR, as well as vcftools ( 61 )
and bcftools on called variants. These results are collected
into a MultiQC ( 62 ) report together with software version
numbers of all the executed tools. The previously used Qual-
imap ( 63 ), which has no direct CRAM support and requires
a high amount of computational resources, has been replaced
with mosdepth, a fast quality control tool for alignment files.
The tool produces comprehensive output files allowing to vi-
sualize, e.g. coverage data with the Integrated Genome Viewer
(IGV) ( 64 ) for easy inspection. In addition, we have en-
abled quality reporting such as mapping statistics on provided
CRAM files, when the pipeline is started from variant calling.

All tools have been updated to their latest stable release at
the time of writing. For a complete overview of the most im-
portant tool changes, see Supplementary Table S2 . 

Pipeline skeleton changes 
We expanded the continuous integration testing to include all
the new functionality, as well as adding md5sum checking of
output files wherever possible. Additionally, we added full size
tests that are automatically run on each pipeline release. All nf-
core pipelines require a full-size test on realistic data upon re-
lease to ensure functionality beyond small test data and porta-
bility to cloud infrastructures. The datasets used here include
the Genome in a Bottle (GiaB) data set HG001 (downsam- 
pled to 30 × WGS) for germline variant calling testing and 

the tumor-normal pair SRR7890919 / SRR7890918 provided 

by the SEQC2 effort for somatic variant calling testing. Since 
each of the selected datasets comes with validated VCFs to 

compare against, they are suited for further benchmarking to 

investigate the variant calling results. The results for each full 
size test are displayed on the website nf-co.re / sarek and are 
available for anyone to explore or download. 

High-quality code readability is achieved by combining 
modules used in the same analysis context into subworkflows,
e.g. variant calling with a specific tool and subsequent in- 
dexing of the resulting VCF files. In addition, new analysis 
steps can be added by providing such encapsulated subwork- 
flows, and obsolete parts can quickly be removed entirely. Fur- 
thermore, dividing different analysis steps into subworkflows 
written in separate files simplifies development, which is often 

done asynchronously with developers at different institutes. 

CRAM format allows for storage space reduction 

The pipeline has a large data footprint due to the number of 
computational steps, input data size and Nextflow’s require- 
ment for a work directory with intermediate results to facil- 
itate resuming. In order to ease storage needs as a possible 
bottleneck, CRAM files are used as of nf-core / sarek 3. They 
are a more compressed alternative to BAM files storing only 
differences to the designated reference. A majority of tools 
post-duplicate marking support CRAM files. The pipeline can 

handle both BAM files and CRAM files as in- and output to 

accommodate various usage scenarios. 
We evaluated the resource usage of the two alternatives 

by running five tumor-normal pairs on nf-core / sarek 3.1.1 

as well as on a branch( https:// github.com/ FriederikeHanssen/ 
sarek/ tree/ bam _ 31 ) based on the release in which the internal 
format was replaced with BAM. Pre-processing (Figure 3 and 

https://github.com/Ensembl/VEP_plugins/blob/release/109/SpliceRegion.pm
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://github.com/FriederikeHanssen/sarek/tree/bam_31
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Figure 3. Resource usage of nf-core / sarek 3.1.1 when storing intermediate data in BAM versus CRAM format. ( A ) Average realtime, and maximum CPU 

and memory usage (peak_rss) as reported by the Nextflow trace file for the main processes. For processes split within a sample (i.e. ApplyBQSR), the 
task with the highest runtime per sample is shown as the process runtime. Resource usage was compared using the paired Wilcoxon test ( ** P < 0.01, 
* P < 0.05). Two out of the four shown processes are significantly faster when using CRAMs instead of BAMs at the expense of an increase in memory 
or CPU usage. ( B ) Storage was evaluated by calculating the total size of the work directories of all tasks of the respective process. Each condition was 
repeated three times for samples of five tumor-normal paired patients. 
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upplementary Figure S2 ) and variant calling ( Supplementary 
igure S3 ) were evaluated separately. For eleven processes, the
RAM-based setup resulted in a significant decrease in run-

ime, for ten an increase in memory, and for eleven an increase
n CPU hours could be measured. The overall average CPU
ours for the pre-processing benchmark on CRAM version
as 3252.37, in comparison to BAM 3,761.07. The reduc-

ion in CPU hours usage, however, had to be compensated by
 34% increase in memory usage. The overall average total
emory usage on the CRAM version was 10,346.8GB, for

he BAM version it summed up to 7739.51 GB. The storage
sage for the work directory for pre-processing these samples
rops by 65%, from 170.4 TB (BAM) to 59.7 TB (CRAM).
rocesses outputting CRAM files reduce their storage needs by
t least a third. In the case of GATK4 ApplyBQSR it was re-
uced by 64%. Processes operating on CRAM files outputting
 different format, e.g. VCFs, show no change in storage
sage. 

 catter-g ather implementations reduce runtime 

nd resource usage 

catter / gather implementations are highly relevant for paral-
el processing approaches across genomic regions for BQSR
nd variant calling. In this release, we have further extended
hese options: Before mapping, the input FastQ files can now
e split and mapped in parallel. For BQSR and variant calling
ore options to customize the amount of scattering as well as

urther support for all eligible variant callers are implemented.
We evaluated the impact of different degrees of FastQ file

harding on the mapping process by investigating the division
tep (fastP), mapping (BWA-MEM) and subsequent merging
GATK4 Markduplicates). The realtime as reported by the
Nextflow trace of the longest running mapping process of any
one sample was summed up with the realtime of fastP and
GATK4 Markduplicates. The space of the work directories of
each involved task was summed up, as well as the CPU hours
(see Figure 4 A). The overall runtime for the mapping processes
decreases until it reaches a plateau at 12 shards, achieving a
reduction of the median runtime to 37%. The storage usage
increased as soon as any sharding was done due to the sub-
FastQs being written to the disk. The CPU hours remain ap-
proximately the same due to the long alignment time for large
files (see Supplementary Figure S4 ). 

We evaluated the impact of different degrees of scattering
across genomic intervals on the recalibration and variant call-
ing process with respect to resource usage. Similarly to the
mapping processes, the most extended runtime per interval
group per samples of all involved processes for BQSR (GATK4
BaseRecalibrator, GATK4 GatherBQSRReports, GATK4 Ap-
plyBQSR and SAMtools merge) and variant calling (calling
and GATK4 MergeVCFs) was summed up respectively. Stor-
age usage and CPU hours results for all tasks were added
up. The runtime decreased the most for all measured tools
(see Figure 4 B and Supplementary Figure S5 –S7 ) when the
number of interval groups was set to 21. Raising the num-
ber of interval groups did not decrease runtime further. For
GATK-based tools, storage usage increased with each fur-
ther splitting of interval groups. For BQSR storage require-
ments between 21 intervals groups and 124, the default value,
increased by a factor of five. For Deepvariant less storage
space was required when applying scattering ( Supplementary 
Figure S6 ), however, for all other variant callers the stor-
age needs remain on a stable level. The required CPU hours
remain stable across various amounts of scattering for all
tools. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
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Figure 4. Sharding the input FastQ files and parallelizing computation on interval groups reduces the overall runtime of the nf-core / sarek pipeline. ( A ) 
Effect of sharding the input files on the mapping processes, including fastP, BWA-MEM and Markduplicates. The input FastQ files were split into smaller 
pieces increasing the amounts of shards and the runtime, work directory size and CPU hours were evaluated for each split size. FastP was run with a 
different number of CPUs corresponding to the desired number of shards. ( B ) Effect of parallelizing computations across interval groups on BQSR 

processes, which include the B aseR ecalibrator, GatherBQSRR eports, ApplyBQSR and SAMtools merge process. When all interv als w ere processed 
together as one group the memory requests for ApplyBQSR had to be increased. The violin plots show computations on tumor-normal paired samples 
of five patients. The time was evaluated by summing up the highest realtime per task per sample as reported by the Nextflow trace report. The work 
directory size and CPU hours are the sums of all involved tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benchmarking of short variants against truth VCFs 

The pipeline’s SNP and indel variant callers were evaluated for
both the germline and paired somatic analysis tracks, the for-
mer on three WGS datasets from Genome in a Bottle (HG002-
4) ( 38 ), the latter on three tumor-normal paired WES datasets
from the SEQ2 Consortium ( 39 ). The results were compared
to the respective ‘gold standard’ VCFs for high-confidence
calls. 

We evaluated the precision, recall, and F1 score over all
samples. For the germline calls of Deepvariant, only sam-
ple HG003 was used since its model was trained on the re-
maining datasets. The tools’ precision, recall, and F1 scores
are in accordance with the previously reported FDA preci-
sion challenge ( 65 ) results for GiaB samples (see Figure 5 A, B
for SNPs, Supplementary Figure S8 for Indels). BWA-MEM
and BWA-MEM2 lead to higher recall values than DragMap.
Strelka2 together with Manta and DeepVariant perform best
in all three evaluated metrics. In addition, we investigated one
sample sequenced with MGI and BGISEQ respectively with
similar results for all variant callers ( Supplementary Figures 
S9 and S10 ). 

Similarly, we evaluated the precision, recall, and F1-score
for the somatic calls. Filtered Mutect2 calls have the highest
precision calls for all samples, and FreeBayes ones the highest
recall values (Figure 5 C, D for SNVs). The highest F1-Score
is measured for Mutect2, followed by Strelka2. For Indels,
Strelka2 outperforms all other tools ( Supplementary Figure 
S8 ). The results are in-line with what has been previously re-
ported ( 66 ). 

Comparison of copy-number calls against PCAWG 

samples 

The pipelines’ paired somatic copy number calls from ASCAT,
CNVKit and ControlFREEC were compared against five sam-
ples from the PCAWG ( 11 ) cohort. Each sample has two call
sets, one generated with the OTP pipeline and one with the
Sanger pipeline (SVCP). In Figure 6 , for each tool the calls for 
each base are evaluated with respect to how many other tools 
confirmed the base. Calls are divided into two categories: am- 
plifications or deletions. For the former, for patient DO44890 

the bases called by each tool are confirmed by at least 3 other 
tools. Similarly, for DO44919 with an exception for the OTP 

results, where a set of bases could not be confirmed by any 
other tool. For a majority of the CNVKit and ControlFREEC 

calls were confirmed by three or more tools for each sample.
Overall, there are fewer deletions found than amplifications.
For the samples DO44890 and DO44919 a majority of the 
deletions were called by two or more tools. For the remaining 
samples, calls by CNVKit, ControlFREEC, and SVCP were for 
a majority of the cases confirmed by one other tool. All calls 
are visualized in Supplementary Figure S11 . 

Portability to AWS and computing costs 

The sheer amount of existing genomics data and the unavoid- 
able need for even more data for the detection of disease- 
causing genotype-phenotype correlations or population-scale 
analyses will test the limits of on-premise computing sooner 
or later. Consequently, more and more data analysis is shifted 

or supplemented by computation in the cloud. The most re- 
cent Nextflow Community survey 2023 indicates that 43% of 
users use cloud services, which represents an increase of 20% 

compared to the previous year ( https:// seqera.io/ blog/ the- 
state- of- the- workflow- 2023- community- survey- results/, last 
accessed: 2023-07-17) with AWS still being the most popular 
among the respondents. Therefore, we evaluated the cost de- 
velopment of nf-core / sarek between 2.7.1 and 3.1.1 on AWS 
Batch. 

We were able to reduce cloud computing costs to approx- 
imately 30% (see Table 2 ). Furthermore, we could reduce 
the overall runtime and CPU hours. For a single sample the 
needed CPU hours are reduced by approximately 70%, and 

the runtime by 84%. Here, we used spot instances—unused 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae031#supplementary-data
https://seqera.io/blog/the-state-of-the-workflow-2023-community-survey-results/
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Figure 5. Germline and somatic variant calling evaluation of high-confidence calls using ground-truth benchmarking data with respect to SNPs. ( A , B ) 
The germline variant calling track of the pipeline was evaluated using 3 WGS GiaB datasets (HG002–HG004). The average precision, recall, and F1-score 
values across all the samples are plotted, respectively. ( C , D ) The somatic paired variant calling track was evaluated using three tumor-normal WES pairs 
(EA, FD, NV) from SEQ2C. 
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nstances auctioned off at a percentage of their on-demand
rice—whose prices fluctuate constantly. The business models
f the cloud providers result in varying spot price percentages
nd spot prices are frequently subject to change depending on
he overall demand. 

iscussion 

n essential aspect of high-throughput processing is seamless
calability, one of the main advantages of using a dedicated
orkflow language such as Nextflow. Combining adapter

rimming, quality control, and sharding of FastQ files in a
ingle step, as well as more tailored splitting into intervals
or variant calling, reduces the needed CPU hours by 66%.
Replacing Nextflow’s native splitFastq() function with a
dedicated process, allows us to make use of all advantages of
regular job submission, including assigning resources to the
jobs, automatic retries on job failure, and resume function-
ality. Previous pipeline versions have typically not been able
to split the FastQ files and have, thus, missed out on scala-
bility options. Our experiments have shown clear limits for
parallelization into interval groups. There is no further bene-
fit to reducing runtime beyond 21 interval groups. However,
storage usage increases. This is respected in future releases by
setting the default number of interval groups to 21 further re-
ducing the storage footprint of the pipeline. 

The switch to using CRAM files results in reduced storage
space usage of 65%, at the expense of higher memory require-
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Figure 6. Copy number calling comparison of calls obtained with tools in nf-core / sarek (ASCAT, CNVKit, ControlFREEC) and the two available call sets 
the ICGC portal for five patients from the PCAWG ( 11 ) study. The calls are divided into deletions or amplifications. For each event from each caller, the 
number of tools supporting it are plotted. 

Table 2. Average costs per patient on AWS batch for nf-core / sarek ver- 
sion 2.7.2 and 3.1 .1 . All pipeline runs w ere perf ormed with the tools, 
Strelka2, Manta and VEP. Each analysis run is repeated three times and 
run on data from the donor DO50970 with either their normal or tumor- 
normal paired sample. The normal sample has a median co v erage of 36X, 
the tumor sample of 65 ×

Version Samples Avg. costs [$] Runtime CPU hours 

2.7.2 1 normal 68.04 46h8m 1118.4 
3.1.1 1 normal 20.82 12h4m 342.5 
3.1.1 1 paired 66.83 31h47m 1324.3 

 

ments. The additional memory needs are distributed over the 
thousands of tasks run for the benchmark. Due to this, in prac- 
tice, memory is not a limiting factor. The additional needs are 
only required for the task’s run time, usually comprised of a 
couple of GB at most, and can subsequently be re-used. The 
storage, however, accumulates over the entire pipeline run and 

can therefore pose a bottleneck for usage scenarios with large 
input data sets relative to the available storage on the respec- 
tive compute system. 

Both changes, switching to CRAM format reducing storage 
requirements by two-thirds and reducing the amount of scat- 
tering - further reducing storage requirements by a factor of 5,
will enable users to run the pipeline on smaller systems more 
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fficiently. While there are many benefits for the scientists run-
ing the pipeline, we would like to emphasize also the eco-
ogical need to reduce the carbon footprint in computational
esearch. This is relevant in particular considering the ever-
rowing number of available samples in national and inter-
ational genome repositories, which aim at facilitating truly
omprehensive population-based analysis and understanding
nderlying genome variations. Our results provide solutions
o reduce CO 2 emissions. 

One of the main objectives of this work is to enable scien-
ists to run the pipeline in cloud environments at low costs per
ample. Cost-efficient cloud computing is increasingly impor-
ant for data-driven science. Intransparent and unpredictable
ost models discourage a scientist. Using the cloud setup as de-
cribed in this work, we reduced the costs to 50% in compar-
son to previous releases. Recently, Seqera Labs posted a blog
rticle ( https:// seqera.io/ blog/ breakthrough-performance- 
nd- cost- efficiency- with- the- new- fusion- file- system/, last
ccessed: 2023-07-17) showing further cost reductions when
sing nonvolatile memory express (NVME) storage, a proto-
ol to accelerate transfer speed, and a new fusion file system
romising even cheaper runs in the future. In addition, users
an further reduce their cloud costs by selecting compute
nstances in cheaper AWS regions and fixing the spot price
ercentage they are willing to pay more tightly by enforcing
n upper bound for costs per sample at the expense of possible
aiting time for such machines to become available. 
nf-core / sarek is an established, comprehensive variant call-

ng pipeline in the genomics field, which can be applied to
ny organism for which a reference genome exists. Future re-
eases further simplify analyses with custom references by en-
bling pre-computation of all needed indices, an interesting
eature when multiple users work with organisms on shared
ystems for which reference files are not provided by default.
n request, such references and their corresponding indices

nd database files can be added to the central resource AWS-
Genomes and made available to the community. 

We benchmarked the pipelines performance for germline
nd somatic small variants against given truth datasets, as
ell as comparing copy number calls to ones obtained by the
CAWG study. The copy number evaluation highlights the
eed for validating calls with multiple tools. There is a set
f bases showing strong evidence by being called by all tools.
owever, some tools, CNVKit and ControlFREEC, show a

eemingly more conservative approach with calls validated by
lmost all others, whereas ASCAT, SVCP and OTP generated
verall more calls which were confirmed by fewer tools. The
ools’ performance differs between samples indicating possi-
le further factors need to be taken into account. The simi-
arities between ASCAT and SVCP can be explained by the
act that the SVCP pipeline also uses an earlier version of the
SCAT tool. 
The nf-core / sarek rewrite to DSL2 makes the code base
ore maintainable and easier to read, a factor that is cru-

ial to allow new developers to join the effort with a rea-
onable learning curve. All pipeline processes are specified in
eparate files in the form of modules a majority of which are
aintained by the nf-core community. Tools used in the same

ontext are combined into subworkflows. They will be added
o the nf-core subworkflows collection in the near future al-
owing further collaboration and shared maintenance across
ipelines and beyond the nf-core community. Modularising
ll tools will enable us to simply do a drop-in replacement
when tools should be exchanged for a different one or new
ones added as they emerge. nf-core / tools installs them in the
appropriate directory, they just need to be called at the appro-
priate position in a (sub)workflow. Furthermore, the use of
modules allows users to customize the released pipeline ver-
sion at runtime. Before this change, it was necessary to change
the underlying code if arguments of a tool were not exposed
to the pipeline. This was limiting for users since they had to
wait for the feature to be implemented and released before
using it. With the new modular config files, arguments can be
modified by providing a user-based custom configuration set-
ting the exact command line arguments without changing the
underlying code or the release tag. This allows a higher degree
of flexibility for the analysis whilst simultaneously using a re-
leased version. Reproducibility can then be ensured as before
by providing the exact release version, pipeline parameters,
and the respective custom config(s). 

Data availability 

The pipeline is available at https:// github.com/ nf-core/ sarek
and each release is archived on Zenodo https:// doi.org/ 10.
5281/zenodo.3476425 . The comparison pipeline using BAM
files is available at https:// github.com/ FriederikeHanssen/
sarek/ tree/ bam _ 31 . All pipeline run commands used for the
benchmarking, configurations, trace reports, evaluation, and
visualization scripts are available at https:// github.com/ qbic-
projects/qsark . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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