Table 7.
Concordance Index with 95% confidence intervals from 1000 bootstraps on the test set. The DACMVA framework for cross-modal variational auto-encoders with oversampling (CM-VAE-OV), adversarial training (CM-VAE-Adv), or both (CM-VAE-Adv-OV) is compared to the other baselines in varying data regimes.
| Missing Percent | Multisurv | OV | TDImpute | TDImpute-OV | CM-VAE-OV | CM-VAE-Adv | CM-VAE-Adv-OV |
|---|---|---|---|---|---|---|---|
| 4 | 0.681 ± 0.036 | 0.691 ± 0.034 | 0.688 ± 0.035 | 0.667 ± 0.033 | 0.700 ± 0.033 | 0.693 ± 0.032 | 0.703 ± 0.034 |
| 90 | 0.640 ± 0.036 | 0.666 ± 0.033 | 0.682 ± 0.033 | 0.675 ± 0.033 | 0.673 ± 0.036 | 0.685 ± 0.034 | 0.684 ± 0.033 |
| 95 | 0.598 ± 0.035 | 0.622 ± 0.038 | 0.630 ± 0.035 | 0.621 ± 0.035 | 0.639 ± 0.034 | 0.624 ± 0.036 | 0.636 ± 0.034 |