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Dysregulation of innate immune signaling 
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Abstract 

Background  Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss 
of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease sever-
ity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus 
unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system 
that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease 
processes.

Results  Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models 
of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role 
for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific deple-
tion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression 
of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. 
Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation 
caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes 
Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks.

Conclusions  In alignment with recent research on other neurodegenerative diseases, these findings suggest 
that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compel-
ling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests 
that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA 
is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved 
between insects and mammals.
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Background
Spinal muscular atrophy (SMA) is a neuromuscular dis-
ease caused by mutations in the human Survival Motor 
Neuron 1 (SMN1) gene and the accompanying reduction 
in levels of SMN protein [1]. In humans and SMA animal 
models, complete loss of SMN function does not lead 
to SMA; it causes developmental arrest and early lethal-
ity [2]. Hypomorphic point mutations in SMN1 and/or 
reduced levels of full-length SMN protein cause the dis-
ease [3, 4]. The age-of-onset and severity of the disease 
varies widely, leading to a historical classification of SMA 
into three distinct subtypes, Type I (Werdnig-Hoffman 
disease, early infantile onset), Type II (intermediate late 
infant onset), and Type III (Kugelberg-Welander, child-
hood onset) [5, 6]. More recently, clinicians have increas-
ingly recognized that SMA is better characterized as a 
broad-spectrum disorder, ranging from severe (prenatal 
onset) to nearly asymptomatic [7, 8]. SMA phenotypic 
severity is inversely proportional to SMN protein levels; 
however, the proximal trigger of the disease remains a 
mystery.

Mouse models of intermediate or late-onset SMA have 
been difficult to generate. Mutations at the endogenous 
mouse Smn locus or copy number changes in human 
SMN2 (an SMN1 paralog) transgenes cause dramatic 
shifts in phenotype from mild and largely unaffected 
[9–11], to very severe, with onset of symptoms in utero 
and death between 4 and 14  days [11–15]. To circum-
vent these problems, we developed a Drosophila model 
system [16, 17]. Using a series of SMA-causing missense 
alleles, we have shown that this system recapitulates the 
wide-spectrum of phenotypic severity seen in human 
patients [17–22]. Importantly, this system provides an 
opportunity to study all stages of the disease, from pre-
onset biology to late-stage processes [20–22].

The phenotypes associated with Drosophila models 
of SMA include impaired locomotion, neuromuscular 
abnormalities, developmental delays, decreased viabil-
ity, and reduced life span [16, 17, 20, 23–27]. In notable 
agreement with the onset of the human disease, our fruit 
fly models of SMA also exhibit progressive loss of limb 
motility, displaying a more rapid decline in posterior ver-
sus anterior appendages [20]. Additionally, specific muta-
tions that affect the SMN Tudor domain were recently 
shown to affect SMN protein levels in a temperature-
sensitive manner [21]. Hence, Drosophila models of SMA 
are continuing to reveal how individual mutations dis-
rupt SMN function, contributing to different aspects of 
the disease.

The SMN complex chaperones the biogenesis of small 
nuclear ribonucleoproteins (snRNPs), core components 
of the spliceosome [28]. SMN carries out its functions 
in the assembly of snRNPs primarily in the cytoplasm 

[28]. Smn and Phax (Phosphorylated Adaptor for RNA 
export) null mutants exhibit an overlapping set of alter-
native splicing differences relative to wild-type animals 
[18]. Phax exports small nuclear RNAs (snRNAs) from 
the nucleus for assembly into snRNPs by the SMN com-
plex [28, 29]. Recently, a common allele-specific RpS21 
alternative splicing event was shown to modify the larval 
lethality of Phax, but not Smn, mutants [30]. Transcrip-
tomic profiling of various Smn null and missense mutants 
has revealed the activation of an innate immune response 
that correlates with phenotypic severity of the different 
mutants [18, 27]. Conspicuously, mutation of the Phax 
gene does not cause similar transcriptomic signatures 
of activated innate-immune signaling [18], which sug-
gests that SMN may have a specific function in cellular 
immunity.

Defects in the development of immune cells and tis-
sues have been reported in several mouse models of 
SMA [31–34]. These mice have smaller spleens and dis-
play altered red pulp macrophage morphology [32–34], 
events that reportedly precede evidence of neurodegen-
eration. More recently, dysregulation of innate immunity 
was reported in pediatric SMA patients, as they exhibit 
treatment-responsive changes in inflammatory cytokine 
profiles [35, 36]. Accumulating evidence suggests that 
SMN loss disrupts the immune system, contributing to 
excessive neuroinflammation and neurodegeneration.

Here, we show that the transcriptomes and proteomes 
of SMA model flies similarly display evidence of dysregu-
lated innate immunity. Specifically, these SMA models 
exhibited an increase in transcripts and proteins involved 
in the Drosophila Immune Deficiency (IMD) and Toll 
signaling pathways. Concordantly, these animals also fre-
quently displayed pigmented nodules (a.k.a. melanotic 
masses) that correlated with the molecular signatures 
of activated immune signaling. Knockdown of specific 
downstream targets of these signaling pathways amelio-
rated the formation of melanotic masses caused by Smn 
mutation or depletion. Overall, findings here suggest 
that SMN protein loss induces hyperactivation of innate 
immune signaling and a melanization defense response 
that correlates with the phenotypic severity of SMA-
causing missense alleles.

Results
Quantitative proteomic analysis of Smn missense mutants 
identifies immune‑induced peptides
Previously, we uncovered an increase in the expression of 
genes associated with innate immunity in the transcrip-
tomes of Smn null and missense mutant fly lines [18, 27]; 
therefore, we sought to determine if the gene expression 
changes, identified by RNA-seq, are also reflected in the 
proteomes of hypomorphic Smn mutants. We therefore 
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carried out proteomic analyses using tandem mass tag 
labeling and mass spectrometry (TMT-MS) on protein 
lysates from whole wandering third instar larvae. Ani-
mals expressing either Flag-Smn wild-type (WT) or 
SMA-causing missense mutant transgenes as their sole 
source of SMN protein were used. The transgenes were 
each inserted at the same ectopic locus and driven by 
the native Smn promoter in an otherwise SmnX7/X7 null 

background [16, 17]. We employed two different SMA 
patient-derived mutations located in distinct subdomains 
of the SMN protein, the Tudor domain (SmnTg:V72G) and 
the tyrosine- and glycine-rich YG Box (SmnTg:T205I); see 
Fig.  1A. The Tudor domain of SMN binds symmetric 
dimethylarginine residues present at the C-termini of Sm 
proteins [37, 38], and the YG Box functions in SMN self-
oligomerization [19, 22, 39, 40]. As previously described 

Fig. 1  The proteomes and transcriptomes of Drosophila Smn hypomorphs provide overlapping evidence for innate immune activation. A 
A rectangular cartoon and an AlphaFold model of the relative positions of conserved domains of the Drosophila SMN protein and the location 
of the patient-derived missense mutations used here. B Principal component analysis of total protein abundances in the Smn transgenic lines. 
Smn lines: WT (SmnX7/X7,Flag-SmnTg:WT); T205I (SmnX7/X7,Flag-SmnTg:T205I), Tyrosine (T) to Isoleucine (I); and V72G (SmnX7/X7,Flag-SmnTg:T205I), Valine (V) 
to Glycine (G). C Venn diagram of overlapping protein differences in T205I and V72G relative to WT. D Volcano plot of protein differences in the T205I 
line relative to WT. Proteins associated with innate immunity are indicated by larger dots. E Volcano plot of protein differences in the V72G line 
relative to WT, and proteins associated with innate immunity are labeled as in D. Dashed vertical bars in D and E indicate a Log2 FC ratio of ± 0.58, 
and the horizontal dashed line corresponds to q-value = 0.05. F Comparison of T205I proteome (y-axis) with T205I transcriptome (x-axis). The 
proteome and transcriptome are relative to the WT genotype. G Comparison of V72G proteome (y-axis) with V72G transcriptome (x-axis). As in F, 
the proteome and transcriptome are relative to WT. H V72G proteome (y-axis) versus SmnX7/D null transcriptome (x-axis). The differential gene 
expression of the SmnX7/D transcriptome is relative to Oregon-R. Note that the total (Ribo-minus) RNA-seq data [18] on the Smn hypomorphs were 
originally generated with the intent to measure non-coding RNA levels (specifically, spliceosomal snRNAs) and are therefore not as deep as one 
might like to use for measuring mRNAs, particularly the lowly-expressed ones. The Smn null datasets were polyA-selected and are thus better able 
to detect changes in mRNA levels
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[20, 21], T205I is a Class 3 mutation (semi-lethal, ~ 10% 
eclosion), whereas V72G is more severe and is catego-
rized as a Class 2 mutation (inviable at 25  °C, all die as 
early pupae).

Overall, 5857 Drosophila proteins were identified using 
TMT-MS (Tables S1–S3). Principal component analy-
sis of TMT-MS quantified protein abundances showed 
good covariance levels (an average of ~ 10% per sample) 
for the three different Smn transgenic lines we tested: 
WT, V72G, and T205I (see Fig.  1B  for detailed geno-
types). Among the proteins quantified, only 282 pro-
teins were differentially expressed (p.adj < 0.05, log2 fold 
change ± 0.5) in the T205I mutant relative to WT control 
(Fig.  1C, D). Note that the control animals expressing 
the WT rescue transgene are known to be slightly hypo-
morphic to begin with [17, 20], so that may account for 
the small number of observed differences. In contrast, 
the V72G mutant exhibited 2003 differentially expressed 
proteins relative to WT control (Fig. 1C, E). Most of the 
protein abundance differences found in the T205I mutant 
(90%) were also seen in the V72G mutant (Fig. 1C). The 
V72G and T205I hypomorphs each display significant 
defects (in viability, locomotion, etc.) relative to the WT 
controls, but the phenotype of the V72G animals is more 
severe than that of T205I [17, 20]. Thus, the observed 
changes in protein abundance correlate with overall phe-
notypic severity (Fig. 1D, E).

Immune dysregulation lies at the intersection of SMA 
model proteomes and transcriptomes
We took advantage of an early pupal RNA-seq dataset 
[18] we had previously generated for Smn WT, T205I, and 
V72G animals (Tables S4-S5) to carry out a multi-omic 
analysis of transcriptomes and proteomes. Although the 
TMT-MS experiment detected only a subset of the genes 
that can be analyzed by RNA-seq (e.g., 6000 vs. 13,000), 
proteins that were significantly altered in the mutants 
also tended to display a similar trend on the transcrip-
tome level. To this end, correlation plots of the log2 fold 
change ratios of the TMT-MS vs. total RNA-seq datasets 
showed good overall agreement between differences in 
RNA and protein abundance relative to the WT control 
(Fig. 1F, G).

Even though the milder T205I (Class 3) mutant had 
only ~ 300 detectable changes at the protein level, 
and only seven overlapping RNA and protein changes 
(Fig.  1F), most of these (five out of seven) were 
increased in the T205I compared to WT. Notably, this 
includes the Baramicin locus (containing two identical 
genes, BaraA1 and BaraA2) that encode an immune-
induced antifungal peptide [41, 42]. For simplicity, we 
refer to all transcripts and proteins that mapped to 
this locus as BaraA2 or BaraA2, respectively (Fig. 1F). 

By comparison, the overlapping differences between 
the transcriptome and proteome of the more severe 
V72G (Class 2) mutant include increases in numerous 
immune-induced and stress-responsive gene prod-
ucts (Fig. 1G). We note that analysis of the T205I tran-
scriptome identified increases in many of these same 
immune-induced molecules that were not captured by 
TMT-MS (Table S4). Strikingly, we observed small but 
significant increases in core upstream signaling factors 
like the NF-kB ortholog dorsal (dl) and larger increases 
in defense-responsive and downstream stress-respon-
sive targets like BaraA2, Turandot C (TotC), and Gram-
negative bacteria binding-like protein 3 (GNBP-like3). 
Hence, our multi-omic approach further highlights 
the hyperactivation of innate-immune signaling that 
accompanies partial SMN loss-of-function.

For additional comparisons to the Smn missense 
mutant proteomes, we used polyA + -RNA-seq data-
sets from two different Smn null mutant lines [27, 43]; 
see Tables S6–S11. The SmnX7/D null mutant transcrip-
tome identified an increase in BaraA2 and SPH93 (Ser-
ine protease homolog 93) transcripts in both T205I and 
V72G proteomes (Fig. 1H and Tables S1–S3). The overlap 
between the SmnX7/D transcriptome and the V72G pro-
teome was even more remarkable and included the core 
NF-kB-like factor, Rel (Fig. 1H and Table S11). Thus, the 
overlapping differences between the Smn null and mis-
sense mutants suggest that the observed hyperactivation 
of immune signaling is a common feature of SMN loss.

A key strength of this multi-omic approach is the ability 
to detect mRNA and protein isoform-specific differences. 
For this analysis, we employed an additional, probabil-
istic RNA-seq pipeline to quantify discrete mRNA iso-
forms and maintain pseudoalignment information from 
different splice junctions, but with a focus on differential 
expression of transcripts [44, 45]. Quantification of dis-
cernable transcript differences between Smn null and 
control animals revealed an increase in numerous tran-
scripts associated with innate immunity in the mutants 
(Fig. S1A-B). Differences included changes in transcripts 
and proteins involved in innate immunity, such as the 
NF-kB orthologs dorsal (dl), Dorsal-related immunity 
factor (Dif ), and Relish (Rel); see Fig. S1A-B.

Most striking, a comparison of the V72G proteome 
with the Smn null transcriptome revealed parallel iso-
form-specific changes for numerous transcripts and 
proteins (Fig. S1C). The congruent changes in RNA and 
protein isoforms included changes in molecules involved 
in innate immunity, including SPH93-RA/PA, TotC-RA/
PA, GNBP-like3-RA/PA, and Dif-RC/PC (Fig. S1C). In 
summary, the identification of overlapping changes in 
specific transcripts and protein isoforms further supports 
the activation of immune signaling in fly models of SMA.
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Partial loss of SMN function causes hyper‑activation 
of innate immunity
SMA is a hypomorphic condition; total loss of func-
tion causes early developmental arrest and lethality [12], 
reviewed in [2]. As detailed widely in the literature, Smn 
null mutants are therefore poor disease models. Hence, 
we focused our efforts to identify drivers of the observed 
innate immune dysfunction on the Smn hypomorphs. 

Gene ontology (GO) analysis of protein abundance dif-
ferences in the V72G dataset revealed a broad dysregu-
lation of factors involved in pathogen defense response 
and innate immune signaling pathways (Fig.  2A and 
Tables S12–S13). These include proteins involved in 
melanization and humoral defense responses to bacte-
rial, fungal, and viral pathogens (Fig.  2A, B). Although 
the V72G mutant exhibited numerous increases in 

Fig. 2  Proteins involved in Drosophila humoral and melanization defense responses are elevated in Smn mutant proteomes. A Gene Ontology (GO) 
analysis of protein differences in V72G. Adjusted p-values (p.adjust) and number of genes per GO term (Count) are shown at right, which is used 
to compute a combined score. B Heat maps of select protein abundance differences from genes within the melanization defense response GO 
category, known immune-induced peptides, as well as for the NF-kB transcription factors dorsal-related immunity factor (Dif ) and dorsal (dl). C, D 
Heatmap illustrations of TMT-MS data from V72G mutants. Log2-fold change (log2FC) values (mutant/control) for differentially expressed proteins 
are illustrated within the context of the Humoral Immune Response pathway (panel C, Wikipathways, WP3660) or the Melanization Cascade 
pathway (panel D) and shaded according to their respective keys
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proteins involved in defense response pathways, a few 
of these proteins were also significantly upregulated in 
the less severe T205I animals (Fig.  2B). Importantly, 
both mutants displayed small but significant increases in 
NF-κB transcription factor levels (Fig. 2B).

Upregulation of defense response proteins occurs in 
the absence of an external immune challenge, support-
ing the notion that partial loss of SMN function causes 
hyper-activation of innate immune signaling. Consist-
ent with this hypothesis, we frequently observed black, 
melanotic spots or granules in third instar Smn missense 
mutant larvae. Such granules are commonly referred to 
as pseudotumors, melanotic tumors, or melanotic masses 
[46, 47]. These structures typically form in response to 
pathogens, tissue damage, and necrosis, but this defense 
response can also be triggered by different genetic per-
turbations [46, 48–50].

Irrespective of the trigger, melanotic masses often form 
in the larval hemolymph and can be readily observed 
through the transparent body wall [46]. We therefore 
carried out a systematic analysis of larval melanization 
(Fig.  3) in a battery of ten hypomorphic, SMA-causing 
Smn missense alleles developed in our laboratory [17, 
20]. To quantify this phenotype, we scored both the size 
and number of melanotic masses in 50 wandering third 
instar larvae for each genotype. All lines examined dis-
played a statistically significant and robust increase in 
the presence of melanotic masses relative to the Oregon-
R (OreR) controls (Fig.  3A). Larvae with a WT Flag-
Smn transgene exhibited significantly fewer melanotic 
masses than Smn missense mutant lines but more than 
OreR (Fig. 3A), consistent with our previous observations 
that the Smn WT transgenic line is mildly hypomorphic 
[17, 20]. Size scoring (Fig. 3B, C) and counts of the total 
number of melanotic masses per animal (Fig.  3D) show 
similar trends to the overall incidence of masses. Further-
more, the number of melanotic masses for the various 
SMA-causing missense lines correlated with the previ-
ously characterized phenotypic severity (Fig.  3E) [20]. 
These observations suggest that the function of SMN 
in immune tissues is conserved from flies to mammals 
and that Smn mutations in the fly can be used to model 
peripheral defects of SMA in addition to the canonical 
neuromuscular phenotypes.

The SMN‑dependent hyper‑activation of melanization 
is tissue‑specific
To determine if the melanotic masses in fly models of 
SMA are downstream effects of tissue-specific SMN 
loss, we used the Drosophila GAL4/UAS system and 
RNA interference (RNAi) to deplete SMN in specific tis-
sues [51]. We and others have previously employed this 
system to create partial SMN loss-of-function models 

that typically cause pupal lethality, although weakly via-
ble adults can be obtained if the RNAi is performed at 
a lower temperature, e.g., 25  °C (see [20, 52]). Here, we 
employed two different UAS:Smn short hairpin (sh)RNA 
lines, P|TRiP.JF02057|attP2 (SmnJF-RNAi) and P|TRiP.
HMC03832|attP40 (SmnHM-RNAi), at 29  °C. Using a 
daughterless GAL4 driver (da-Gal4), we found that sys-
temic SMN knockdown recapitulated the effects of the 
Smn missense mutations described above (Fig.  4A). 
Melanotic mass formation was dependent upon shRNA 
expression, as negative control lines (Gal4 driver-only, 
UAS:responder-only or OreR) showed no significant 
effects (Fig. 4A).

In Drosophila, the immune response is coordinated 
by the fat body, an organ that is functionally analogous 
to the mammalian liver and adipose tissue [55, 56]. The 
fat body signals to a group of macrophage-like cells, col-
lectively called hemocytes [50]. The molecular pathways 
and mechanisms that regulate hemocyte/macrophage 
development and activity are conserved from flies to 
humans [48–50]. When activated, hemocytes encapsu-
late invading particles and melanize them to sequester 
and kill pathogens [50]. Depletion of SMN within the 
fat body and hemocytes (using Cg-Gal4) led to both a 
high frequency and number of melanotic masses per 
animal (Fig.  4A–C). In contrast, the knockdown of 
SMN throughout the larval neuromusculature (using 
C15-Gal4) had no significant effect (Fig.  4A, C). Thus, 
the appearance of melanotic masses following deple-
tion of SMN within immune cells rather than in neurons 
or muscles suggests that this phenotype is not a down-
stream consequence of neuromuscular dysfunction.

To ascertain whether melanotic mass formation was 
a consequence of SMN depletion within hemocytes, we 
carried out additional assays using the Hemolectin-Gal4 
(Hml-Gal4) driver. As shown in Fig.  4D and E, knock-
down of SMN specifically within hemocyte lineages also 
resulted in the formation of larval melanotic masses. 
Therefore, we conclude that the observed melanization 
phenotype in response to SMN loss is derived from cell-
type specific defects in immune cells.

Signaling pathways that regulate SMN‑dependent 
melanization
To measure the relative contribution of various genes and 
pathways to the formation of melanotic masses induced 
by SMN knockdown, we next carried out a series of 
genetic modifier assays. Given the results in Fig.  4, and 
the well-known function of the fat body in synthesizing 
and secreting antimicrobial peptides (AMPs) into the 
hemolymph [57], we focused our screening efforts using 
the Cg-Gal4 driver to reduce SMN levels by RNAi and 
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then crossed in various mutations or secondary shRNA 
transgenes into this background.

The Toll, IMD, and TNF (Tumor Necrosis Factor-
alpha, called Eiger in flies) signaling pathways (Fig.  5A) 

use NF-kB transcription factors (dl, Dif, and Rel) to turn 
on AMP genes [55, 57–59]. Based on our multi-omic 
evidence (Figs. 1 and 2) showing overexpression of these 
NF-kB orthologs in our SMA models, we first ingressed 

Fig. 3  Smn missense mutants exhibit elevated melanotic masses. A–C Melanotic mass (MM) data for wandering third instar larvae expressing Smn 
missense mutations. The data in each panel are a different measure of the melanotic mass phenotypes of the same set of larvae. A Percent of larvae 
with one or more melanotic mass. Individual data points are the percent of larvae with MMs, 10 larvae per data point. B The average number 
of melanotic masses per animal. Data points show the number of MMs in each animal. Number (N) = 50 larvae for each genotype. C Qualitative 
size scoring of the largest melanotic mass in each larva. D Representative images of MMs in animals expressing Smn missense mutations. Bars 
show the mean, and error bars show the standard error of the mean. Asterisks indicate p-values relative to WT: * < 0.05; ** < 0.01; and *** < 0.001. E 
Graph showing correlation between the overall phenotypic severity of SMA-causing Smn missense mutations and the number of MMs per animal 
(from panel B). SMA-like phenotypic severity scores were assigned for each allele (zero being the mildest) based on previously published viability 
and locomotor assays [20]. Dotted line shows linear regression between data points along with a goodness-of-fit coefficient (R 2)
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heterozygous mutations for dl and Rel into the back-
ground of Cg-Gal4/SmnJF-RNAi flies to reduce dosage 
of these genes and then scored the resultant progeny for 
melanotic masses. As shown in Fig.  5B, mutants for dl 
and Rel suppressed the phenotype, reducing the average 
number of melanotic masses per larva. We also tested 
the dl/Dif regulatory factor, cactus. Contrary to our 
expectation, the reduced dosage of cactus also reduced 
the number of melanotic masses. Mutations in cactus 
alone can cause melanotic masses [46]. However, because 
cactus levels are elevated in T205I and V72G animals 
(log2FC = 0.26) and the well-documented autoregula-
tory feedback loop for this protein [60], the mechanism 
of action is unclear. Nevertheless, these data show that 

reducing gene dosage of downstream targets can sup-
press the melanization phenotype but throughput for this 
assay is quite low, often requiring generation of recom-
binants, and is limited by the genomic locations and 
availability of mutations of target genes.

To expand the scope of the investigation, we employed 
an RNAi-based candidate approach that couples Cg-
Gal4 mediated knockdown of Smn with the co-deple-
tion of other factors. As a negative control for potential 
titration of GAL4 (which could reduce the efficacy of 
Smn knockdown), we co-expressed a UAS:NLS-GFP 
transgene. As shown in Fig.  5C, co-expression of a sec-
ond UAS responder construct had no effect on the num-
ber of melanotic masses in the control larvae. In contrast, 

Fig. 4  Targeted RNAi depletion of Smn in Drosophila immune cells yields melanotic masses and reduced viability. A Fraction of larvae that display 
MMs. RNAi-mediated knockdown of SMN was carried out using the Drosophila GAL4/UAS system to drive expression using two different RNAi 
transgenes, UAS-SmnJF (P|TRiP.JF02057|attP2) or UAS-SmnHM (P|TRiP.HMC03832|attP40). These lines were used together with the following 
GAL4- drivers: da, daughterless (da) for ubiquitous knockdown; C15 (a composite driver that includes elav- (embryonic lethal abnormal vision), 
sca- (scabrous) and BG57-GAL4 for knockdown in both neurons and muscles [53]; and Cg (Collagen 4a1 gap), for knockdown in the fat body, 
hemocytes, and the larval lymph gland [54]. OreR is the control strain. A plus sign ( +) indicates a wild-type chromosome. B Representative 
image of wild-type control and MMs in a larva with SMN depleted in the fat body, hemocytes, and lymph gland (Cg-Gal4 > UAS-SmnJF) or only in 
the hemocytes (Hml-Gal4 > UAS-SmnJF). C Number of MMs per animal with and without SMN depletion, as in A 
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co-depletion of Rel gave similar results to those obtained 
with Rel mutants (compare Figs. 5B, C).

Next, we tested the effects of co-depleting SMN com-
plex proteins and other known associated factors; see 
Table 1 for a complete list. As shown, the knockdown of 
snRNP components (SmB, SmD1, SmD2, and SmE) and 

one SMN complex member, Gemin2 (Gem2), had little 
effect on melanotic mass number (Fig. 5D, Table 1). Co-
depletion of two other SMN complex members, Gemin3 
(Gem3; [61]), Gemin4 (Gaulos/Gem4a, Gem4b, Gem4c; 
[62]), and the arginine methyltransferase, Prmt5 (Art5/
capsuleen; [63]), suppressed the melanization phenotype 

Fig. 5  Innate immune signaling pathways contribute to MMs upon SMN depletion. A Diagram summarizing the features and interconnections 
between innate immune signaling pathways in Drosophila. Bendless/Ubc13 (Ben) is an E2 ubiquitin conjugase that heterodimerizes with Uev1a 
and functions in a complex (boxed in gray) with Effete/Ubc5 (another E2) and two different E3 ligases (Traf6 for TLR/Toll or TNF/Wgn, and Diap2 
for the Imd/PGRP pathway). The Immune Deficiency protein (Imd) serves not only as a receptor-proximal signaling factor, but also as a secondary 
substrate for K63-linked polyubiquitylation via Ben•Uev1a. Bendless thus sits at a node that connects many different signaling pathways 
and cellular processes. B Mutations in the IMD and Toll signaling pathways suppress the number of MMs per animal in Smn RNAi lines. Reduced 
dosage of Protein Arginine Methyltransferase 5 (PRMT5) also suppresses MMs upon depletion of SMN. C MMs per animal were measured 
following co-expression of an Smn RNAi transgene together with the indicated RNAi lines targeting selected members of the Toll and IMD 
pathways, as well as to genes encoding the Jumonji domain containing 6 (JMJD6), Gemin 2 (Gem2), and refractory to sigma P (ref(2)P) proteins. 
Co-expression of UAS:NLS-GFP was used as a Gal4 negative control (see text for details). D Pie chart of the identified enhancers and suppressors 
of MM formation, resulting from Smn RNAi depletion using the Cg-Gal4 driver. See Table 1 for details.
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(Fig. 5D). Interestingly, Gem3 and Gem4 were both pre-
viously shown to form complexes in S2 cells with the 
immune deficiency (imd) protein [64], suggesting a 
potential role for Gemin subcomplexes in immune sign-
aling. Prmt5 is a notable suppressor not only because 
knockdown of its corresponding arginine demethyl-
ase (JMJD6) enhanced the number of melanotic masses 

(Fig. 5D, Table 1), but also because the Tudor domain of 
SMN is known to bind to dimethylated targets of Prmt5 
[65, 66]. We previously showed that complete loss of 
Drosophila Prmt5 function has little effect on organismal 
viability or snRNP assembly [63, 67]. Collectively, these 
data indicate that the presumptive SMN-interacting, 
innate immune signaling target of Prmt5 and JMJD6 is 

Table 1   Summary of melanotic mass screening data
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unlikely to be connected to SMN’s role in spliceosomal 
snRNP biogenesis. We therefore sought to test other can-
didate signaling factors that interact with SMN.

A common feature of the Toll (Toll), IMD (PGRP), and 
TNF/Eiger (Wgn) signaling pathways (Fig. 5A) is a pro-
tein complex that forms a platform for K63-linked ubiq-
uitylation and recruitment of downstream factors like 
Tak1 (TGF-β activated kinase 1), Tab2 (TAK1-associ-
ated binding protein 2), and key (kenny, a.k.a. NEMO). 
Analogous complexes function within the mammalian 
TLR (Toll-like receptor) and TNFa (tumor necrosis fac-
tor alpha) signaling cascades [68–71]. In mammals, 
TLR signaling involves the E3 ligase Traf6 (TNF Recep-
tor Associated Factor 6), whereas TNFa signaling uti-
lizes Traf2 [70, 72, 73]. In flies, a single protein, called 
Traf6/dTRAF2, performs both functions [68, 74]. As in 
humans, fly Traf6 functions together with the E2 con-
jugating enzyme Ubc13/bendless [70]. Ubc13/bendless 
(Ben) and the Ubiquitin-conjugating enzyme variant 1A 
(Uev1A) activate Tak1, a downstream kinase in the IMD 
pathway, although Traf6 appears to be dispensable for 
this activation, at least in S2 cells [75, 76].

Intriguingly, human TRAF6 was shown to co-precipi-
tate with SMN [77]. The authors hypothesized that SMN 
might serve as a negative regulator of NF-kB signaling, 
although the effect could be indirect [77]. We therefore 
tested this idea in  vitro with purified components and 
found that human GST-TRAF6 interacts directly with 
the SMN•Gem2 heterodimer (Fig. S2A). Experiments 
aimed at determining if this biochemical interaction was 
conserved in the fly were inconclusively negative. Trans-
genic overexpression of Flag-tagged fruit fly Traf6 (tub-
Gal4 > UAS:Flag-Traf6) failed to co-immunoprecipitate 
endogenous SMN (Fig. S2B). As measured by AP-MS 
(affinity purification followed by mass spectrometry), 
we failed to detect Drosophila Traf6 in co-precipitates 
from embryonic lysates expressing Flag-SMN as the sole 
source of SMN protein. However, the same Flag-SMN 
pulldowns identified the E2 conjugase and Traf6 binding 
partner, Ubc13/Ben [19].

Given that biologically important interactions are not 
necessarily biochemically stable enough to withstand 
a pulldown assay, we decided to test bendless (ben) and 
Traf6 by genetic interaction in the larval melanization 
assay. As shown in Fig. 5, a reduction in dosage of either 
Traf6 or ben resulted in a significant decrease in the num-
ber of melanotic masses per animal, compared to that of 
the SMN RNAi-only control. In summary, these observa-
tions show that Toll, IMD, and TNF-Eiger signaling path-
ways are disrupted following the loss of SMN expression 
within the immune system (fat body and hemocytes), 
leading to the formation of melanotic masses in fly mod-
els of SMA.

Discussion
Our multi-omic investigation of fly models of SMA sup-
ports a role for dysregulated innate immunity in the 
peripheral pathophysiology associated with the disease 
in humans. The molecular signatures of an activated 
immune response were readily apparent in the whole-
animal transcriptomes and proteomes of two hypomor-
phic Smn mutants. Moreover, we observed aberrant 
immune activation in all SMA models examined, includ-
ing very mild models (Fig. 3) that do not display viabil-
ity or neuromuscular defects during larval stages [20]. 
Furthermore, the degree of immune activation (Fig.  3), 
as measured by larval melanotic mass formation, cor-
related well with phenotypic class of the mutations [20]. 
That is, Class 2 SMA alleles had the most melanotic 
masses, Class 4 the fewest, and Class 3 had an intermedi-
ate number (Fig. 3E). These results are notably consistent 
with recent findings of immune dysregulation in mam-
malian models of SMA and in pediatric SMA patients 
[31–36, 78, 79]. Furthermore, our work suggests that this 
conserved dysregulation of innate signaling is a primary 
effect of SMN loss in immune cells and tissues (e.g., the 
hemolymph) rather than a secondary consequence of 
SMN loss elsewhere.

Neurodegeneration and the sustained activation of innate 
immunity
The extent to which the dysregulation of immune sys-
tems contributes to neuroinflammation and neuromus-
cular degeneration in SMA remains to be determined. 
Emerging evidence suggests that hyperactivation of 
innate immunity is a common feature of neurological 
disease. Our finding that downstream targets of NF-kB 
like transcription factors are upregulated in Smn hypo-
morphs is particularly revealing. However, one limita-
tion of the study is that the proteomics do not implicate a 
clear ‘smoking gun’ signature regarding specific upstream 
factors that are activated by reduced levels of SMN. Most 
notable among the differentially expressed upstream fac-
tors are GNBP3 and imd itself (Fig.  2). Given that both 
Gem3 and Gem4 were hits in the screen (Fig. 5) and have 
been shown to co-purify with imd protein [64], it seems 
that other members of the SMN complex may also play a 
role in innate immunity.

Signaling factors are often activated by PTMs that do 
not necessarily result in a change in overall protein lev-
els (e.g., kinases or regulatory proteases). Our TMT-MS 
approach is unable to identify such changes. Alterna-
tively, upstream factors other than Dap-type proteogly-
cans could bypass the top of the pathway and impinge on 
it downstream. For example, there may be extracellular 
or intracellular DAMPs (damage-associated molecular 
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patterns) that serve to activate Toll and/or Imd pathways 
in Smn mutants (Fig. 5A). Interestingly, the V72G mutant 
proteome displayed altered levels of several known SMA 
disease modifiers: CG17931/Serf, coronin (coro), and 
Zinc finger protein 1 (Zpr1); see Table S1 [80–85].

Cytosolic nucleic acid sensors serve as critical ele-
ments of innate immunity in many different organisms, 
reviewed in [86]. In mammalian cells, two of the afore-
mentioned SMA modifiers (CORO1C and ZPR1) have 
been implicated in R-loop resolution and the subsequent 
DNA-damage response [87–89], both of which fall into 
the general category of DAMPs. Zpr1 is notable for its 
previously reported physical interactions with SMN and 
nucleocytoplasmic import proteins [90, 91]. The pro-
teomes of both T205I and V72G mutants display addi-
tional evidence of a DNA-damage response (Table S1). 
Importantly, cytoplasmic R-loop accumulation and 
DNA-damage response factors were recently linked to 
the activation of innate immunity via the Toll-like recep-
tor and the cGAS-STING (cyclic GMP-AMP Synthase—
Stimulator of Interferon Response Genes) pathway [92].

In Drosophila, cGAS-Sting signaling is conserved [93–
95] but is thought to bypass interferon regulatory factor 
3 (IRF3) and directly activate NF-kB signaling via Relish 
and trigger an autophagic response [86, 96–98]. Notably, 
we also found Atg7 was upregulated in V72G animals 
(Table S3), but RNAi for the p62 ortholog, ref(2)p, had no 
effect in our larval melanization screen (Fig. 5). Unfortu-
nately, proteomic analysis of whole-larvae does not allow 
us to identify the tissues in which the various proteins 
may be differentially expressed. However, our finding that 
all three NF-kB-like proteins are upregulated in SMA 
model flies indicates a widespread and ongoing activation 
of immune signaling.

Sustained overexpression of NF-kB-like proteins is 
thought to contribute to disease progression in a vari-
ety of neurological disorders, including Alzheimer’s dis-
ease [99, 100], amyotrophic lateral sclerosis [101–105], 
ataxia-telangiectasia [106, 107], polyglutamine disorders 
[108], and retinal degeneration [109]. The consequences 
of sustained activation of NF-kB via cGAS-Sting and 
its potential contribution to neurodegeneration and/or 
neurodevelopment remain to be determined [110, 111]. 
Additional studies will be required to determine if there 
is an etiological connection between the observed hyper-
immune activation and the neuromuscular dysfunction 
in humans and animal models of SMA.

SMN, K63‑linked polyubiquitylation, and immune 
signaling networks
In mammals and flies, the TLR/Toll and TNF/IMD sign-
aling pathways function through analogous enzymatic 
cascades and complexes (Fig. 5A). Prominently featured 

in these pathways are receptor-proximal adaptor pro-
teins (e.g., mammalian RIP1 or fly imd) that are activated 
by K63-linked ubiquitylation (K63-Ub) [59, 112, 113]. 
The protein complex that carries out these crucial post-
translational modifications includes the E2 conjugating 
enzymes and cofactors Ubc13/bendless (Ben), Uev1a, 
and Ubc5/effete, along with two other RING-domain 
E3 ligases, Diap2 or Traf6 (see Fig. 5A). The presence of 
these K63-Ub oligomers triggers binding of Tab2 and 
key, leading to activation of the downstream kinase Tak1. 
Although the precise molecular details are uncertain 
[114], Traf6 likely plays both enzymatic and structural 
roles in this process [68, 75, 115, 116].

Tak1 phosphorylation of I-kappaB kinase, mediated by 
binding Tab2 and key, leads to translocation of NF-kB 
transcription factors to the nucleus, and expression of 
antimicrobial peptide (AMP) genes (Fig.  5A). Traf6, 
Diap2, and Ben thus constitute an evolutionarily con-
served node or nexus through which multiple intracel-
lular signaling pathways are connected (box in Fig. 5A). 
The work here identifies SMN as a negative regulator of 
this complex, supported by both biochemical (Fig. S2A, 
[19, 77]) and genetic (Fig.  5A–B) interactions. In sum-
mary, we show that partial loss of SMN function (either 
by mutation or depletion) results in the sustained activa-
tion of innate immunity.

Conclusions
Our proteomic analyses of mild and intermediate fly 
models of SMA reveal clear signatures of an immune 
response in the absence of an external challenge. These 
include, but are not limited to, overexpression of AMPs 
(Figs.  1 and 2). Notably, Ganetzky and colleagues have 
shown that ectopic expression of individual AMP genes 
can bypass this immune signaling cascade and cause dis-
ease, as the neural overexpression of AMP transgenes 
is sufficient to cause neurodegeneration in the fly brain 
[117]. Although the precise mechanisms remain unclear, 
neuroinflammatory responses like those identified here 
are likely to contribute to the pathophysiology of neuro-
degenerative diseases like Spinal Muscular Atrophy.

Methods
Drosophila strains and husbandry
Fly stocks were maintained on molasses and agar at room 
temperature (25 °C) in vials or half-pint bottles. As previ-
ously described, FLAG-SmnTg transgenes were site-spe-
cifically integrated into a PhiC31 landing site (86Fb) that 
had been recombined into the SmnX7 null background 
[17]. The SmnX7 null line was a gift of S. Artavanis-Tsa-
konis (Harvard University, Cambridge, USA). C15-GAL4 
[53] was a gift of A. Frank, University of Iowa (Iowa City, 
USA). All other GAL4/UAS-RNAi stocks were obtained 



Page 13 of 18Garcia et al. BMC Biology           (2024) 22:94 	

from the Bloomington Drosophila Stock Center (BDSC); 
see Table 1 for details.

To generate larvae expressing a single Smn missense 
mutant allele, SmnX7/TM6B-GFP virgin females were 
crossed to SmnX7, SmnTg/TM6B-GFP males at 25  °C. 
To reduce stress from overpopulation and/or competi-
tion from heterozygous siblings, crosses were performed 
on molasses plates with yeast paste, and GFP negative 
(SmnX7, SmnTg/SmnX7) larvae were sorted into vials con-
taining molasses fly food during the second instar larval 
stage. Sorted larvae were raised at 25 °C until the desired 
developmental stage was reached.

Experiments involving UAS-Smn-RNAi expression 
were carried out at 29  °C to maximize expression from 
the GAL4/UAS system and, therefore, the degree of Smn 
knockdown. To maintain consistency across experi-
ments, we used molasses plates with yeast paste and sub-
sequent sorting for all Smn-RNAi experiments.

Tandem mass tag (TMT) sample preparation
Cell lysates (100 μg; n = 3) were lysed in 8 M urea, 75 mM 
NaCl, 50 mM Tris, pH 8.5; reduced with 5 mM DTT for 
45  min at 37  °C; and alkylated with 15  mM iodoaceta-
mide for 30 min in the dark at room temperature. Sam-
ples were digested with LysC (Wako, 1:50 w/w) for 2 h at 
37 °C, then diluted to 1 M urea and digested with trypsin 
(Promega, 1:50 w/w) overnight at 37  °C. The resulting 
peptide samples were acidified to 0.5% trifluoracetic acid, 
desalted using desalting spin columns (Thermo), and the 
eluates were dried via vacuum centrifugation. Peptide 
concentration was determined using Quantitative Col-
orimetric Peptide Assay (Pierce).

Samples were labeled with TMT10plex (Thermo 
Fisher). 40  μg of each sample was reconstituted with 
50  mM HEPES pH 8.5, then individually labeled with 
100  μg of TMT reagent for 1  h at room temperature. 
Prior to quenching, the labeling efficiency was evalu-
ated by LC–MS/MS (liquid chromatography and tandem 
mass spectrometry) analysis of a pooled sample consist-
ing of 1 ul of each sample. After confirming > 98% effi-
ciency, samples were quenched with 50% hydroxylamine 
to a final concentration of 0.4%. Labeled peptide sam-
ples were combined 1:1, desalted using Thermo desalt-
ing spin column, and dried via vacuum centrifugation. 
The dried TMT-labeled sample was fractionated using 
high pH reversed phase HPLC [118]. Briefly, the sam-
ples were offline fractionated over a 90-min run, into 
96 fractions by high pH reverse-phase HPLC (Agilent 
1260) using an Agilent Zorbax 300 Extend-C18 column 
(3.5-μm, 4.6 × 250  mm) with mobile phase A contain-
ing 4.5 mM ammonium formate (pH 10) in 2% (vol/vol) 
LC–MS grade acetonitrile, and mobile phase B contain-
ing 4.5  mM ammonium formate (pH 10) in 90% (vol/

vol) LC–MS grade acetonitrile. The 96 resulting fractions 
were then concatenated in a non-continuous manner into 
twenty-four fractions and dried down via vacuum cen-
trifugation and stored at − 80 °C until further analysis.

Liquid chromatography‑tandem mass spectrometry (LC–
MS/MS)
Twenty-four proteome fractions were analyzed by LC–
MS/MS using an Easy nLC 1200 coupled to an Orbit-
rap Fusion Lumos Tribrid mass spectrometer (Thermo 
Scientific). Samples were injected onto an Easy Spray 
PepMap C18 column (75  μm id × 25  cm, 2  μm particle 
size) (Thermo Scientific) and separated over a 120-min 
method. The gradient for separation consisted of 5–42% 
mobile phase B at a 250 nl/min flow rate, where mobile 
phase A was 0.1% formic acid in water and mobile phase 
B consisted of 0.1% formic acid in 80% ACN.

For the proteome fractions, the Lumos was operated in 
SPS-MS3 mode [119], with a 3-s cycle time. Resolution 
for the precursor scan (m/z 350–2000) was set to 120,000 
with a AGC target set to standard and a maximum injec-
tion time of 50  ms. MS2 scans consisted of CID nor-
malized collision energy (NCE) 30; AGC target set to 
standard; maximum injection time of 50  ms; isolation 
window of 0.7 Da. Following MS2 acquisition, MS3 spec-
tra were collected in SPS mode (10 scans per outcome); 
HCD set to 65; resolution set to 50,000; scan range set 
to 100–500; AGC target set to 200% with a 150 ms maxi-
mum inject time.

TMT data analysis
TMT proteome RAW files were processed using Pro-
teome Discoverer version 2.5. “TMT10” was used as the 
quantitation method. Peak lists were searched against 
a reviewed Uniprot drosophila database (downloaded 
Feb 2020 containing 21,973 sequences), appended with 
a common contaminants database, using Sequest HT 
within Proteome Discoverer. Data were searched with 
up to two missed trypsin cleavage sites and fixed modi-
fications were set to TMT peptide N-terminus and Lys 
and carbamidomethyl Cys. Dynamic modifications 
were set to N-terminal protein acetyl and oxidation 
Met. Quantitation was set to MS3, precursor mass tol-
erance was set to 10 ppm, and fragment mass tolerance 
was set to 0.5 Da. Peptide false discovery rate was set to 
1%. Reporter abundance based on intensity, SPS mass 
matches threshold set to 50, and razor and unique pep-
tides were used for quantitation.

Statistical analysis was performed within Proteome 
Discoverer (version 2.4). Benjamini–Hochberg cor-
rected p-values (q-values) were calculated for each 
pairwise comparison, and statistical significance is 
defined as q-value < 0.05. Log2 fold change (FC) ratios 
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were calculated using the averaged normalized TMT 
intensities.

For Gene Ontology (GO) analysis, Uniprot protein IDs 
were converted to Flybase Gene IDs and gene symbols. 
GO enrichment was performed with FlyEnrichr, using 
the GO Biological Process (BP) category from AutoRIF 
[120, 121].

Transcriptome profiling
RNA-seq analysis was performed on previously pub-
lished datasets, retrieved as fastq files from the NCBI 
Gene Expression Omnibus (GEO). GEO accession num-
bers used here were as follows: GSE49587, GSE81121, 
and GSE138183. Alignments of paired-end reads were 
performed with HISAT2 and Ensemble release 109 of the 
Drosophila melanogaster genome (BDGP6.32) [122, 123]. 
Differential expression of transcripts was performed with 
kallisto and sleuth [44, 45]. For the determination of tran-
script abundance, the number of bootstrap samples was 
set at 100. StringTie and DESeq2 were used to determine 
differential gene expression [124, 125].

Scoring melanotic masses
Wandering third instar larvae were removed from 
vials, washed briefly in a room temperature water bath, 
dried, and placed on an agar plate under white light and 
2 × magnification. When melanotic masses were iden-
tified in a larva, both the size of the largest mass (size 
score) and the total number of masses (mass score) were 
qualitatively determined. Size scoring used the follow-
ing criteria: small masses range in size from barely visible 
specks to smooth round dots with a diameter no more 
than 1/10th the width of the larva; medium masses range 
from anything larger than a small mass to those with a 
diameter up to 1/3 the larval width; large masses had a 
diameter greater than or equal to 1/3 the larval width. 
Larvae were manipulated to allow for observation of all 
sides/regions; observation was performed for at least 20 s 
in all cases.

Statistical analysis
GraphPad Prism version 7 was used to calculate p-val-
ues for comparison of melanotic masses, using a one-
way ANOVA with a Dunnet correction for multiple 
comparisons.

Protein–protein interactions
In vitro binding and co-immunoprecipitation (co-IP) 
assays were performed as previously described [19]. 
Briefly, GST and GST-hTRAF6 were purified from E. 
coli, strain BL21*. Bacteria were grown at 37  °C over-
night and then induced using 1  mM isopropyl-β-d-
thiogalactopyranoside (IPTG). Recombinant protein was 

extracted and purified using glutathione sepharose 4B 
beads. SMN•Gem2 complexes were co-expressed in E. 
coli as described [126]. For the anti-Flag pulldown assays, 
transgenic flies exclusively expressing Flag-dSMN from 
the native Smn promoter [19] or animals co-expressing a 
UAS:Flag-dTraf6 transgene (Bloomington stock #82,150) 
and a tubulin-Gal4 driver line were used to carry out 
co-IP assays [19]. Following the pulldowns, co-purified 
proteins were eluted and run on an SDS–PAGE gel for 
Western blotting [19]. 
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