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Abstract

Signal multiplexing is necessary to reduce a large number of readout channels in positron emission 

tomography (PET) scanners to minimize cost and achieve lower power consumption. However, 

the conventional weighted average energy method cannot localize the multiplexed events and 

more sophisticated approaches are necessary for accurate demultiplexing. The purpose of this 

paper is to propose a non-parametric decision tree model for demultiplexing signals in prismatoid 

PET (Prism-PET) detector module that consisted of 16 × 16 lutetium yttrium oxyorthosilicate 

(LYSO) scintillation crystal array coupled to 8 × 8 silicon photomultiplier (SiPM) pixels with 

64:16 multiplexed readout. A total of 64 regression trees were trained individually to demultiplex 

the encoded readouts for each SiPM pixel. The Center of Gravity (CoG) and Truncated Center of 

Gravity (TCoG) methods were utilized for crystal identification based on the demultiplexed pixels. 

The flood histogram, energy resolution, and depth-of-interaction (DOI) resolution were measured 

for comparison using with and without multiplexed readouts. In conclusion, our proposed decision 

tree model achieved accurate results for signal demultiplexing, and thus maintained the Prism-

PET detector module’s high spatial and DOI resolution performance while using our unique 

light-sharing-based multiplexed readout.

Keywords

demultiplexing; decision tree model; Prism-PET

corresponding author (amg4017@med.cornell.edu). 

HHS Public Access
Author manuscript
IEEE Trans Nucl Sci. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
IEEE Trans Nucl Sci. 2023 July ; 70(7): 1425–1430. doi:10.1109/tns.2023.3282831.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. INTRODUCTION

POSITRON emission tomography (PET) is a nuclear medical imaging technique that 

involves the detection of pairs of 511 keV gamma-ray photons emitted by the annihilation 

process [1] [2]. PET detectors are designed to collect incoming high-energy photons by 

scintillation crystals and convert the optical signals into measurable electrical pulses using 

photodetectors [3] [4].

In principle, one-to-one coupling of scintillation crystals to photodetectors with individual 

readout channels can achieve the best PET detector performance with the highest signal-to-

noise ratio (SNR), energy and timing resolution. However, it is costly and challenging to 

design and fabricate a large number of high-speed data acquisition (DAQ) channels, and 

therefore different signal multiplexing techniques have been proposed and implemented to 

reduce readout channels while minimizing performance degradations [5] [6].

The charge division multiplexing schemes that modulate the input signal from photosensors 

have been widely used to encode the interacted crystal position and photon energy 

information [7], which are commonly implemented in discretized positioning circuit [8]–

[11] and row-column summing readout circuit [12]–[15].

Center of gravity (CoG) method [16], which is a generalization of Anger logic [17], 

extracts position information from the multiplexed readout. Moreover, the truncated center 

of gravity (TCoG) approach [18] has been proposed to reduce the noise based on the 

centroid algorithm to improve the accuracy of events’ position determination.

In our previous work, we designed a novel light-sharing PET detector module using 

prismatoid light guides and single-ended readout, called Prism-PET [19] [20], and 

developed a unique multiplexing scheme that took advantage of the deterministic and 

localized light-sharing pattern of Prism-PET [21]. However, directly using the weighted 

average energy method fails to localize events using multiplexed readout, and thus here we 

introduced a data-driven demultiplexing model based on decision tree algorithm. Finally, 

we characterized the energy resolution, depth of interaction (DOI) resolution, floodmap 

decoding error, and peak-to-valley ratio (PVR) of a Prism-PET detector module with and 

without multiplexed readouts and evaluated the accuracy of our proposed demultiplexing 

model.

II. PRISM-PET AND IMUX DESIGN

The 4-to-1 Prism-PET is an ultra-high resolution, single-ended readout depth-encoding 

detector module that consists of a 16 × 16 array of 1.5 × 1.5 × 20 mm3 lutetium yttrium 

oxyorthosilicate (LYSO) scintillation crystals couples to an 8 × 8 array of 3 × 3 mm2 silicon 

photomultiplier (SiPM) pixels on one side and a segmented prismatoid light guide array 

on the opposite side (Fig. 1A, 1B, and 1C). The individual prismatoid mirrors confine the 

incident light to only the nearest SiPM neighbors and three distinct shapes of light-guide 

mirrors are designed (center, edge, and corner) to enhance crystal identification even at the 

periphery of the detector. [19] [20].
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The proposed interleaved multiplexing (iMux) scheme only shorts the four anodes from 

every other SiPM pixel across rows and columns that are overlapped with distinct prismatoid 

light guides and connects them to the same readout channel [21]. This is to preserve 

the deterministic light-sharing pattern, enable accurate signal demultiplexing, and thus 

minimize any degradation in crystal identification. The iMux scheme achieves the same 

4-to-1 multiplexing ratio as the conventional row-column summing circuit but with half the 

added capacitance and dark counts in each readout channel.

In this framework, the multiplexed readout is a linear combination of SiPM pixels, and the 

multiplexing scheme can be represented as a binary matrix where each element indicates 

whether the pixel is encoded or not (Fig. 1D and 1E).

III. METHOD

A. Data Acqusition

Prism-PET module was uniformly exposed to a 3 MBq Na-22 point source placed 

15 cm away to acquire the standard flood data using TOFPET2 application-specific 

integrating circuits (ASIC) and a FEB/D v2 readout board from PETsys Electronics 

[22]. The experimental procedure was conducted under controlled conditions inside an 

Espec BTU-133 benchtop test chamber to maintain stable SiPM and ASIC temperatures. 

Furthermore, SiPM signal multiplexing was achieved by connecting the detector module to 

the iMux board, where 4 SiPM anodes are shorted together, and from the iMux board to the 

TOFPET2 ASIC.

B. Events Localization

The CoG method is a widely used technique that encodes the positional coordinates of 

interaction events as

u = ∑i = 1
Nc pixi
Pc ,

(1)

v = ∑j = 1
Nr pjyj

Pr ,

(2)

Pc = ∑i = 1
Nc pi,

(3)

Pr = ∑j = 1
Nc pj,

(4)
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where (u, v) denotes the coordinates of the center of gravity of the light distribution on the 

flood histogram; xi and yj efer to the horizontal and vertical positions of the readout pixel 

in the SiPM array, respectively; pi and pj are the light signals detected by the readout ASIC; 

Nc and Nr represent the total number of column and row readout channels, respectively; Pc
and Pr correspond to the sums of signals obtained from all readout channels for a single 

interaction event.

An alternative method for localizing the gamma events’ position is TCoG, which involves 

subtracting a predetermined fraction of the largest light signal from all readout channels [23]

u = ∑i = 1
Nc  T pixi

Pc ,

(5)

v = ∑j = 1
Nr  T pjyj

Pr ,

(6)

 T pi(j) = max 0, pi(j) − t ∗ max pi(j) ,

(7)

where  T pi and  T pj are the truncated readout values in ith column and jth row, respectively, 

and t is the experimentally determined coefficient.

C. Energy Resolution

The energy of each gamma-ray interaction event was determined through the sum of all 

readout signals, and the energy spectrums of individual crystals were estimated by analyzing 

the energy of localized events within each crystal using flood histograms. The energy 

window from 409 to 613 keV (±20%) was utilized to select 511 keV energy events and the 

energy resolution was measured as the full width at half maximum (FWHM) of the fitted 

energy spectrum with a Gaussian function divided by the 511 keV photopeak.

D. Peak-to-Valley Analysis

The peak-to-valley analysis entails the aggregation of values along the u− or v−axis to 

generate projection profiles of crystal signatures in flood histograms [24]. The profiles of the 

central row of the crystal spots were considered for peak-to-valley ratios calculation using 

the mean of the peak value divided by the two adjacent valleys.

E. Event Localization Accuracy

To quantitatively assess the accuracy of the decision tree-based demultiplexing model, we 

established a metric known as the event localization accuracy, which was defined as the 
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percentage of gamma-ray events with synthetic multiplexed readout that were correctly 

positioned in the same crystal as with non-multiplexed readout.

F. Decision Tree Model Design

Demultiplexing signals from multiplexed readouts to SiPM pixels can be challenging due 

to the underdetermined nature of the system, which can result in an infinite number 

of potential solutions. To address this issue, we proposed a supervised learning-based 

demultiplexing model that utilizes the decision tree algorithm to effectively learn the Prism-

PET deterministic light-sharing pattern, which enables it to accurately decode SiPM pixel 

signals from multiplexed readout values.

1) Building the training dataset: We experimentally collected 1 million non-

multiplexed gamma-ray interaction events (64 SiPM pixels) paired with synthetic 

multiplexed readouts (Fig. 1D) to build the training dataset (Fig. 2A). The SiPM signals 

were converted to the energy ratio

Eri, j = pi, j
mk

,

(8)

where Eri, j is the ratio of SiPM signal to its corresponding multiplexed readout channel 

value, pi, j represents the light signal detected by the readout pixel in the SiPM array, mk is the 

encoded signal in kth multiplexed readout channel.

The synthetic multiplexed data and the calculated energy ratios for each gamma-ray event 

were considered as the training inputs and ground truth labels for the model training, 

respectively.

2) Tree building: The decision tree algorithm is characterized by a binary tree structure 

that is recursively partitioned using a binary splitting methodology to successively divide the 

predictor space. The procedure begins with a root node and iteratively generates branches 

that extend into internal nodes until further splitting is deemed incapable of producing 

a significant reduction in deviation, resulting in the generation of homogeneous subsets 

contained within the leaf nodes [25]. The best-split decision for each internal node is 

determined by searching for a splitting candidate that minimizes the sum of squared errors 

(SSE) of the subsets

SSE = ∑
i ∈ G1

gi − g1
2 + ∑

j ∈ G2

gj − g2
2,

(9)

where g and g represent the individual and average values of the samples belonging to 

groups G1 and G2, respectively.
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In order to enhance the generalization capability of the model and prevent overfitting, we 

imposed a threshold on the minimum number of samples in each leaf node and pruned 

the branches that result in only the marginal improvement to the model’s accuracy, thereby 

obtaining the optimal decision tree via the application of ten-fold cross-validation technique. 

Subsequently, we independently trained a total of 64 regression trees to predict the energy 

ratio in each individual SiPM pixel.

Fig. 3 depicts one of the 64 trained decision trees that have been implemented to estimate 

the energy ratio of one SiPM pixel. Within the tree diagram, the root node (denoted by a 

blue square) serves as the initial step in the estimation process, whereas the internal nodes 

(represented by grey squares) are utilized as splitting criteria for the tree. The leaf nodes 

(represented by orange squares) correspond to the final outcomes of the decision tree and 

signify the estimated energy ratio for the SiPM pixel.

3) Demultiplexing SiPM pixels: The multiplexed readout signals along with the 

predicted energy ratios derived from the model are employed in the process of 

demultiplexing energy signals in SiPM pixels (Fig. 2B)

pi, j = Eri, jmk,

(10)

where pi, j denotes the demultiplexed signal in the ith column and jth row of SiPM array, and 

Eri, j is the predicted energy ratio from the trained decision tree model.

IV. RESULTS

A. Flood Histograms and PVR Values

Representative floodmaps measured with and without multiplexed readouts are shown in 

Fig. 4A using CoG and TCoG coordinate calculation methods. Non-multiplexed readout 

for CoG and TCoG methods were found to exhibit clear separation of the 256 individual 

crystals, whereas flood histogram distortions and imperfect crystal identifications were 

expected using multiplexed readout. Thus, the decision tree-based demultiplexing model was 

developed to mitigate these distortions and successfully localize events that were captured 

with multiplexed readout.

Fig. 4B depicts a projection profile that is representative of the crystal signatures located on 

a single row of the floodmap. The peaks (red circle) and valleys (blue square) have been 

identified and subsequently applied in the computation of the peak-to-valley ratio that served 

as an indicator of the quality of crystal identification.

Fig. 4C demonstrates the average peak-to-valley ratio across the 10 rows (out of 16) in the 

middle part of a detector module with various truncated coefficients ranging from 0 to 0.2 

with an increment of 0.02. Notably, the truncated coefficient value of 0.14 resulted in the 

highest achievable PVR for both non-multiplexed and demultiplexed signals.
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B. Energy and DOI Performance

The energy spectra using non-multiplexed and demultiplexed signals from gamma events 

were found to almost perfectly overlap across the entire energy range (Fig. 5). Moreover, the 

study provides a quantitative evaluation of the energy and DOI resolutions (the measuring 

method proposed by [26]) of all crystals using both one-to-one (i.e., non-multiplexed) and 

4-to-1 iMux readout. The measured average energy/DOI resolution of all crystals using 

non-multiplexed and iMux readouts were 8.6±1.1%/1.9±0.6 mm and 9.4±1.2%/1.7±0.6 mm 

FWHM, respectively (Table I).

C. Decision Tree Model

Table II presents a quantitative comparison between the fully grown decision tree and the 

optimized decision tree which have undergone a process of removing leaf nodes that do 

not affect the overall accuracy of the model. The results demonstrated that the fully grown 

decision tree exhibited a mean depth of 29 and required approximately 11.6 seconds for 

demultiplexing energy signals of one million gamma-ray events. Conversely, the optimized 

decision tree showed an average tree depth of 12 and required only 5.5 seconds for 

demultiplexing the same dataset. The test data obtained from two Prism-PET detector 

modules were utilized to evaluate the decision tree model’s ability to accurately localize 

gamma-ray events and to generalize to the new data. The results demonstrate a consistent 

performance with ∼95% accuracy using data collected from both detector modules.

V. DISCUSSION

The floodmaps have demonstrated that the decision tree-based demultiplexing model in 

combination with the weighted average energy method is capable of localizing the gamma-

ray interaction events using multiplexed readout. Given that TCoG and CoG are equivalent 

when the truncated coefficient is 0, the TCoG method with the optimized coefficient of 0.14 

has shown a higher PVR than the basic CoG method and performed better in identifying 

crystals located on edges and corners, which is because CoG method is more sensitive to 

the asymmetry in light distribution and the noise from detector module that can lead to the 

distorted flood images.

Signal multiplexing techniques have been observed to have a negative impact on detector 

performance resulting in compromised energy and DOI resolutions when compared to using 

non-multiplexed readout [27]. However, it remains a widely used approach for reducing 

the cost of PET applications by reducing the number of DAQ readout channels. The 

insignificant difference of 0.8% in energy resolution and 0.2 mm in DOI resolution indicates 

the effectiveness of the proposed demultiplexing model in ensuring that detectors utilizing 

multiplexed readout can achieve comparable performance as using non-multiplexed readout.

In comparison to the fully grown trees, the optimized decision trees demonstrate a more 

compact model size and faster demultiplexing speed. Specifically, the average depth of the 

optimized trees is only 41% of that of the fully grown trees, and the time required for 

demultiplexing 1 million gamma events is 52% less. One must note that a typical PET 

scanner can generate gamma events on the order of 106 (e.g., hundreds of millions) which 
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are detected and processed by the imaging system, thus the efficiency of the model is 

significant at each stage of data processing [28].

There is no significant difference observed in the event localization accuracy of the 

demultiplexing model utilizing fully grown and optimized decision trees. This can be 

contributed to the two types of decision trees demonstrating an ability to accurately 

demultiplex the highest energy ratio in the primary SiPM pixel. However, the fully grown 

trees may be overfitting on pixels with minimal energies, resulting in different predicted 

values compared to optimized trees. Nevertheless, the truncated center of gravity positioning 

method implements a fractional subtraction technique to reduce the impact of noise from 

non-primary pixels. As a result, both the fully grown and optimized decision trees exhibit 

consistent event localization accuracy when evaluated on test data.

The decision tree model is considered advantageous compared to other machine learning 

algorithms such as K-Nearest Neighbor (KNN) and deep neural networks (DNN) in terms 

of interpretability and visualization. Decision trees allow for a straightforward understanding 

of the rules and conditions that lead to specific predictions. Furthermore, compared to KNN, 

which requires the computation of distances between each data point and all other points in 

the training set, decision trees offer an efficient mechanism that only requires traversing the 

tree structure to make a prediction [25].

VI. CONCLUSION

A decision tree-based demultiplexing model has been developed to decode signals from 

multiplexed readout to SiPM pixels. The model was evaluated in combination with 

the TCoG algorithm, demonstrating highly accurate event localization and clear crystal 

identification using multiplexed readout. In addition, the model exhibited a generalization 

ability to new data from different Prism-PET detector modules. Furthermore, the proposed 

demultiplexing model preserved the high-resolution characterization of the Prism-PET 

detector module and produced competitive results using multiplexed readout.
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Fig. 1. 
(A) Diagrams of 4-to-1 coupling Prism-PET detector array with a segmented light guide 

array. The solid lines represent the connecting patterns of the iMux scheme design. The 

gray square shows the deterministic light-sharing pattern and the dashed line provides an 

example of distinct light guide designs for crystals located at different parts. (B) Individual 

light guide designs for center, edge and corner crystals. (C) Four crystals couple to a single 

SiPM pixel. (D) Multiplexing process. (E) Multiplexing matrix in an image description.
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Fig. 2. 
The framework of the demultiplexing model. (A) Data preprocessing for training the 

decision tree model. (B) The process of demultiplexing energy signals in SiPM pixels using 

the trained decision tree model.
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Fig. 3. 
One of the trained decision trees in the demultiplexing model. The root, internal, and leaf 

nodes have been annotated as blue, grey, and orange, respectively.
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Fig. 4. 
(A) Comparison of floodmaps generated using CoG and TCoG methods for non-

multiplexed, synthetic/experimentally multiplexed, and demultiplexed readouts. The 

floodmaps were generated using a Na-22 source and plotted on the same scale. (B) A 

projection profile from a central row of crystals with ”peak” and ”valley” annotations is 

shown as an example. (C) The average PVR with standard deviation (error bar) in different 

truncated coefficients for non-multiplexed and demultiplexed synthetic encoded readouts.
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Fig. 5. 
Energy histograms for the center, edge, and corner crystals. Blue and red lines represent 

histograms for non-multiplexed and demultiplexed energy signals, respectively.
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TABLE I

QUANTITATIVE EVALUATION OF ENERGY AND DOI RESOLUTION ACROSS ALL CRYSTALS UTILIZING NON-MULTIPLEXED 

AND IMUX SIGNALS

Energy Resolution DOI Resolution

w/o w/ w/o w/

Center 8.3 ± 0.6% 9.5 ± 0.9% 1.9 ± 0.6 mm 1.8 ± 0.5 mm

Edge 9.5 ± 0.9% 9.6 ± 0.9% 1.8 ± 0.5 mm 1.7 ± 0.4 mm

Corner 9.9 ± 2.1% 10.3 ± 2.2% 2.1 ± 0.7 mm 2.0 ± 0.8 mm
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TABLE II

QUANTITATIVE COMPARISON BETWEEN FULLY GROWN TREE AND OPTIMIZED TREE

Fully Grown Tree Optimized Tree

Average Depth of the Tree 29 12

Time Consumption (1M Events) 11.6 s 5.5 s

Accuracy on Detector A 95.4% 95.6%

Accuracy on Detector B 95.5% 95.6%

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2024 July 01.


	Abstract
	Introduction
	Prism-PET and Imux Design
	Method
	Data Acqusition
	Events Localization
	Energy Resolution
	Peak-to-Valley Analysis
	Event Localization Accuracy
	Decision Tree Model Design
	Building the training dataset:
	Tree building:
	Demultiplexing SiPM pixels:


	Results
	Flood Histograms and PVR Values
	Energy and DOI Performance
	Decision Tree Model

	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	TABLE I
	TABLE II

