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Abstract

Objective: Osteoporosis is a systemic bone disease characterized by low bone mass, damaged

bone microstructure, increased bone fragility, and susceptibility to fractures. With the rapid

development of artificial intelligence, a series of studies have reported deep learning applications

in the screening and diagnosis of osteoporosis. The aim of this review was to summary the

application of deep learning methods in the radiologic diagnosis of osteoporosis.

Methods: We conducted a two-step literature search using the PubMed and Web of Science

databases. In this review, we focused on routine radiologic methods, such as X-ray, computed

tomography, and magnetic resonance imaging, used to opportunistically screen for osteoporosis.

Results: A total of 40 studies were included in this review. These studies were divided into three

categories: osteoporosis screening (n¼ 20), bone mineral density prediction (n¼ 13), and oste-

oporotic fracture risk prediction and detection (n¼ 7).

Conclusions: Deep learning has demonstrated a remarkable capacity for osteoporosis screening.

However, clinical commercialization of a diagnostic model for osteoporosis remains a challenge.
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Introduction

Osteoporosis is a systemic bone disease
characterized by low bone mass, damaged
bone microstructure, increased bone fragil-
ity, and susceptibility to fractures.1 The
clinical consequences of osteoporosis
include bone fracture, which poses various
health, economic, and social problems.2,3

Dual-energy X-ray absorptiometry (DXA)
or quantitative CT (QCT) are considered
the gold standard for diagnosing osteopo-
rosis by measuring bone mineral density
(BMD).4–8 Osteoporosis is a multifactorial
disease with clinical risk factors that include
age, sex, weight, previous fracture, smok-
ing, excessive drinking, and use of glucocor-
ticoids.9 Individual risk assessment of
osteoporosis can greatly benefit the early
prevention and treatment of the disease.
The World Health Organization (WHO)
Fracture Risk Assessment Tool (FRAX) is
the most recommended tool for predicting
fractures.10,11 This tool combines clinical
risk factors with or without BMD to predict
the probability of experiencing a fracture
within 10 years.

Artificial intelligence (AI) uses com-
puters and algorithms to emulate the
decision-making and problem-solving capa-
bilities of the human mind. Machine learn-
ing (ML), a subfield of AI, can be defined
as the process of learning rules from data
using statistical methods.12 ML can be
roughly divided into two categories: super-
vised learning and unsupervised learning.
Supervised learning uses given data to
learn toward a specific goal whereas unsu-
pervised learning aims to discover relation-
ships within the data. Deep learning (DL), a
subfield of ML, can be considered an exten-
sion of ML that applies multilayered model
architecture to uncover the underlying rules
and representative layers of sample data.

With the rapid development of AI, these
approaches have led to applications in
medical image recognition, image data

management, and AI-assisted screening
and diagnosis. The aim of the present
study was to review the application of DL
methods in the radiologic diagnosis of
osteoporosis.

Methods

Search strategy and selection process

We developed this review based on the
PRISMA guideline.13 A literature search
was conducted using the PubMed and
Web of Science databases with the follow-
ing search terms: (“artificial intelligence”
OR “deep learning” OR “neural network”)
AND osteoporosis AND (“CT” OR
“X-ray” OR “MRI” OR “panoramic radio-
graphy”). In the process of searching, we
excluded review articles. This study includ-
ed literature published from 2018 to 2023.
Specifically, studies after 2018 were selected
because researchers have made significant
advancements in the application of DL
since then whereas substantial contribu-
tions of ML and AI can be found in previ-
ous research. Furthermore, we focused on
routine radiologic methods, such as X-ray,
CT, and magnetic resonance imaging
(MRI), used to opportunistically screen
for osteoporosis. Based on the categoriza-
tion criteria proposed by the WHO, a
T-score lower than or equal to�2.5 is indic-
ative of osteoporosis whereas a T-score
between�1 and�2.5 denotes osteopenia.
This standard was widely accepted in the
included studies.

After the initial search, a two-step
screening scheme was implemented. Titles
and abstracts were screened for inclusion,
and the following exclusion criteria were
applied: (1) duplicated studies, and (2) stud-
ies that were irrelevant to ML and osteopo-
rosis. Additionally, we restricted studies to
only those reports written in the English
language. The full texts of each study were
then collated for further screening to ensure
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study quality. In cases where there was
disagreement between the two reviewers

(He and Zhu) during the initial screening,
the corresponding author (Xu) facilitated

discussion and made the final decision.
Owing to the diversity of methods and objec-

tives, quantitative analysis was limited.

Data extraction

Data extraction from the included studies

was performed by two independent
reviewers (He and Zhu) using a standard-

ized data extraction form. Any disagree-
ments were resolved through consensus or

with the corresponding author (Xu) making
the final judgment. The extracted informa-

tion included the country, year, author,
model selection, data amount, study objec-

tive, and performance metrics of the model
such as area under the curve (AUC), accu-

racy (ACC), sensitivity, and specificity,
among others.

This study was a literature review

regarding deep learning in osteoporosis
rather than an original study. Thus, there

was no observational or interventional pro-
cess in the study in terms of epidemiological

design. For this reason, the requirement for
ethics approval and informed consent was

waived.

Results

Search results

In the initial search of PubMed and Web of

Science, 330 records were identified. After
the exclusion of duplicates, defined as cita-

tions found in both databases, the titles and
abstracts of 202 records were screened, and

122 of these studies were excluded after
screening. Next, we conducted a full-text

review of the remaining 80 articles. A total
of 40 articles were finally included in the

review. The entire screening process is illus-
trated in Figure 1.

The characteristics of the included stud-
ies are presented in Table 1 and Figure 2.
All included studies were published between
2018 and 2023, with most being published
after 2020. X-ray (17/40)14–25 and CT (16/
40)26–41 images were the most frequently
used modalities; digital projection radiogra-
phy (DPR)42–44 was used in three studies
and MRI45,46 in two studies. Two stud-
ies47,48 using vertebral fracture assessment
(VFA) images were considered in this
review. In total, 75% of studies were con-
ducted in Asia, with China (13/40) and
South Korea (9/40) contributing most to
these studies. The included studies mainly
relied on unstructured data (i.e., imaging)
as the original input. Five studies18,19,24,43,49

combined the original image input with
clinical covariates, which were structured
data. Some studies used images as raw
input; a series of structured feature data
was obtained for DL.

Overall, more complex DL algorithms
have been proposed to achieve better per-
formance through the use of different
hyperparameter tuning methods. In recent
years, data pre-processing and data aug-
mentation techniques have been applied to
enhance the reliability of the results and
reduce the risk of overfitting. We observed
a trend in research moving from single-
center studies to multi-center studies, which
indicates stronger generalization capabilities
and potential clinical applications.

Studies on osteoporosis screening

Twenty studies18,19,24,26–29,34,42,44,50–52

focused on osteoporosis screening and clas-
sification. The convolutional neural net-
work (CNN) was widely used in all of
these studies. Osteoporosis was identified
based on opportunistic imaging from CT,
X-ray, DPR, and MRI, although MRI is
not recommended for opportunistic osteo-
porosis screening. The incorporation of
clinical covariates into the model
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construction process has resulted in

improved model construction, with an

improvement in the AUC by 2%–4%.

Furthermore, the use of pre-trained

models, pre-data augmentation, and image

standardization has enabled studies with

relatively limited data to achieve good per-

formance. Visualization of models was

performed using gradient-weighted class

activation mapping (Grad-CAM). One

study showed a perfect match with bone

fracture,51 but another study did not.18

Among the studies on osteoporosis, it is

worth noting that several studies14,35,38 used

U-Net for image segmentation. U-Net is a

well-known CNN semantic segmentation

algorithm. Liu et al.14 proposed the use of

U-Net for diagnosing osteoporosis. They

compared the performance of U-Net with

a back propagation network and support

vector machine (SVM), and U-Net demon-

strated the best performance. The results

indicated that the U-Net algorithm could

better distinguish between normal bone

mass and osteoporosis, achieving an AUC

of 0.872. However, U-Net had poorer rec-

ognition of lower bone mass and osteopo-

rosis. The proposed U-Net model

effectively dealt with image interference,

thereby improving accuracy.
U-Net is commonly included in auto-

matic systems for medical image segmenta-

tion. However, in some cases, the

segmentation performance falls below

Figure 1. Flow chart of the literature selection using PubMed and Web of Science.
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expectations. This can be attributed to factors

such as the complex structures of vertebral

bodies, label noise, semantic segmentation,

and variations in CT scanners. Pickhardt

et al.38 developed TernausNet, a variant of

U-Net with a VGG-11 encoder. Among the

CNN-based studies, the development of an

automatic system for fully automated detec-

tion of osteoporosis has potential clinical

application and commercial value. Zhang

et al.35 proposed an end-to-end multitask

joint learning framework that integrated posi-

tioning, segmentation, and classification. In

this framework, U-Net has a prerequisite

role. The framework achieved the best perfor-

mance for diagnosing osteoporosis (ACC:

0.957, sensitivity: 0.962, specificity: 0.922,

F1-score: 0.975) with a learning rate of 10e-

3, surpassing state-of-the-art DL models.
Transfer learning has gained popularity

in the field of DL owing to its ability to

leverage knowledge from previous tasks,

improving generalization and achieving

more accurate outcomes with limited data

input. Wani et al.16 used transfer learning to

develop four CNN networks: AlexNet,

ResNet, VggNet-16, and VggNet-19. To

mitigate the risk of overfitting, data aug-

mentation techniques were applied, consid-

ering the limited amount of data available.

The results showed that the pre-trained

CNN networks consistently outperformed

the normal CNN networks in all cases.

Notably, the pre-trained AlexNet achieved

Figure 2. Study objectives related to osteoporosis included in this review. Osteoporosis classification and
diagnosis was divided into lumbar spine (LS), vertebral body (VB), hip OP (osteoporosis), lumbar spine and
hip OP, non-standard assessment technique (NS), or not reported (NR). Fracture detection and risk pre-
diction was performed for the vertebrae (VF) and hip (HF). BMD prediction was conducted for hip BMD,
vertebral BMD (vBMD), and hip and vBMD.
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the best classification performance with an
accuracy of 91%, surpassing the perfor-
mance of the normal AlexNet by 15.3%.
The classification accuracy for ResNet,
VggNet-16, and VggNet-19 was 74.3%,
78.9%, and 73.68% for the normal CNN
and 86.4%, 86.3%, and 84.2% for the
pre-trained CNN, respectively.

In another study by Lee et al.,42 transfer
learning and fine-tuning were used to build
transfer learning models based on VGG-16
(VGG-16_TF), and further fine-tuning was
performed with the transfer learning model
(VGG-16_TF_FT). To prevent overfitting,
a five-fold cross-validation approach
was followed. The VGG-16_TF and
VGG-16_TF_FT models outperformed the
VGG-16 and CNN-3 models, achieving an
AUC of 0.858 and 0.782, respectively.
These results highlight the important con-
tribution of transfer learning and fine-
tuning in improving the performance of
DL models. By combining a pre-trained
CNN network with fine-tuning, the screen-
ing performance using small image datasets
is comparable to that of previous studies.

Dzierzak et al.28 used six pre-trained
deep convolutional neural network
(DCNN) architectures for model construc-
tion. Among these models, the VGG-16
model demonstrated superior performance,
achieving an AUC of 0.985 and an ACC
of 95%. Additionally, three models, (VGG-
16, VGG-19, and InceptionResNetV2)
achieved an ACC of over 90%. The remark-
able improvement in performance can be
attributed to the application of pre-training
and fine-tuning techniques, which have
proven to be highly effective despite the lim-
ited amount of available data. Notably, with
its relatively shallow architecture consisting
of 19 layers, VGG-16 emerged as the most
effective model for handling small datasets.

In a study conducted by Lee et al.,53 a
combination of VGG-16 and random forest
classifier (RFC) yielded the best overall per-
formance, with an AUC of 0.74, ACC of

0.71, sensitivity of 0.81, and specificity of
0.6. These findings further support the
notion that VGG-16 is a popular and influ-
ential model in the field. With its 13 convo-
lutional layers and three fully connected
layers, VGG-16 offers a compact architec-
ture. The use of small 3� 3 convolutional
layer filters allows for a reduction in param-
eters, resulting in decreased computational
effort and shorter model-construction time.

In 2020, Yamamoto et al.18 developed an
ensemble model by incorporating clinical
covariates with hip radiographic images.
This combined model outperformed those
using only radiographic images or clinical
covariates. The ensemble EfficientNet-b3
network was the most successful among
the five ensemble models, surpassing the
EfficientNet-b3 network that relied solely
on images. Those authors used guided
Grad-CAM for visualization of model clas-
sification. However, the heatmap was not
accurately distributed to the proximal fem-
oral trabeculae but rather to the exterior
femoral bone, indicating that osteoporosis
location was not adequately addressed.
However, in the study by Jang et al.,51 the
visualization results were closely aligned
with the proximal femur structure. In the
following year, Yamamoto et al.19 pursued
a related study, which combined image fea-
tures with patient variables and statistically
analyzed the differentiation caused by the
inclusion of these variables. Whereas the
study showed performance improvements,
some CNN models did not show similar
improvements. The effect size, a measure
of the true effect size of an experiment or
the strength of the association of variables,
was evaluated in the model, yielding a value
of 0.871, indicating a large effect size.
Osteoporosis screening was also conducted
using DPR and six ensemble CNN models,
including EfficientNet-b0, b3, and b7 and
ResNet-18, 50, and 152. The EfficientNet-
b7 and ResNet-152 models demonstrated
comparable performance. However, the
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visualization produced by Grad-CAM
varied, with ResNet focusing on the cortical
bone of the lower edge of the mandible, and
EfficientNet extending its focus to the area
above the cortical bone.

Hsieh and colleagues53 reported that
image-only models of VGG-16 and
ResNet-34 performed well, and the addition
of sex and age did not enhance model
performance. The extent to which clinical
characteristics can aid in performance
improvement remains a topic for future
investigation. Some studies have also
explored the impact of CT channel on ML
outcomes, in addition to considering clini-
cal covariates.

Multi-center studies conducted by both
Mao et al.24 and Zhang et al.15 aimed to
explore performance improvements associ-
ated with the incorporation of CT channel
and clinical covariates. The combination of
anteroposterior and lateral channels was
superior to each single channel. Mao’s
study achieved higher AUC and sensitivity
in diagnosing osteoporosis compared with
Zhang’s study, potentially owing to data
imbalance and the absence of cortical
bone in X-ray images. Both studies
highlighted potential biases in BMD meas-
urements using DXA and the CNN models
owing to factors such as aortic sclerosis,
bowel gas, and osteophytic spurs. Tariq
et al.34 developed a fusion model, which
combined coronal and sagittal images
from enhanced CT scans with basic patient
information to screen for low bone density.
This model achieved a high area under the
receiver operating characteristic curve of
0.86, indicating its potential in clinical
application. The model performed well in
a prospective group with and without the
use of contrast material and demonstrated
limited disparities when trained and validat-
ed on four sites with different CT scanners.

In their research, Chen et al.27 developed
a two-level classifier that combines ML
techniques with radiomics texture analysis.

The proposed classifier used SVM binary

classifiers, which were trained using nested

cross-validation. This approach involved

five outer and inner iterations to optimize

the hyperparameters. The vertebral body

segmentation model achieved a Sorenson–

Dice coefficient of 0.87, which is consistent

with the findings of Pan et al.30

Furthermore, the two-level classifier dem-

onstrated excellent performance, with an

AUC of 0.98, ACC of 0.94, sensitivity of

0.95, and specificity of 0.93.
Jang et al.51 addressed the limitations of

CNNs, which primarily focus on local fea-

tures rather than global features, by devel-

oping a nonlocal neural network (NLNN)

based on the VGG-16 architecture. The

NLNN model demonstrated promising

results, achieving an overall ACC of

81.2%, sensitivity of 91.1%, and specificity

of 68.9%. Notably, the Grad-CAM visual-

ization technique revealed that the NLNN

model accurately captured the bone struc-

ture, further validating its effectiveness in

analyzing global features.

Studies on BMD prediction

A total of 13 studies17,21,23,26,30–33,36,39,53,54

aimed to measure BMD. Among these, nine

studies focused on predicting vertebral

BMD,17,26,30–33,39,40,53 three studies assessed

hip BMD,21,23,36 and only one study exam-

ined both vertebral and hip BMD.54 It is

worth noting that whereas most studies

used quantitative assessment methods, one

study33 conducted qualitative assessment.
Pan et al.30 used U-Net for fully auto-

mated segmentation and labeling of verte-

bral bodies, which is a crucial step in BMD

prediction. The developed system demon-

strated a strong correlation with BMD

measurements, with a coefficient of deter-

mination (r2) ranging from 0.964 to 0.968.

The system also exhibited high diagnostic

performance for osteoporosis, with an
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AUC of 0.927, sensitivity of 85.71%, and
specificity of 99.68%.

In another study by Fang et al.,29 U-Net
was applied for automated segmentation of
vertebral bodies, and DenseNet-121 was
used to calculate BMD. The results from
three independent testing cohorts showed
that the average Dice similarity coefficients
for L1–L4 vertebral bodies were consistent-
ly near or above 0.8. Moreover, the BMD
values calculated using the CNN exhibited
a strong correlation with BMD derived
from DXA, with r> 0.98.

Breit et al.26 used a deep image-to-image
network (DI2IN) in their study. The pro-
posed DI2IN is a multi-layer CNN that
incorporates wavelet features and geometric
constraints (AdaBoost) to accurately seg-
ment the vertebral bodies of the thoracic
spine. Cylindrical volumes of interest
(VOIs) were placed at the center of the seg-
mented vertebral bodies. Mean attenuation,
measured in Hounsfield units (HU), was
calculated to assess bone density. The
study showed that the mean HU values
for T1–12 were significantly higher in indi-
viduals with normal bone density compared
with those who had osteopenia or osteopo-
rosis. Furthermore, a statistically signifi-
cant correlation was observed between the
mean HU values of T1–12 and absolute
bone density. The mean HU values demon-
strated a higher ACC (0.75), AUC (0.8),
Youden index (0.54), sensitivity (0.93),
and specificity (0.61) compared with clinical
reports. However, Kang et al.40 found that
not only the vertebral body but also other
bone areas contributed to BMD estimation.
Therefore, putting VOIs in the center of the
vertebral bodies may not enhance perfor-
mance, although the center of the segment-
ed vertebral bodies received greater
attention in the Gard-CAM of that study.
Similarly, Yasaka et al.39 used supervised
learning to develop a CNN model using
axial CT images as input. The CNN

model estimated BMD with AUCs of
0.965 and 0.970 for the internal and exter-
nal validation datasets, respectively, outper-
forming BMD measurements derived from
CT values of the lumbar vertebrae.
However, a limitation of that study was
the use of unenhanced CT. Sollmann
et al.32 established an automated CNN
model for segmentation, labeling, and
extraction of vertebral bone mineral density
(vBMD) from QCT scans. The study
showed that vBMD derived from QCT
(vBMD_QCT) exhibited a stronger correla-
tion with opportunistic CNN-based vBMD
derived from routine CT data (vBMD_OPP)
than with noncalibrated HU values.
Discrimination between patients with and
without osteoporotic vertebral fractures
was slightly better when using vBMD_OPP
compared with vBMD_QCT or noncali-
brated HU values. Considering the
scanner-specific nature and susceptibility to
contrast media, noncalibrated HU values
were not recommended in this study. To
address the bias introduced by contrast
material, Rühling et al.31 used three artificial
neural network (ANN) models. Among
these models, the 2D anatomy-guided
DenseNet model aimed to minimize contrast
medium-induced errors and achieved an
ACC of 0.983, sensitivity of 0.983, and spe-
cificity of 0.991. Additionally, the 2D
anatomy-guided DenseNet model, which
used combined axial images from T8–L2,
demonstrated excellent generalizability, per-
forming well on the public dataset.

Tang et al.33 developed a qualitative
assessment method for diagnosing osteopo-
rosis. The process involved extracting 2D
CT image slices of the pedicle level in the
lumbar vertebrae (L1) from 3D CT images.
The lumbar vertebrae were then identified
and segmented using MS-Net.
Subsequently, qualitative classification of
the lumbar vertebrae was performed using
BMDC-net. The study results demonstrated
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high precision of 80.57%, 66.21%, and
82.55% for predicting normal bone mass,
low bone mass, and osteoporosis, respec-
tively. However, it is worth noting that the
recognition accuracy for low bone mass was
significantly lower compared with that for
normal bone mass and osteoporosis, indicat-
ing a challenge that still needs to be addressed.
To visually represent the distribution of prob-
abilities for the three categories, a pie chart
was created, providing an overview of the
bone condition. However, in cases where the
probabilities of two categories are similar, pro-
viding a definitive clinical diagnosis becomes
challenging. This highlights the need for fur-
ther research and improvement in the diagnos-
tic accuracy of the qualitative assessment
method.

In the multi-center study by Sato et al.,17

the proposed method uses chest X-ray, age,
and sex to predict BMD and T-score. The
predictive performances for true BMD are
as follows: femoral BMD (r: 0.75, r2: 0.54)
and lumbar spine BMD (r: 0.63, r2: 0.40).
The predicted femoral BMD demonstrates
an excellent correlation with BMD mea-
sured by DXA. This indicates that the
model can accurately estimate the BMD
values based on the provided inputs.
Furthermore, the prediction for T-score,
which is used to diagnose osteoporosis
(T-score below �2.5), exhibits strong per-
formance with an AUC of 0.8. This sug-
gests that the model can effectively
identify individuals with osteoporosis
based on their T-scores. In addition to the
imaging data, clinical features such as age,
height, and weight are normalized and
included as input data for training an
ensemble ANN. The model has achieved
excellent performance in assessing BMD,
with a high r value of 0.8075 (p< 0.0001)
when compared with DXA measurements.
This indicates strong agreement between
the predicted BMD values and BMD
values obtained using DXA.

Studies on risk prediction and detection of

osteoporotic fracture

Two included articles concerned the risk

prediction of osteoporotic fractures. Du

et al.22 first segmented the femur region of

interest and the hard bone edge. They then

conducted a quantitative analysis of the

femoral trabecular score and femoral neck

strength to assess the quality of the femoral

neck. A risk prediction ML-based model of

femoral neck osteoporosis in older adults

was established, which makes sense in aux-

iliary diagnosis. In the test dataset, the

neural network model showed the highest

ACC of 95.83% and a recall of 100%.
Kong et al.49 used DL techniques to

demonstrate superior performance com-

pared with traditional fracture risk assess-

ment tools such as the FRAX and Cox

proportional hazard (CoxPH) models. The

DL model, specifically the DeepSurv

model, achieved a higher C-index value of

0.612 compared with FRAX (0.547) and

CoxPH (0.594). Notably, the authors

found that using multiple slices in the

spine region with DL yielded even better

results than using a single slice. This high-

lights the importance of considering a

broader range of information when using

DL algorithms for fracture risk assessment.

The findings of the above study suggest that

DL models have the potential to achieve

performance that is comparable to that of

FRAX, even when using only a single X-ray

image as input. This indicates the clinical

potential of DL in improving fracture risk

assessment and potentially enhancing

patient care.
Another five studies were aimed at detect-

ing osteoporotic fractures. Osteoporotic ver-

tebral fracture (OVF) is the most common

type of osteoporotic fracture. Tomita41 and

colleagues used CNN for the extraction of

features and achieved an ACC of 89.2% in

detecting OVF. Xiao et al.25 designed
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automated vertebral fracture detection soft-
ware based on lateral chest radiographs of
older women. In a study by Yabu,46 data
augmentation techniques and ensemble
learning were applied to distinguish fresh
OVFs from MRI images. However, that
study did not use any images from normal
individuals or patients with pathological
fractures, a notable limitation.

VFA via DXA can be used to detect a
vertebral fracture. VFA can be conducted
using both dual-energy (DE) and single-
energy (SE) mode scanners. Monchka
et al.47 and Derkatch et al.48 used DL to
detect osteoporotic fracture from VFA
images. Derkatch et al. trained and tested
their model on DE only. Monchka et al.
constructed their model on the basis of a
DE training set, an SE training set, and a
composite dataset comprising both DE and
SE VFAs. The authors found that CNN
models are highly sensitive to the scan
mode. The model trained with DE images
performed poorly in the SE test set.
Training on the composite dataset allows
CNN to generalize to both scan modes
and enhance the performance in DE
VFAs. The performance of this CNN is
on par with that of Derkatch et al., with a
similar AUC, slightly lower sensitivity, and
higher specificity. Thus, a composite train-
ing dataset including not only DE VFA
images but also SE images is highly recom-
mended. Notably, the study by Monchka
has some limitations in that they did not
try to identify external validation sets.
However, there are few studies toward this
direction. Further research is needed to
reveal the best solution.

Discussion

In this review, we summarized previous
reports focusing on DL models for the
radiologic diagnosis of osteoporosis. Our
analysis is primarily centered around imag-
ing methods commonly used in clinical

settings, such as X-ray, CT, and DXA.
These methods offer a cost-effective
approach to opportunistic osteoporosis
screening.

Overall, the DL models discussed in the
reviewed studies have demonstrated favor-
able results in both classification and
regression tasks. To mitigate the risk of
overfitting, researchers have used various
techniques such as data augmentation,
increasing the dataset size, and regulariza-
tion methods.

It is worth noting that only one study,
that of Lee et al. in 2018,44 reported an
AUC exceeding 0.99, indicating a potential
risk of overfitting. When evaluating regres-
sion tasks, the Pearson correlation coeffi-
cient (r) is commonly used as a
performance metric. Additionally, some
studies also present the mean absolute
error to further assess the accuracy of the
regression models.

However, it is important to consider the
issue of class imbalance when interpreting
accuracy results. Owing to the dispropor-
tionate representation of classes, accuracy
alone may overestimate performance by
favoring the majority class. Therefore, it is
crucial to consider alternative evaluation
metrics, such as AUC, that account for
class imbalance and provide a more compre-
hensive assessment of model performance.

To evaluate the reliability of a model,
sample size matters. To train a state-of-art
DL model, hundreds to millions of samples
are critical. Among the studies included in
the review, the sample size ranged from 75
to 35,679. With respect to data collection,
the main barrier is the lack of a large
sample size and distinct annotations of
training data. In 2017, Litjens et al.54 con-
ducted a survey of 308 studies, with most
studies showing a preference for pre-trained
CNN models to extract features. Because
the pre-trained model is accessible on
some websites and shows extremely good
performance with a small amount of data,
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it is the main choice when handling a small
data set. Lee and colleagues42 used transfer
learning to develop several models, among
which fine-tuning was proven highly suc-
cessful. We also observed that some studies
chose databases from other countries and
regions as the test set, achieving a relatively
good result and good generalizability.
However, access to a labeled database that
has accurate outcome for a certain disease
remains a challenge.

Achieving accurate outcomes in disease
prediction can be difficult in the field of
health care. Whereas advancements in tech-
nology and ML techniques have improved
the accuracy of predictions, certain factors
can still affect the reliability of the results.
One challenge in disease prediction is the
availability and quality of data. Obtaining
a large and diverse dataset that accurately
represents the target population can be dif-
ficult. Additionally, the presence of con-
founding factors and individual variations
within the population can affect the accura-
cy of predictions. Furthermore, the com-
plexity and heterogeneity of diseases can
make accurate prediction challenging.
Diseases often have multiple contributing
factors and can manifest differently in dif-
ferent individuals. This variability makes it
difficult to develop a one-size-fits-all predic-
tion model.

To address these challenges, ongoing
research focuses on refining ML algo-
rithms, incorporating more comprehensive
and diverse datasets, and considering addi-
tional clinical and genetic factors.
Collaborative efforts between researchers,
health care professionals, and data scien-
tists are crucial to improving the accuracy
of disease prediction models.

Most studies included in this review
underwent external validation, which
enhances the reliability and generalizability
of the findings. However, to further
strengthen the predictive capabilities of the
models, prospective cohort studies should

be conducted to closely monitor the
impact of disease progression on prediction.
This will provide valuable insights and
enable the refinement of prediction models.

Whereas the studies in this review pre-
sent certain challenges, they also provide
valuable directions for future research.
Notably, the inclusion of clinical covariates
in ensemble models has demonstrated
improvements in performance across vari-
ous medical specialties. The incorporation
of additional clinical characteristics into
CNN model construction is a common
practice. For instance, Tang et al.33,36

reported the inclusion of electrocardiogram
data as input for predicting atrial fibrilla-
tion recurrence, which yielded superior
results compared with other models.

Moving forward, it is crucial to explore
the types of clinical data input that can sub-
stantially enhance the prediction results,
particularly those with practical implica-
tions for clinical treatment and prevention.
Identifying and incorporating relevant clin-
ical data in future efforts can contribute to
the development of more accurate and
impactful prediction models.

DL has demonstrated a remarkable
capacity for osteoporosis screening.
However, improving the quality of input
requires enhancing the pre-processing of
image output, managing class imbalance,
and using large amounts of data. Sharing
the data and code of these studies would
be highly beneficial. Clinical commerciali-
zation of a diagnostic model for osteoporo-
sis remains a challenge owing to the need
for a high level of generalizability, low cost,
and reliance on readily accessible medical
images that are obtained daily.
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