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1. Introduction
Biology has become a data-driven science, for example, 
due to next-generation sequencing and mass spectrometry 
(Schadt et al. 2010). Precision medicine will depend on big 
data because patient stratification needs to be informed, 
which is best done through omics analyses (Twilt, 2016; 
Hulsen et al., 2019). Data analysis in these fields is 
performed by bioinformatics and medical informatics 
(Chen et al., 2017). Big data, however, is not enough; 
it needs to be turned into information and knowledge 
(Mahoto et al., 2021). Therefore, the following sections 
explore the intersections of information science, artificial 
intelligence, and other fields (Figure 1).

Information science is a field of study concerned 
with collecting, organizing, analyzing, interpreting, and 
disseminating information (Seadle and Havelka, 2023). 
It encompasses a broad range of topics, including library 
science, information management, and data science, and 
has applications in fields such as education, business, and 
government (Cervone, 2016).

Artificial intelligence (AI) is the simulation of human 
intelligence in machines designed to think and act like 
humans (Korteling et al., 2021). AI systems can be trained 
to perform various tasks, such as image and speech 

recognition, decision-making, and language translation 
(Litjens et al., 2017). AI has become increasingly prevalent 
in society, with applications ranging from healthcare to 
autonomous vehicles (Bohr and Memarzadeh, 2020). 
Furthermore, AI has been used to develop novel algorithms 
and insights that have been used to improve many existing 
processes (Cordero et al., 2019; Tran et al., 2019).

Machine learning (ML) is a subfield of AI that involves 
the development of algorithms and statistical models 
that enable computers to “learn” from data (Yazdani et 
al., 2023). Machine learning aims to allow computers 
to make predictions or take actions based on input data 
without being explicitly programmed to do so (Baştanlar 
and Ozuysal, 2014). In bioinformatics, machine learning 
has been used to make predictions regarding the protein 
structure (AlQuraishi, 2021), protein-protein interactions 
(Sarkar and Saha 2019), gene expression (Al taweraqi and 
King, 2022), and disease diagnosis (Ahsan et al., 2022).

Deep learning (DL) is a subfield of machine learning 
based on artificial neural networks inspired by the 
structure and function of the human brain (Lepakshi, 
2022). Deep-learning algorithms consist of multiple 
layers of interconnected nodes, each performing a specific 
computation on the data it receives (LeCun et al., 2015). 
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The use of deep learning and the availability of enormous 
computing resources has revolutionized the field of AI, 
allowing computers to achieve human-like accuracy in 
tasks such as image and speech recognition (Hosny et al., 
2018).

Deep-learning algorithms have proven highly effective 
in various tasks, such as image and speech recognition, 
natural language processing, and autonomous decision-
making. For example, deep-learning algorithms have been 
used to classify images from the ImageNet dataset field 
accurately (Yang et al., 2020). Deep-learning algorithms 
have been used in speech recognition to achieve near-
human-level accuracy (Litjens et al., 2017). Natural 
language processing also uses deep-learning algorithms 
to generate human-like text (Davenport and Kalakota, 
2019). In autonomous decision-making, deep-learning 
algorithms have been used to control robotic agents (Sarker 
et al., 2021). The ability of deep-learning algorithms to 
automatically learn complex representations from raw 
data has led to remarkable breakthroughs in artificial 
intelligence (Alzubaidi et al., 2021).

In summary, although all these fields are related, they 
differ in focus and scope. Information Science deals with 
managing and disseminating information, whereas AI and 
ML focus on developing algorithms that enable computers 
to simulate human intelligence. Deep learning is a specific 

machine learning approach based on artificial neural 
networks.

In this study, we discuss some arbitrarily selected DL 
applications in bioinformatics to showcase the general 
impact of DL on bioinformatics. In addition, we raise the 
questions that users of such DL models should ask when 
assessing them for use in their research. We aim to provide 
a high-level yet comprehensive overview of the issues that 
may arise when applying DL models in bioinformatics. 
The work covers questions ranging from considering the 
original training data to making DL models somewhat 
more interpretable. We hope that equipped with these 
questions, bioinformaticians who employ DL models for 
inference can perform proper model selection.

In the following sections, ML, DL, and the relevance of 
DL in bioinformatics will be detailed. 
1.1. Machine learning
Machine learning is a subfield of artificial intelligence that 
involves developing algorithms that can learn patterns 
in data and make predictions or decisions based on 
the trained model. Machine learning is used in many 
applications, from image recognition and natural language 
processing to autonomous vehicles and medical diagnosis 
(Acosta et al., 2022).

One of the fundamental requirements for machine 
learning is numeric data. Machine learning algorithms 

Figure 1. Relationships among bioinformatics, information science, artificial 
intelligence, machine learning, and deep learning. At the intersection of all 
circles (orange) is the application of AI, ML, and DL in other areas, such as 
bioinformatics.
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require numeric data because they use mathematical 
models to make predictions or decisions. Numeric data 
can be represented as a matrix, where each row represents 
a sample and each column represents a feature. Features 
are the characteristics of the data that the algorithm uses 
to make predictions or decisions.

In some cases, the available data may be in a different 
form than the numeric data. In these cases, the data must 
be transformed into numeric data before it can be used 
with machine learning algorithms. This process is called 
feature engineering and involves selecting, transforming, 
and combining the features in the data to create a new 
set of numeric features that can be used with machine 
learning algorithms (Roe et al., 2020). 

In addition to numeric data, machine learning 
algorithms require high-quality data. High-quality data are 
accurate, complete, and representative of the problem the 
algorithm is trying to solve. High-quality data is essential 
because it ensures that the algorithm learns the correct 
patterns so that the resulting model can make accurate 
predictions or decisions (Habehh and Gohel, 2021).

Expert-crafted features can also be necessary for machine 
learning algorithms. Expert-crafted features are numerical 
representations of the data designed by domain experts 
who understand the problem the algorithm is trying to 
solve. Expert-crafted features can help improve machine 
learning algorithms’ performance by providing more relevant 
information for the algorithm to learn from, especially if the 
amount of training data is restrictive (Lin et al., 2020).

Different machine learning algorithms can be used, 
depending on the problem that needs to be solved. Some 
popular learning algorithms include the following (Hastie 
et al., 2009; Jovel and Greiner, 2021):
	 Linear regression is an algorithm that attempts to find 

the best-fit line that describes the relationship among 
variables.

	 Logistic regression is a classification algorithm that 
predicts the probability of an event occurring.

	 Decision trees are hierarchical algorithms that use a 
series of binary decisions to make predictions.

	 Random forest is an ensemble algorithm that combines 
multiple decision trees to improve performance.

	 Support vector machines are a classification algorithm 
that attempts to find the best hyperplane that separates 
the data into different classes.

	 Neural networks represent an algorithm that uses 
layers of interconnected nodes to learn complex 
patterns from the data.

In conclusion, machine learning is a powerful tool 
that can solve many problems. It requires numeric data, 
high-quality data, and sometimes expert-crafted features. 
There are different learning algorithms to choose from 
depending on the problem that needs to be solved.

1.2. Deep learning
Neural networks were introduced decades ago. Back then, 
they typically consisted of a few layers (input, hidden, and 
output) of neurons, with the self-organizing maps being 
the smallest and containing only two layers (input and 
processing/presentation). Following the large increase 
in computational power since then, a larger number of 
layers can be handled today, and with more hidden layers, 
the networks are referred to as deep neural networks. 
Typically, deep learning models (deep neural networks) 
consist of three main layers: the input, hidden, and output 
layers.

The input layer (Figure 2, orange nodes) is the starting 
point of the neural network. It receives raw data or features 
used as input for the deep learning model. Each feature 
or data point corresponds to a node in the input layer. 
The values of these nodes are passed forward through the 
network for further processing. The number of neurons 
in the input layer is governed by the input. For example, 
if the input is a coin toss, one neuron would be enough 
to represent that. The more complex the input, the more 
neurons are needed.

Hidden layers (Figure 2, blue nodes) are intermediate 
between the input and output layers. They are responsible 
for transforming input data into more abstract and 
meaningful representations. Deep learning models 
can have multiple hidden layers, making them “deep” 
networks. Each node in a hidden layer can be connected to 
every node in the previous and subsequent layers; however, 
other connectivity, such as convolutional layers, is also 
used. The connections between nodes are represented by 
weights, adjusted during training to optimize the model’s 
performance. The hidden layers can have any number of 
neurons, and there is no clear rule regarding how many 
neurons there should be. This needs to be established for 
each DL problem. The hidden layers also do not need the 
same number of neurons; they may increase, decrease, 
or remain the same throughout the hidden layers. In 
our example (Figure 2), the hidden layers contain more 
neurons than the input layer, but this is not always true.

The output layer is the final layer of the deep learning 
model. It produces the desired output or prediction based on 
the information processed in the hidden layers. Therefore, 
the number of nodes in the output layer depends on the 
specific task for which the model is designed. For example, 
in a classification task, each node in the output layer may 
represent a different class. In contrast, a single node may 
represent the predicted numeric value in a regression task. 
If the result is binary, one node would suffice. 

Through training, deep learning models are trained 
by adjusting the weights in the connections between 
nodes to minimize errors and improve their performance 
on a specific task. This training is often accomplished 
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using large numbers of labeled data and optimization 
techniques such as backpropagation and gradient descent. 
When developing a DL model, it is typical that different 
architectures of the DL network are tried and that the most 
suitable architecture for the task is chosen on empirical 
grounds. 

The major difference between deep learning and 
traditional machine learning is that DL detects higher-level 
features automatically. In contrast, ML depends on features 
suggested or generated by experts in the field (Sarker, 
2021). Automatically discerning higher-level features can 
lead to a significant drawback in explainability, which is 
vital in healthcare, where it is crucial to understand the 
decision-making process (the Precise4Q consortium et al., 
2020). For example, a decision tree transparently discloses 
all steps from input to decision. At the same time, a DL 
model implicitly contains all the information leading to 
the decision but needs to be explored or understood by 
humans. 

We illustrate the major difference between traditional 
machine learning and deep learning by focusing on two 
aspects: feature generation and detection, as well as the 
interpretability of the models (Table).

On the left side, we represent traditional ML, where 
features are suggested or generated by experts in the field. 
This highlights the involvement of domain knowledge 

and human expertise in identifying the relevant features 
of the model. These features serve as inputs to the ML 
model, which then goes through the decision-making 
process. The decision-making process can be represented 
as a simple flow, such as a decision tree, where each step is 
easily understandable and traceable. This emphasizes the 
explainability and transparency of traditional ML models.

On the right side, we depict deep learning, which 
excels at automatically detecting higher-level features from 
raw data. Table represents this by showing an automatic 
feature detection process. DL models consist of complex, 
layered neural networks that can learn and extract 
abstract representations and features from data without 
explicit human intervention. However, this complexity 
also contributes to the need for more transparency and 
interpretability. While the DL model implicitly contains 
all the information leading to a decision, understanding 
the decision-making process or exploring the reasoning 
behind it is more complex for humans.
1.3. Why deep learning is relevant to bioinformatics
Bioinformatics involves the application of computational 
methods to analyze biological data (Bayat, 2002). 
Bioinformatics uses machine learning to analyze and 
interpret biological data. However, traditional machine 
learning methods require manual curation of features, 
which can be challenging. On the other hand, deep learning 

Figure 2. Fully connected deep learning network. The neurons of the input layer are 
in orange, those of the hidden layers are in blue, and the neurons of the output layer 
are in green. The connections in this example are directed from input to output and 
are indicated by arrows. Each arrow represents a trainable weight.
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can learn higher-level features directly from the data (Lee 
et al., 2018). If it is possible to derive a mathematical 
formula that describes a problem, machine learning is no 
longer needed to address the issue. However, biology is a 
complex interplay of many factors that cannot be modeled 
in its entirety using mathematical formulas. Hence, the 
application of machine learning, specifically deep learning, 
is warranted. For example, in gene expression analysis, 
traditional machine learning methods involve the manual 
curation of features (Monaco et al., 2021). While this is 
relatively easy for gene expression, predicting whether an 
RNA sequence is a pre-microRNA is more challenging. 
Thousands of features need to be manually curated, and 
it needs to be clarified whether all of these features are 
relevant (Sacar and Allmer, 2013). In such cases, DL can 
learn higher-level features directly from the data (Kim et 
al., 2016), making it highly relevant to bioinformatics.

Despite the promising results achieved by deep 
learning in bioinformatics, challenges still need to be 
addressed. One of the major challenges is the need for 
large amounts of high-quality data (Sarker, 2021; Son et 
al., 2022). Deep-learning models require large amounts 
of data to learn complex patterns, and the data quality 
directly impacts the model’s accuracy. Another challenge 
is the interpretability of deep-learning models (Meng et 
al., 2022). Deep-learning models are often described as 
“black boxes” since it is difficult to understand how they 
arrive at their predictions (Azodi et al., 2020). 

In the following section, we will first discuss some 
applications of deep learning in bioinformatics before 
exploring ways to help shed light on the decision-making 
process of the so-called black boxes. 

2. Selected applications of deep learning in bioinfor-
matics
We have selected the following eight deep-learning tools 
because they represent a diverse range of applications in 

bioinformatics, demonstrate the power and flexibility of 
deep-learning approaches, and showcase the benefits of 
integrating deep learning into various aspects of biological 
research. The selected tools are DeepBind (Alipanahi et al., 
2015), DeepCpG (Angermueller et al., 2017), DeepGene 
(Yuan et al., 2016), DeepFam (Seo et al., 2018), DeepLoc 
(Thumuluri et al., 2022), DeepPath (Coudray et al., 2018), 
ScanNet (Tubiana et al., 2022), and DeepVariant (Poplin 
et al., 2018). We will provide a short description of each 
tool in the following sections. All these tools can be 
considered black boxes, which limits the interpretability 
of their predictions (we discuss interpretability in section 
3.3). Additionally, all models are trained on a subset of 
the chemical/biological possibilities so that they can have 
potential issues with the generalizability of the model. On 
the other hand, overfitting is a possibility for these models, 
which also hinders the generalizability of the model. We 
discuss these issues in section 3.1. Apart from these and 
other challenges, mentioned elsewhere in this text, we 
point out some limitations with each of the tools.

DeepBind (Alipanahi et al., 2015) is a deep-learning 
tool that predicts the binding specificity of DNA- 
and RNA-binding proteins and the effects of genetic 
mutations on these interactions. Using convolutional 
neural networks, DeepBind can identify binding patterns 
from large datasets of sequence information. This tool 
has significantly improved the accuracy of predicting 
protein-DNA interactions and has broad applications 
in understanding gene regulation and the impact of 
noncoding genomic variants in diseases. DeepBind has its 
limitations; for example, binding sites are heterogeneous 
(e.g., size, location, and sequence composition), which 
puts into question whether DeepBind can accurately 
predict all these types. Additionally, binding is a dynamic 
process that is further influenced by the environment, such 
as salt concentration. It is unlikely that all these influences 
are accurately modeled. 

Table. Differences between machine learning using traditional algorithms and machine learning using deep neural networks.

ML DL
Algorithms Many different (SVM, DT, kNN, …) Defined by architecture (RNN, GAN, LSTM, ...)
Data size Can work well with smaller inputs Requires large amount of data
Performance Typically extremely fast Computational complexity depends on the architecture
Features Hand-crafted Can be learned
Preprocessing Significant effort Can be trained on raw data
Fine tuning Setting the algorithm parameters Can be performed automatically during training
Complexity Typical simple mathematical models Depends on the architecture (highly flexible)
Transparency Typically transparent Hard to transparently show decision making
Explainability Typically explainable Hard to show the reasoning process
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DeepCpG (Angermueller et al., 2017) is a deep-learning 
model that predicts methylation states in single cells using 
bisulfite sequencing data. By employing a combination of 
convolutional and recurrent neural networks, DeepCpG 
accurately models spatial and long-range dependencies in 
methylation patterns, providing valuable insights into the 
epigenetic landscape of individual cells. This tool is helpful 
for studying development, cellular differentiation, and 
diseases associated with epigenetic changes, such as cancer. 
DeepCpG is primarily designed for single-cell methylation 
data and, therefore, performance may degrade when using 
it for cell populations. Also, CpGs are not evenly distributed 
throughout a genome, and methylation patterns can vary 
across cell types. These limitations should be considered 
when using DeepCpG.

DeepGene (Yuan et al., 2016) is a deep-learning-
based classifier for cancer subtypes using somatic point 
mutations. It employs a combination of restricted 
Boltzmann machines and deep neural networks to learn 
hierarchical representations of mutational patterns. This 
approach enables accurate classification of cancer subtypes 
and reveals potential driver mutations that contribute to 
carcinogenesis, providing valuable insights for precision 
oncology and personalized medicine. While many genes 
are well-studied across species, DeepGene was trained on 
a specific dataset, which may not include all possibilities. 
Additionally, genetic sequence features are very 
heterogenic, which may further limit the generalization of 
the model.

DeepFam (Seo et al., 2018) is a protein family 
classification tool that uses deep learning to predict the 
functional family of a given protein sequence. By employing 
a 1D convolutional neural network (CNN), DeepFam 
captures local and global sequence features, resulting in 
highly accurate family predictions. This tool aids in the 
functional annotation of proteins and supports large-
scale analyses of protein sequence datasets, facilitating the 
discovery of novel protein families and studying protein 
evolution. When using the tool, one should keep in mind 
that protein families, for example, transcription factors, are 
highly heterogeneous and that many noncanonical protein 
sequences exist that may pose challenges to DeepFam. 

DeepLoc (Thumuluri et al., 2022) is a deep-learning-
based tool for predicting the subcellular localization 
of proteins. Using a combination of convolutional and 
recurrent neural networks, DeepLoc captures both 
sequence-based and evolutionary information, resulting 
in highly accurate localization predictions. This tool is 
essential for understanding protein function, protein-
protein interactions, and cellular processes in various 
organisms. Similar to DeepBind, the environmental 
conditions exert a strong influence on prediction accuracy, 
which can be exemplified by membrane proteins. Especially 

with posttranslational modifications, this is a formidable 
challenge. Another limitation is that many proteins exist in 
multiple locales and that not always a confidence measure 
is attached to the predictions. 

DeepPath (Coudray et al., 2018) is a deep-learning 
approach for inferring gene regulatory networks using 
gene expression data. By employing a combination 
of unsupervised feature learning and supervised 
classification, DeepPath learns the regulatory relationships 
between genes, providing insights into the complex 
regulatory mechanisms that govern cellular processes. This 
tool has broad applications in the study of gene regulation, 
disease mechanisms, and the development of therapeutic 
interventions. DeepPath may be sensitive to sequence 
variations, which may hamper the recognition of binding 
sites. Additionally, missing indirect evidence for binding 
or noncanonical sequence can limit the performance of 
DeepPath.

ScanNet (Tubiana et al., 2022) employs a geometric 
deep-learning model that directly learns features from 
protein structures to predict functional sites such as binding 
sites for small molecules, other proteins, or antibodies. 
ScanNet is accurate, versatile, and interpretable, making 
it suitable for functional site prediction tasks. It effectively 
detects protein-protein and protein-antibody binding sites 
and predicts epitopes of the SARS-CoV-2 spike protein. 
The same limitations that apply to DeepBind also apply 
to ScanNet. The applicability of ScanNet to noncanonical 
sequences may be especially limited.

DeepVariant (Poplin et al., 2018) is a deep-learning-
based approach for variant calling in high-throughput 
sequencing data. Employing a deep neural network, 
DeepVariant identifies genomic variants with high 
accuracy and sensitivity while reducing false-positive 
calls. This tool is essential for studying genetic variation in 
populations, understanding the genetic basis of diseases, 
and advancing personalized medicine efforts. Data quality, 
especially base-calling accuracy, together with the depth of 
sequencing, affects DeepVariant’s effectiveness. The same 
is true for contaminations in the sequencing data from, 
e.g., microbes. 

In summary, these eight deep-learning tools showcase 
the versatility and power of deep-learning approaches in 
tackling diverse bioinformatics challenges. By harnessing 
the power of deep learning, these tools have significantly 
advanced our understanding of complex biological 
processes and contributed to various applications, 
including functional annotation, protein design, disease 
mechanism investigation, and personalized medicine. As 
deep-learning techniques continue to evolve and improve, 
they will undoubtedly play an increasingly important 
role in advancing the field of bioinformatics and our 
understanding of the underlying principles governing 
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life. Clearly, all tools have general limitations that apply to 
all DL tools and have specific limitations, as pointed out 
above. However, tools that are not based on DL may have 
similar and/or further limitations, and we believe that with 
DL, predictions have become more accurate.

Bioinformatics encompasses many topics, tools, and 
analytical approaches. Deep learning is an approach that 
can be applied to many such areas. In the following, we 
will briefly mention some areas and indicate the selected 
tools. Keep in mind, that the same general limitations 
mentioned above and detailed later in the text apply to all 
the tools mentioned.
2.1. DNA sequencing
2.1.1. Sequence assembly
The genome of a species must be available for many 
downstream bioinformatics tasks. Therefore, sequence 
assembly is one of the first tasks performed in bioinformatics 
for any species of interest. Many tools for genome assembly 
exist and have been compared in an Assemblathon 
(Bradnam and Fass, 2013). Interestingly, we could not find 
an assembly tool that employs deep learning. However, 
for the assembly of metagenomes, MetaVelvet-DL (Liang 
and Sakakibara, 2021) is an extension of MetaVelvet 
(Namiki et al., 2012) that incorporates deep learning. The 
original MetaVelvet algorithm is an extension of the Velvet 
assembler, optimized explicitly for metagenomic data. It 
works by constructing de Bruijn graphs from the input 
sequencing reads and then identifying and partitioning 
these graphs into individual species or subgraphs 
to assemble the genomes of individual organisms. 
MetaVelvet-DL improves upon the original MetaVelvet 
algorithm by incorporating deep-learning techniques to 
better handle the complexity and diversity of metagenomic 
data. Using deep neural networks, MetaVelvet-DL can 
more accurately identify and partition the de Bruijn 
graphs, improving genome assembly and better resolution 
of individual species within the microbial community.
2.1.2. Genome annotation
The next step in bioinformatics analysis following sequence 
assembly is genome annotation. 

The previously mentioned DeepVariant can be 
employed to annotate variants in a genome. Other 
approaches that are more directly targeted to genome 
annotation have been proposed (Yip et al., 2013; Shen et 
al., 2022). A more complete solution for this purpose is 
presented by DeepAnnotator (Amin et al., 2018), which 
provides a generalized computational approach for 
genome annotation at an F-score of 94%. DeepAnnotator 
is a deep-learning-based tool for functional annotation 
of proteins. It employs deep neural networks to predict 
protein function by classifying protein sequences into 
functional categories based on their amino acid sequences. 

The main goal of DeepAnnotator is to assign functional 
roles to proteins, which is essential for understanding 
the biological processes occurring within cells and for 
studying protein interactions, pathways, and the impact 
of genetic variations on protein function. DeepAnnotator 
uses a hierarchical deep neural network architecture to 
capture local and long-range dependencies within protein 
sequences, enabling it to learn complex sequence features 
and patterns associated with specific protein functions. 
The deep-learning model is trained on large-scale protein 
sequence datasets with known functional annotations, 
enabling it to recognize and predict the functions of novel 
protein sequences.
2.2. Gene expression analysis
Following genome assembly and annotation, another 
measure is the expression of such genes in an organism, 
especially the differential expression among different 
phenotypes. Several studies have shown that deep-
learning models provide more accurate predictions of 
gene expression than traditional methods (Amin et al., 
2018; Avsec et al., 2021). High-throughput gene expression 
profiling technologies, such as DNA microarrays and RNA 
sequencing, provide large gene expression datasets that can 
be analyzed using deep-learning algorithms (Zhang et al., 
2021). Deep convolutional neural networks (CNNs) are 
currently the state-of-the-art method for predicting gene 
expression from DNA sequences (Avsec et al., 2021). Deep 
learning has also been used to discover biomarkers and 
identify genetic variations in human genomics (Alharbi 
and Rashid, 2022; Shen et al., 2022). Therefore, deep 
learning has been successfully applied to gene expression 
analysis in bioinformatics.
2.3. Gene function prediction
Gene function prediction is similar to genome annotation 
but focuses on the biological roles of the identified genes. 
Several tools are available for gene function prediction in 
bioinformatics. 

DeepGOPlus (Kulmanov and Hoehndorf, 2021) is a 
deep-learning-based tool for predicting the function of 
proteins using their amino acid sequences. DeepGOPlus 
employs a neural network architecture, a precise 
combination of convolutional neural networks (CNNs) 
and long short-term memory (LSTM) networks, to predict 
gene ontology (GO) terms associated with proteins. 
DeepGOPlus captures local and global sequence features, 
leading to highly accurate predictions of molecular 
function, biological processes, and cellular component GO 
terms. This tool aids in understanding protein function 
and supports functional annotation efforts for newly 
sequenced genomes.

DeepGMAP (Onimaru et al., 2020) is a deep-
learning-based tool for predicting the genomic location of 
transcription factor binding sites (TFBSs) using ChIP-seq 
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data. DeepGMAP employs a combination of convolutional 
neural networks (CNNs) and recurrent neural networks 
(RNNs) to model the spatial and sequence-specific 
patterns of TF binding. DeepGMAP significantly improves 
the accuracy and specificity of TFBS prediction compared 
with traditional approaches, providing valuable insights 
into gene regulatory networks and the functional impact 
of noncoding genetic variants.

DeepNF (Gligorijević et al., 2018) is a deep-learning-
based tool for predicting protein-protein interactions and 
functional associations. Using an unsupervised deep-
learning approach, it integrates multiple types of biological 
data, such as protein sequence, domain composition, and 
protein-protein interaction networks. DeepNF employs 
stacked autoencoders to learn a joint representation of 
the input data, which can then be used to predict protein-
protein interactions and functional associations accurately. 
This tool is essential for studying protein function, 
cellular processes, and the development of therapeutic 
interventions targeting specific protein interactions.

DeepMir (Cordero et al., 2019) is a deep-learning-
based tool for identifying and classifying microRNA 
(miRNA) precursors, which are small noncoding RNAs 
that play crucial roles in gene regulation and are implicated 
in various biological processes and diseases. DeepMir 
employs a convolutional neural network to predict miRNA 
precursor sequences from a given genomic sequence 
represented as abstract images. The model achieves high 
accuracy and includes initial steps toward its explainability.

The use of DL can tackle many more challenges in 
bioinformatics, and the tools that have been mentioned 
so far showcase that all areas of bioinformatics currently 
see the application of DL. However, the application of DL 
in bioinformatics is challenging. Some of these will be 
discussed below. 
2.4. Protein structure prediction
Protein structure prediction is a fundamental problem 
in bioinformatics because the 3D structure of a protein 
determines its function and interactions. However, 
experimentally determining protein structures is costly 
and time-consuming, and only a fraction of known 
proteins have their structures solved. Therefore, developing 
computational methods to accurately predict protein 
structures from their amino acid sequences is a major 
challenge and a long-standing goal of bioinformatics 
research. This has long been realized, and a protein 
structure prediction challenge was created in the 1990s 
(Moult et al., 1997).

One of the most successful computational methods 
for protein structure prediction is AlphaFold 2 (Skolnick 
et al., 2021), a deep-learning tool developed by Google 
DeepMind. AlphaFold uses a novel deep-learning 
architecture to learn complex patterns and relationships 
between amino acids in the protein sequence and predict 

their distances and angles in 3D space. AlphaFold also 
incorporates evolutionary information from multiple 
sequence alignments and uses a graph neural network to 
represent the protein as a complex system of interacting 
amino acids. AlphaFold outputs a confidence score for 
each predicted structure, indicating its reliability.

AlphaFold has demonstrated remarkable performance 
in the Critical Assessment of Protein Structure Prediction 
(CASP), a biennial community challenge for testing 
the accuracy of protein structure prediction methods. 
In CASP13 (2018), AlphaFold placed first among the 
participating teams, showing significant improvements 
over previous methods (AlQuraishi, 2019). In CASP14 
(2020), AlphaFold achieved an average accuracy 
competitive with experimental structures, effectively 
solving the protein structure prediction problem in most 
cases (Jumper et al., 2021).
2.5. Disease diagnostics and drug discovery
Disease diagnostics is a crucial task in bioinformatics 
and healthcare because it involves identifying and 
classifying diseases based on various data types, such as 
clinical symptoms, laboratory tests, medical images, and 
genomic sequences. Disease diagnostics can benefit from 
applying deep learning tools, which can learn complex 
patterns and features from large-scale data and make 
accurate and robust predictions. This area is wide-ranging 
from multi-omic data evaluation to the application of 
chatbots in anamnesis. In this overview of deep learning 
in bioinformatics, we cannot go into details and invite 
the interested readers to consider the works by Park et al., 
Kumar et al. and Myszczynska and colleagues (Myszczynska 
et al., 2020; Park et al., 2021; Kumar et al., 2023). These 
examples illustrate the potential and diversity of deep 
learning tools for disease diagnostics in bioinformatics. 
By applying deep learning to various types of data, these 
tools can improve disease diagnostics’ accuracy, efficiency, 
and reliability and contribute to a better understanding of 
disease mechanisms and outcomes.

After disease diagnosis, drug discovery is another 
task that is too large to be discussed in detail in this small 
overview. Drug discovery is a challenging and costly 
process that involves identifying and optimizing novel 
chemical entities that can modulate biological targets 
and treat diseases. Deep learning has seen considerable 
adoption in the field. Please consider the following three 
examples of the potential and diversity of deep learning 
tools for drug discovery in bioinformatics. These tools can 
improve the efficiency, accuracy, and creativity of drug 
discovery and development by applying deep learning to 
various types of data, such as chemical structures, protein 
sequences, biological assays, and clinical outcomes. 

DeepChem (Altae Tran et al., 2017) is an open-source 
deep learning framework for drug discovery. It provides 
various modules and functionalities for data preprocessing, 
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model building, model evaluation, and model deployment. 
DeepChem can be used for various drug discovery tasks, 
such as molecular property prediction, virtual screening, 
de novo drug design, and drug synthesis planning.

ODDT (Wójcikowski et al., 2015) is an open-source 
tool for computer-aided drug discovery (CADD). It 
integrates various methods and algorithms for molecular 
docking, pharmacophore modeling, similarity searching, 
machine learning, and deep learning. ODDT can be used 
for various CADD tasks, such as target identification, hit 
identification, lead optimization, and ADMET prediction.

Cyclica is a company that uses deep learning to accelerate 
drug discovery (Abdollahi et al., 2023). It offers various 
solutions for target identification, polypharmacology 
prediction, drug design, and drug repurposing. 

3. Challenges of deep learning in bioinformatics 
While information concerning data may be considered 
only crucial for model training, it is essential to openly 
disclose the data used in model training so that model 
users can inspect it. With this information, potential users 
can consider the model, compare it to others, and decide 
whether to use it or not. 
3.1. Training data
Training data quality plays a crucial role in the success of 
deep-learning applications. High-quality data are essential 
for training accurate and robust deep-learning models that 
can effectively capture complex biological patterns and 
relationships (Fan and Shi, 2022). With an increase in data 
dimensions, more data is needed to train effective models; 
therefore, the quantity of the data becomes important and, 
with it, whether the data represents all diverse aspects 
of the biological phenomenon. Proper annotation and 
handling of noise and errors are also important. While it 
may seem of little importance to know how a model was 
trained when it reaches high accuracy, it may only do so for 
specific data. To judge this, information about the training 
data is needed, and several aspects must be considered.
3.1.1. Quantity of data
Deep-learning models usually require large amounts of 
data for training because they can learn complex patterns 
and representations (Lee et al., 2022). Insufficient data 
regarding data and model dimensionality can lead to 
overfitting, where the model memorizes the training data 
and does not generalize well to new, unseen data (Demšar 
and Zupan, 2021). In bioinformatics, obtaining large-scale 
datasets can be challenging because of various factors, 
such as the cost and time associated with experimental 
data generation, limited availability of well-annotated 
data, and the inherent complexity of biological systems 
(Faustino et al., 2008). A simple example would be creating 
a daily melatonin cycle model. We would need at least 
hourly measurements to allow an hourly resolution of the 

prediction. To make it more general, we would need this 
for many days, not one day. We suggest having ten times 
more data than the model parameters for DL models. 
Inspecting how the model was trained can help decide 
whether the model is suitable for the intended purpose.
3.1.2. Representation and diversity of the data
Data used for training deep-learning models should 
represent the studied biological system and cover 
various examples and scenarios (Ching et al., 2018). 
Bioinformatics means including data from various 
species, tissues, experimental conditions, and disease 
states. A diverse and representative dataset ensures that 
the model can capture the variability and complexity of 
biological systems and make accurate predictions on new, 
unseen data. When considering a DL model for inference, 
the amount and breadth of data used to train the model 
should be considered in conjunction with the purpose. If 
the breadth of the data that is supposed to be processed 
is covered in the model’s training data, it can be suitable 
even if it may not be suitable for another closely related 
dataset. However, biological data can be noisy and subject 
to various sources of error (Tsimring, 2014). These errors 
can negatively impact the performance of deep-learning 
models, leading to inaccurate predictions and reduced 
generalizability (Karimi et al., 2020).
3.1.3. Noise and error
Biological data, especially those generated by high-throughput 
experimental techniques, can be noisy and subject to various 
sources of error (Li et al., 2019). These errors can arise from 
technical issues such as sequencing errors, experimental 
variability, batch effects, or other biological factors such as 
genetic variation or rare and uncharacterized sequences. 
Noisy and error-prone data can negatively impact the 
performance of deep-learning models, leading to inaccurate 
predictions and reduced generalizability (Alipanahi et al., 
2015; Karimi et al., 2020). With an increasing amount of data, 
the impact of noise and error diminishes. Therefore, a model 
trained on large amounts of data in relation to the model 
parameters is preferable.
3.1.4. Annotation quality and consistency
In supervised deep learning, models are trained on 
data with known labels or annotations, such as protein 
functions or gene regulatory relationships. The quality 
and consistency of these annotations directly influence the 
model’s performance (Chen et al., 2021). In bioinformatics, 
annotations can be derived from experimental data, 
literature curation, or computational predictions, and 
their quality and reliability can vary widely. Inaccurate 
or inconsistent annotations can lead to poor model 
performance and misleading predictions.
3.1.5. Data preprocessing and normalization
Appropriate data preprocessing and normalization are 
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critical for ensuring that the input data are suitable 
for deep-learning models (Imran et al., 2022). Some 
bioinformatics analyses involve various steps, such as 
sequence alignment, quality control, feature extraction, 
and data transformation. Careful preprocessing and 
normalization can reduce the impact of noise and errors, 
ensure comparability across different datasets, and improve 
the performance of deep-learning models. This is even 
more important when considering metagenomic data. An 
overview of preprocessing steps for preparing microbiome 
sequencing data for machine learning is given by (Ibrahimi et 
al., 2023). Normalization of sequencing results, for example, 
in transcriptomics, is essential, and a recent evaluation can 
be found here (Ni and Qin, 2021). However, in biology, 
there is often no gold standard data, so normalization and 
preprocessing approaches cannot easily be benchmarked. 
Additionally, simply changing some cutoff value, e.g., for 
counts after RNA-seq analysis, can have a large impact on 
the results (Beukers and Allmer, 2023).

In conclusion, data quality is critical to the success of 
deep-learning applications in bioinformatics. Ensuring 
sufficient quantity, diversity, and representation of data, 
minimizing noise and errors, maintaining high-quality 
annotations, and employing appropriate preprocessing 
and normalization techniques are essential for developing 
accurate and robust deep-learning models that can advance 
our understanding of complex biological systems and 
contribute to various applications in molecular biology, 
genetics, and systems biology.
3.2. Computational requirements
Applying deep learning in bioinformatics often 
demands substantial computational resources because 
of the complexity of biological data and the inherent 
computational intensity of deep-learning algorithms 
(Moreno et al., 2022). This is especially true when training 
DL models; however, the computational requirements can 
also be prohibitive for running already trained models for 
inference. 
3.2.1. Processing power
Deep-learning models, especially those with multiple 
layers, many neurons, and many edges, require significant 
processing power for training and inference. Inference on 
a laptop or PC may not be possible, depending on the DL 
model.  High-performance processors, such as graphics 
processing units (GPUs) or specialized tensor processing 
units (TPUs), are often used to accelerate deep learning 
computations, as they are specifically designed for parallel 
processing of large-scale mathematical operations. For 
smaller models, it is possible to perform inference on 
a PC with an average GPU; however, several GPUs may 
be needed for larger models. Alternatively, many cloud 
services offer GPU access hourly so that calculations can 
be performed in the cloud. For example, TPUs introduced 

by Google are available on the Google cloud. Other large 
open-source projects, such as HuggingFace, also offer 
access to computing. 
3.2.2. Memory capacity
Deep-learning models require considerable memory 
capacity, particularly those with billions to trillions 
of parameters and extensive input data. The model 
parameters, input data, and intermediate values, such as 
activations and gradients, must be stored in the memory 
during training. Insufficient memory capacity can limit the 
size and complexity of models that can be trained and the 
size of the input data that can be processed. Thus, having 
sufficient RAM and GPU memory is crucial for deep 
learning in bioinformatics. While training is resource-
intensive, inference, the process of making predictions 
with a trained model, also demands a large memory 
capacity. It is necessary to accommodate the model’s size, 
especially if it has been trained with several parameters. 
An insufficient amount of RAM during the inference 
phase could lead to suboptimal processing speeds, thereby 
affecting the usability and efficiency of the model. The 
number of parameters is especially prohibitive in large 
language models such as GPT4, but many bioinformatics 
applications may not be as resource-hungry. AlphaFold, 
for instance, has only around 100 million parameters, 
which is several orders of magnitude smaller than GPT4. 
Hence, many bioinformatics DL models may run on 
consumer hardware. While AlphaFold may run with 32 
GB of RAM, more is better. 
3.2.3. Data storage
Bioinformatics datasets, especially those generated by high-
throughput experimental techniques, can be enormous, 
necessitating substantial storage capacity. Deep-learning 
models often require access to large-scale training data 
to learn complex patterns and representations effectively. 
As a result, deep-learning applications in bioinformatics 
may require extensive storage solutions, such as high-
capacity hard drives, solid-state drives, or distributed 
storage systems. LLMs such as GPT may need tens of 
TB of data to train the model, but much less data storage 
capacity is needed for inference. Some bioinformatics 
applications, such as AlphaFold, require a relatively large 
storage capacity. AlphaFold, for instance, stores large 
sequence databases and requires 3 TB of hard disk space. 
Faster storage is preferable. Today, some laptops, such as 
the recent Macbook Pro, can come with a 4 TB hard drive 
capacity and 64GB of RAM, allowing the execution of 
AlphaFold.
3.3. Interpretability and explainability
One of the major challenges associated with deep-learning 
models is their black-box status. It is often difficult to 
understand how the model arrives at its predictions. 
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In bioinformatics, where the interpretation of results is 
critical for understanding biological processes, the need 
for more interpretability of deep-learning models is a 
significant concern (Petkovic et al., 2018). In this section, 
we explore the current state of interpretability in deep-
learning models and discuss opportunities for overcoming 
the black box status of these models.

One approach is to use model-agnostic methods 
for interpretability. These methods involve analyzing 
the model’s behavior using perturbations or sensitivity 
analysis. Examples of such methods include Local 
Interpretable Model-Agnostic Explanations (LIME) and 
Shapley Additive exPlanations (SHAP) (Sathyan et al., 
2022). LIME (Ribeiro et al., 2016) is a model-agnostic 
method that explains individual predictions of a deep-
learning model by creating a simplified, interpretable 
model that approximates the behavior of the original 
model. LIME generates perturbed versions of the input 
data and measures how the model’s output changes for 
each perturbation. Then, LIME fits a linear or logistic 
regression model to the perturbed data and uses the 
regression model coefficients as weights to assign 
importance scores to each input feature. LIME can explain 
different data types, such as text, images, or tabular data. 
SHAP is another model-agnostic method based on the 
concept of Shapley values, which are derived from game 
theory and measure how much each player contributes to 
the outcome of a cooperative game. SHAP considers each 
input feature as a player and calculates the Shapley value 
for each feature by averaging all possible combinations 
of features and measuring how much the feature changes 
the model’s output when added or removed from the 
combination. SHAP can explain different models, such as 
tree-based models, deep neural networks, or kernel-based 
models.

Another approach is to use model-specific methods 
for interpretability. These methods involve modifying the 
architecture of the deep-learning model to incorporate 
explicit mechanisms for interpretability. Such methods 
include attention mechanisms, which allow the model to 
focus on specific parts of the input, and saliency maps, 
which highlight important input regions contributing to 
the model’s prediction (Figueroa et al., 2022). Additional 
layers can be incorporated into the deep-learning 
architecture to support the explainability (Vinuesa and 
Sirmacek, 2021).

Incorporating domain knowledge into the deep-
learning model is another way to explain models’ 
decisions. In bioinformatics, domain knowledge can guide 
learning and constrain the model to produce biologically 
meaningful results. For example, in gene expression 
analysis, prior knowledge of gene regulatory networks can 
be incorporated into the deep-learning model to improve 

its interpretability (Fortelny and Bock, 2020). Another 
approach is to use a multimodal data integration (Zhu et 
al., 2023). In bioinformatics, multimodal data integration 
can involve combining data from different sources, such 
as gene expression data, protein-protein interaction data, 
and pathway data, to improve the interpretability of the 
deep-learning model. Integrating multiple data sources 
makes generating more comprehensive and biologically 
meaningful models possible.

Several future directions can be pursued to overcome 
the black box status of deep-learning models in 
bioinformatics (Teng et al., 2022). One approach is to 
develop hybrid models that combine deep learning with 
machine learning methods, such as rule-based systems or 
decision trees (Ferry et al., 2023). By combining different 
strategies, it may be possible to generate more interpretable 
models that capture the complexity of biological systems. 
Another direction is to develop methods for evaluating 
the interpretability of deep-learning models (Meng et al., 
2022). Currently, there is yet to be a widely accepted metric 
for assessing the interpretability of deep-learning models. 
Developing such a metric would enable researchers to 
compare the interpretability of different models and create 
new, more interpretable models.

We explored the explainability of DL models in our 
study on pre-microRNA prediction using DL (Cordero 
et al., 2019). Because we transformed the input data into 
images, we could build on top of large image models. This 
also enabled us to explore which parts of an image support 
the decision of whether an image represents a pre-miRNA 
or not, employing saliency maps (Simonyan et al., 2013). 

4. Ethical and social implications
Applying deep learning in bioinformatics has great 
potential to advance biological knowledge and improve 
human health. However, it also raises ethical and social 
issues that must be addressed and resolved. These questions 
are equally valid for training and inference. When using a 
model for inference, it is essential to ensure that the results 
are unbiased. Some of these issues are as follows:

Data privacy: Deep learning requires large amounts of 
data to train and validate its models, which may include 
sensitive personal or health information. Critical ethical 
questions that need to be considered are how to protect 
the privacy and confidentiality of such data and obtain 
informed consent from the data providers or participants 
(Li et al., 2019).

Bias: Deep learning models may inherit or amplify 
biases in data or algorithms, leading to unfair or inaccurate 
outcomes or decisions. For example, deep learning models 
for disease diagnosis may perform differently for different 
populations or subgroups, depending on the data quality 
and representation (Ellis et al., 2022). Detecting and 
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mitigating such biases and ensuring the fairness and 
transparency of deep learning models are crucial social 
challenges that need to be addressed (Pagano et al., 2023).

Accountability: Deep learning models may significantly 
impact the lives and well-being of individuals or society, 
especially when used for high-stakes applications such 
as drug discovery or precision medicine. However, deep 
learning models are often complex and opaque, making it 
difficult to explain or understand their logic or reasoning. 
How to ensure the accountability and responsibility of the 
developers and users of deep learning models and how to 
establish appropriate regulations and standards for their 
development and application are essential ethical and 
social issues that need to be resolved (Floridi et al., 2018).

5. Conclusion
5.1. Summary of deep learning in bioinformatics 
Deep learning in bioinformatics refers to applying 
advanced neural network architectures and algorithms 
to analyze and interpret complex biological data. By 
leveraging the power of deep learning, researchers can 
uncover hidden patterns, relationships, and features within 
biological data, leading to new insights and discoveries in 
molecular biology, genetics, and systems biology.

Some critical aspects of the application of deep learning 
in bioinformatics areas follow:
	 Handling of diverse biological data types. Deep-

learning techniques can process various kinds of 
biological data, such as DNA sequences, protein 
sequences, gene expression data, and protein-protein 
interaction networks.

	 Development of specialized deep-learning 
architectures. Customized deep-learning 
architectures, such as convolutional neural networks, 
recurrent neural networks, and autoencoders, are 
employed to tackle specific bioinformatics tasks, 
such as protein function prediction, gene regulatory 
network inference, and protein structure prediction.

	 Quality of training data and its preprocessing. Ensuring 
high-quality data and appropriate preprocessing 
techniques are critical for the success of deep-learning 
applications in bioinformatics. This includes handling 
noise, errors, and diverse data representation.

	 Computational requirements: Deep learning in 
bioinformatics requires substantial computational 
resources, such as processing power, memory capacity, 
data storage, network bandwidth, and scalability, 
to handle the complexity of biological data and the 
computational intensity of deep-learning algorithms.

Deep learning has significantly advanced the field of 
bioinformatics, enabling researchers to tackle complex 
challenges and gain a better understanding of biological 
processes. It has been applied to various bioinformatics 
tasks, such as functional annotation, protein design, disease 
mechanism investigation, and personalized medicine. 

5.2. Future directions for deep learning in bioinformatics
Deep learning is a powerful tool for analyzing and 
interpreting biological data. Its ability to learn higher-level 
features directly from the data makes it highly relevant 
to bioinformatics, where traditional expert manual 
feature crafting approaches may be too time-consuming. 
Although there are challenges to be addressed, the 
continued application of deep learning in bioinformatics 
holds great promise for advancing our understanding of 
biological systems.

As deep learning continues to advance significantly 
in various fields, its application in bioinformatics is also 
expected to grow and evolve. 

Integrating multiple omics data types, such as 
genomics, transcriptomics, proteomics, and metabolomics, 
can provide a more comprehensive understanding of 
biological systems. Deep-learning models can be designed 
to integrate and analyze multi-omics data effectively 
(Kang et al., 2022), leading to improved predictions, a 
better understanding of disease mechanisms, and the 
identification of novel biomarkers and therapeutic targets.

While deep-learning models have shown great success 
in various bioinformatics tasks, their predictions are 
often considered black boxes because the knowledge 
representation in the model is not explicit. Developing 
interpretable and explainable deep-learning models 
is essential for building trust and understanding the 
biological basis of their predictions, which can lead to 
more actionable insights and hypotheses. Developing 
interpretable deep-learning models will also be a key 
area of research, enabling us to understand these systems’ 
underlying biology better.

In bioinformatics, obtaining large-scale, well-
annotated data can be challenging. Transfer learning, as 
we performed for pre-miRNA prediction, and few-shot 
learning approaches, which involve leveraging pretrained 
models or learning from small amounts of data, can be 
employed to overcome data limitations and improve the 
performance of deep-learning models in tasks with limited 
training data.

Developing deep-learning models that can generalize 
well across different biological systems, species, and 
experimental conditions is essential for their broad 
applicability. Techniques to improve model generalization 
and robustness, such as domain adaptation and data 
augmentation, can enhance the utility of deep-learning 
models in bioinformatics. This is an important area, as 
seen from our work on pre-miRNA prediction (Saçar 
Demirci et al., 2017) and de novo sequencing (Savas Takan 
and Allmer, 2023).

Biological systems exhibit complex behavior across 
multiple scales, ranging from the molecular to cellular, 
tissue, and organism levels. Developing deep-learning 
models capable of capturing and integrating information 
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across different scales can lead to a more comprehensive 
understanding of biological processes and the relationships 
between different levels of organization.

As deep learning advances, there will be an increasing 
need for interdisciplinary collaboration among computer 
scientists, biologists, and other domain experts. These 
collaborations will facilitate the development of novel 
deep-learning methods tailored to the unique challenges 
of bioinformatics and help bridge the gap between 
computational predictions and biological validation.

Continued advancements in hardware, such as GPUs, 
TPUs, and neuromorphic chips (Pastur Romay et al., 
2016), will enable the training of larger and more complex 
deep-learning models. Furthermore, developing efficient 
and scalable deep-learning software frameworks will 
facilitate the application of deep learning to bioinformatics 
challenges.

In summary, the future of deep learning in 
bioinformatics is expected to involve the development 
of novel models and techniques, improved integration 
of multi-omics data, enhanced interpretability, better 
generalization and robustness, multiscale modeling, 
interdisciplinary collaboration, and advancements in 
hardware and software. These directions will help deepen 
our understanding of complex biological systems, drive 
discoveries, and contribute to various molecular biology, 
genetics, and systems biology applications.
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