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Abstract
Background: The causal relationship between breast cancer (BC) and the oral micro-
biome remains unclear. In this case–control study, using two-sample Mendelian ran-
domization (MR), we thoroughly explored the relationship between the oral
microbiome and BC in the East Asian population.
Methods: Genetic summary data related to oral microbiota and BC were collected
from genome-wide association studies involving participants of East Asian descent.
MR estimates were generated by conducting various analyses. Sequencing data from a
case–control study were used to verify the validity of these findings.
Results: MR analysis revealed that 30 tongue and 37 salivary bacterial species were
significantly associated with BC. Interestingly, in both tongue and salivary micro-
biomes, we observed the causal effect of six genera, namely, Aggregatibacter, Strepto-
coccus, Prevotella, Haemophilus, Lachnospiraceae, Oribacterium, and Solobacterium,
on BC. Our case–control study findings suggest differences in specific bacteria
between patients with BC and healthy controls. Moreover, sequencing data confirmed
the MR analysis results, demonstrating that compared with the healthy control group,
the BC group had a higher relative abundance of Pasteurellaceae and Streptococcaceae
but a lower relative abundance of Bacteroidaceae.
Conclusions: Our MR analysis suggests that the oral microbiome exerts a causative
effect on BC risk, supported by the sequencing data of a case–control study. In the
future, studies should be undertaken to comprehensively understand the complex
interaction mechanisms between the oral microbiota and BC.
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INTRODUCTION

As an integral part of the human microbiota, the oral micro-
biome, has been implicated in various pathophysiological
processes associated with systemic diseases.1 Recently, stud-
ies have highlighted the potential association between the
oral microbiome and various cancers, including colorectal,2

lung,3 pancreatic,4 and head and neck cancers.5

Globally, breast cancer (BC) has the highest incidence
and is the second most fatal cancer type. Several risk factors,
including hormonal levels, immune system components,
genetic predispositions, and lifestyle factors, have been

identified for BC. Recently, the microbiome has emerged as
a novel and potential contributor to BC, garnering consider-
able interest within the scientific community. Recent
research has highlighted the role of abnormal microbial
metabolism in the oral microbiome as a factor contributing
to BC development.6,7 In particular, it involves the produc-
tion of toxins that result in DNA damage, alter the metabo-
lism of hormones associated with changes in the
microbiome, and affect immune regulation. These mecha-
nisms include the production of extracellular polysaccha-
rides that trigger chronic inflammation, involvement of
estrogen metabolism, increasing the levels of hormones
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associated with BC risk, and production of microbial metab-
olites that suppress immune responses or promote immune
evasion in the tumor microenvironment. Collectively, these
findings underscore the importance of additionally investi-
gating the relationship between the oral microbiome and
BC, offering novel potential targets for prevention
and treatment.8,9

However, observational studies in this field are hindered
by confounding factors and reverse causality. Therefore, elu-
cidating the potential causal relationships between the oral
microbiome and BC is vital for improving their
management.

As a versatile strategy, Mendelian randomization
(MR) is a method in which whole-genome sequencing data
akin to randomized controlled trials are utilized to explore
causal relationships in epidemiology.10,11 In MR, genetic
variants closely associated with the exposure are utilized as
instrumental variables (IVs) to establish causality and allevi-
ate confounding biases. Subsequently, MR presents a robust
approach to understand the effect of alterable exposures on
the trait of interest, outperforming traditional observational
studies.11,12

Based on the hypothesis of a reciprocal causal connec-
tion between the oral microbiome and BC, in this study, we
explored the potential mutual causal association between the
oral microbiome and BC via two-sample MR analysis. Fur-
thermore, we used sequencing data from a case–control
study to corroborate this relationship.

METHODS

MR study

Study design and data sources

The tongue dorsum and salivary microbiome were selected
as IVs, and anxiety and breast cancer were used as the out-
come variables.

To validate each IV, the single nucleotide polymor-
phisms (SNPs) utilized in the MR analysis should adhere to
three cardinal assumptions13: (1) the relevant assumption
mandates a potent correlation between the tool and the
exposure; (2) the independence assumption necessitates that
the SNPs are not associated with any confounding variables
that affect the relationship between the exposure and the
outcome; and (3) the exclusion restriction assumption dic-
tates that the SNPs affect the outcome solely via the desig-
nated exposure, precluding other pathways.

Based on the summary statistics of a recently published
genome-wide association study (GWAS) targeting the East
Asian oral microbiome, a two-sample MR analysis was con-
ducted. Following stringent quality control measures, 2984
individuals (2017 tongue dorsum and 1915 salivary samples)
were included. Approximately 10 million common and low-
frequency variants (MAF ≥0.5%) were included. Additional
comprehensive information on sample acquisition,

sequencing protocols, microbiome trait preparation, and
observational and genotyping analyses has been previously
described.14

The World Health Organization (WHO) defines breast
cancer as a disease in which abnormal breast cells grow out
of control and form tumors. If left unchecked, the tumors
can spread throughout the body and become fatal.15 The
data for BC were extracted from a comprehensive GWAS
involving an Asian population. This dataset comprises 5552
individuals with BC and 89 731 control cases.16

Selection of genetic IVs

Initially, SNPs were selected at a genome-wide significance
level of P < 5 � 10�8. Owing to the absence of oral
microbiome-associated SNPs meeting this stringent bench-
mark, a moderated significance level of P < 5 � 10�6 was
selected. A clumping protocol was utilized to neutralize the
effects of potential linkage disequilibrium (LD) among
the selected SNPs. This entailed setting a radius of 10 000 kb
and enforcing an R2 cutoff value of <0.001 to extract the
SNPs within the LD blocks.17,18 To further safeguard allele
harmonization, the exposure and outcome datasets were
meticulously aligned, removing the SNPs with discordant
allele pairings or alleles of intermediate frequency. As a
result, a cohort of refined SNPs serving as robust genetic IVs
for MR analysis was generated. Furthermore, the F-statistic
of each SNP, individually and cumulatively, was calculated
by using the following formula: F = R2 � (N � 2)/(1 � R2),
where R2 denotes the exposure variance determined using
each IV and R2 = 2 � eaf � (1 � eaf) � beta2.19 IVs with
F-statistics less than 10 were considered weak instruments
and were excluded from the MR analysis.10

MR analysis

Various statistical methods were employed to explore the
causal associations between BC and the oral microbiome:
inverse variance-weighted (IVW) method,20 simple mode,
weighted mode, weighted median (WM),21 and MR-Egger
regression.22 The IVW approach is a common and practical
method when each IV conforms to the core tenets of MR,
particularly the absence of horizontal pleiotropy and the
provision of unbiased estimates. On the other hand,
the WM method, which ascertains the central tendency of
the effect estimates from all IVs, is a notable alternative, par-
ticularly when some IVs deviate from the MR prerequisites,
including the presence of horizontal pleiotropy. In the MR-
Egger method, the causal effects are evaluated and horizon-
tal pleiotropy is identified and adjusted; therefore, it is an
indispensable tool when such pleiotropy is expected.20 Asso-
ciations between variables were considered significant if the
resulting p-value of the IVW method was <0.05, with
the estimated direction of the other four MR methods being
consistent with that of IVW.23
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Sensitivity analysis

Multiple analyses encompassing heterogeneity, pleiotropy,
and leave-one-out sensitivity tests were employed.
Cochrane’s Q test was employed to evaluate comprehensive
pleiotropy in the IVW MR findings, with a p-value of 0.05
suggesting the presence of heterogeneity. The average hori-
zontal pleiotropy of the IVs in MR-Egger regression was
determined using the intercept term and evaluating funnel
plot asymmetry.24 Furthermore, MR-PRESSO was utilized
to detect the presence of pleiotropy and rectify horizontal
pleiotropy by identifying and eliminating possible outliers.
Thereafter, leave-one-out analysis was performed to deter-
mine if there were significant alterations in the causal effects
before and after removing outliers.23 An established signifi-
cance level of p < 0.05 suggested the presence of
heterogeneity.

All projected effect sizes or odds ratios (ORs) were pre-
sented with corresponding 95% confidence intervals (CIs).
All statistical tests were two-tailed, and the associations were
considered significant if the p-value was <0.05. The open-
source statistical software R (version: 4.2.2) was used to con-
duct all analyses. The TwoSampleMR package (version:
0.5.6)23 was primarily used to conduct the analyses.

Case–control study

The case–control study was conducted at Cancer Hospital
(Chinese Academy of Medical Sciences) from January 2022
to March 2022. BC was diagnosed via a comprehensive eval-
uation, encompassing clinical examination, imaging studies,
and histopathological confirmation, including fine needle
aspiration or core needle biopsy of breast tissues. Patients
who were less than 18 years of age, had a history of other
malignant tumors, had other oral disorders, had received
antibiotic or probiotic treatment within the last 2 months,
and had incomplete data were excluded. Simultaneously,
healthy controls, including those with benign breast dis-
eases, were selected from the breast clinics of the same insti-
tution. The exclusion criteria for control participants were
similar, with the addition of individuals with gastrointestinal
disorders, a history of malignant tumors, chronic noncom-
municable diseases, and incomplete data.

Essential information on demographic and clinical char-
acteristics was collected from the participants, including age,
body mass index, smoking and alcohol consumption habits,
diabetes status, history of oral contraceptive use, and num-
ber of live births. In total, 124 participants (102 patients with
BC and 22 healthy controls) satisfied the inclusion criteria.
The study protocol was approved by the Ethics Committee
of Cancer Hospital, Chinese Academy of Medical Sciences.

The Salivettes sampling device (Sarstedt) was used to
collect salivary specimens immediately after the participants
woke up (7–8 a.m.). These samples were stored at �80�C.
The CTAB/SDS protocol was applied to meticulously isolate
genomic DNA from the biological specimens. Its

concentration and purity were rigorously assessed via 1%
agarose gel electrophoresis. High-fidelity PCR was per-
formed to amplify multiple variable regions of the 16S rRNA
gene, incorporating specific primers and barcodes for each
region, including 16S V4: 515F-806R. Then, the PCR prod-
ucts were uniformly mixed with loading buffer and sub-
jected to 2% agarose gel electrophoresis for visualization.
For sequencing, libraries were prepared using a PCR-free
sample preparation kit to prevent potential contamination.
Fluorometric and bioanalyzer methods were used to verify
the quality of these libraries.

The Illumina NovaSeq platform was used to perform
high-throughput sequencing, generating 250 bp paired-end
reads. The initial quality control steps included filtering
based on read quality and assembly using overlapping read
information.

The derived sequencing data were used to perform bio-
informatics and statistical analyses. The DADA2 method in
QIIME2 software was employed to denoise and acquire
amplicon sequence variants (ASVs). Normalized ASV abun-
dance tables formed the foundation for subsequent analyses.
The Wilcoxon test was used to measure alpha diversity.
Both Bray–Curtis (weighted) and compositional Jaccard
(unweighted) distances were employed to measure beta
diversity. Linear discriminant analysis effect size (LEfSe) was
applied to identify the microbes associated with tumor sta-
tus, with genera with a linear discriminant analysis (LDA)
score of >2.5 identified as the differentiating genera. There-
after, random forest (RF) analysis was conducted. Based on
the RF results, receiver operating characteristic (ROC) anal-
ysis was performed using the pROC package. The R pro-
gram (version 4.2.2) was used to perform all statistical
analyses. A p-value of <0.05 indicated statistical significance.

RESULTS

Selection of IVs

Table 1 summarizes the GWAS data information for expo-
sure and outcome. After excluding palindromic SNPs, 8009
and 8426 SNPs associated with the salivary and tongue
microbiomes, respectively, were identified at the suggested
significance threshold of P < 5.0 � 10�6. Further refinement
by excluding the SNPs affected by LD and palindromic struc-
tures resulted in the identification of 405 and 406 SNPs asso-
ciated with the salivary and tongue microbiomes, respectively,
for MR analysis. These SNPs spanned five taxonomic levels:
phylum, class, order, family, and genus. Notably, the attri-
butes of the oral microbiota at lower taxonomic levels may
correlate with those at higher levels, indicating a potential
SNP overlap. The F-statistics of the IVs were 20.01–32.44, all
significantly surpassing the threshold of 10; this suggests the
absence of weak instrument bias. Moreover, validation using
the PhenoScanner25 (http://www.phenoscanner.medschl.cam.
ac.uk/) and PheWAS26 (PheWAS, https://gwas.mrcieu.ac.uk/
phewas/) databases confirmed that none of the IVs were
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associated with diabetes, obesity, smoking status, or previous
alcohol consumption. This observation affirms that the MR
preconditions were duly satisfied.

Two-sample MR analysis

Using the IVW method, we identified 30 tongue bacterial
species and 37 salivary bacterial species that were signifi-
cantly associated with BC. The other four methods
employed to analyze the casual association of these oral
microbiomes also achieved comparable results. Leave-
one-out sensitivity analysis revealed that no individual SNP
dominated the overall assessment. Cochran’s Q statistics
and horizontal pleiotropy test revealed no substantial het-
erogeneity among the selected SNPs.

Among the detected bacterial species, 14 and 18 bacterial
genera in the tongue and saliva, respectively, were associated
with BC, with six common genera. These overlapping genera
were as follows: family Pasteurellaceae genus Aggregatibac-
ter, family Streptococcaceae genus Streptococcus, family Bac-
teroidaceae genus Prevotella, family Pasteurellacea genus
Haemophilus, family Lachnospiraceae genus Oribacterium,
and family Erysipelatoclostridiaceae genus Solobacterium.

The number of SNPs connected with each of the six
shared bacterial genera was between 6 and 23. Among these
genera, the species Oribacterium umgs 1411 from the tongue
microbiome exhibited the most remarkable association with
18 SNPs, whereas Aggregatibacter umgs 1480 in the salivary
microbiome exhibited the most significant association with
23 SNPs.

In the tongue microbiome, the following genera were
associated with an increased risk of BC: family Pasteurella-
ceae genus Aggregatibacter (with 1628, 1002, 1479, and 1250
having ORs of 1.302, 1.293, 1.236, and 1.161, respectively),
family Streptococcaceae genus Streptococcus umgs 2487
(OR = 1.196), Streptococcus oralis mgs 1596 (OR = 1.192),
Streptococcus umgs 1057 (OR = 1.252), and family Lachnos-
piraceae genus Oribacterium umgs 489 (OR = 1.152).
Figure 1 illustrates a forest plot demonstrating the relation-
ship between tongue microbiome species and BC risk.

For the salivary microbiome, the following were associ-
ated with an increased risk of BC: Streptococcus umgs 1150
(OR = 1.147), Streptococcus infantis mgs 1655
(OR = 1.235), Haemophilus (OR = 1.207), and Solobacter-
ium umgs 2560 (OR = 1.360). Figure 2 illustrates the

corresponding forest plot demonstrating the association
between salivary microbiome species and BC risk. Family
Bacteroidaceae correlated with a decreased risk of BC in
both the tongue and salivary microbiomes.

Supplementary Material, particularly Tables S1–S4, pro-
vides detailed data regarding the selected IVs. Furthermore,
Figures S1–S12 illustrate the scatter diagrams demonstrating
the computed causal effect sizes of the SNPs on the exposure
(six microbiomes from both the tongue and saliva) and the
result (BC). The STROBE-MR checklist is in Table S5.

Case–control study

In the case–control study, 124 participants (102 individuals
diagnosed with BC and 22 healthy controls) were included.
The baseline characteristics of both groups were similar.
Table 2 comprehensively compares the baseline demo-
graphic and clinical characteristics of all participants.

Differences in the oral microbiota were evaluated among
the diverse groups. Figure 3a illustrates a bar plot revealing
the proportion of community abundance at the genus level,
highlighting microbiota structural analysis. The 20 most
prevalent bacterial genera were identified as follows: Strepto-
coccus, Neisseria, Haemophilus, Rothia, Veillonella, Prevo-
tella 7, Porphyromonas, Actinomyces, Prevotella,
Leptotrichia, Gemella, Fusobacterium, Granulicatella, Allo-
prevotella, Capnocytophaga, Peptostreptococcus, Corynebac-
terium, SR1 bacterium oral taxon 875, Bacteroides, and
Lactobacillus. Figure 3b illustrates a heat map at the genus
level, revealing a distinct difference in the relative abundance
of specific bacterial genera between the patient (BC) and
control (N) samples, concerning the top 20 bacterial genera.
At the genus level, the abundance of genera such as Strepto-
coccus, Neisseria, and Haemophilus was higher in BC tissues;
in contrast, genera such as Veillonella and Prevotella were
predominantly identified in control tissues, with a signifi-
cantly decreased abundance in BC tissues. This highlights
the differential bacterial composition in BC and normal con-
trol tissues. As shown in Figure 3c, the Venn diagram
reveals the common and specific oral microbiota at the spe-
cies level for each group. We observed that while a small set
of genera was solely identified in the normal control group,
most bacterial genera were shared between the BC and con-
trol groups, with a significant number also unique to the BC
group.

T A B L E 1 Summary of the GWAS included in this MR study.

Exposures/outcomes Consortium Ethnicity Sample sizes N. SNPs Year

Oral microbiome CNGBdb East Asian 2948
Tongue N = 2017
Saliva N= 1914

Tongue N = 8426
Saliva N = 8009

2021

BC BBJ East Asian 89 731 8 872 152 2020

Abbreviations: BBJ, BioBank Japan Project; CNGBdb, China National GeneBank DataBase; GWAS, genome-wide association studies; IVs, instrumental variables; MR, Mendelian
randomization; SNPs, single nucleotide polymorphisms.
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Alpha and beta diversities serve as critical indicators for
describing the overall constitution and distribution of the
oral microbiota to BC risk. Alpha diversity is applied to
compare the differences in species diversity among different
groups. On the other hand, beta diversity compares the dif-
ferences in species diversity between sample pairs using spe-
cies distance metrics. Shannon and Simpson indexes were

used to measure alpha diversity. Figure 4a,b illustrate no
substantial difference in Shannon (p = 0.92) and Simpson
(p = 0.77) indexes between patients with BC and healthy
controls. However, for beta diversity, notable differences
were observed in the Bray–Curtis (weighted) distance matrix
and Jaccard (unweighted) distances at the genus level
(Figure 4c, d, p < 0.05).

Bacteria.species
Aggregatibacter umgs 1628

Method N.SNP Beta SE

Aggregatibacter umgs 1002

Aggregatibacter umgs 1479

Aggregatibacter umgs 1250

Streptococcus umgs 2487

Streptococcus oralis mgs 1596

Streptococcus constellatus mgs 3391

Streptococcus umgs 1057

Streptococcus umgs 2210

Prevotella_multisaccharivorax_mgs_669

Haemophilus haemolyticus mgs 2915

Oribacterium umgs 489

Oribacterium umgs 3339

Oribacterium umgs 1411

Solobacterium umgs 2034

Solobacterium  umgs 3016

Solobacterium umgs 315

MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode
MR Egger
Weighted median
IVW
Simple mode
Weighted mode

8

9

10

16

9

9

15

8

10

9

14

11

14

18

10

14

13

 1.536
 0.229
 0.264
 0.118
 0.182
 2.512
 0.124
 0.257
 0.243
 0.132
 3.721
 0.161
 0.212
 0.136
 0.147
 3.162
 0.085
 0.149
 0.009
 0.029
 1.409
 0.151
 0.179
 0.042
 0.061
 1.677
 0.221
 0.176
 0.319
 0.290
−0.760
−0.157
−0.189
−0.105
−0.129
 5.110
 0.168
 0.225
 0.114
 0.176
−1.859
−0.148
−0.189
−0.400
−0.144
−1.207
−0.228
−0.178
−0.340
−0.302
−0.299
−0.175
−0.187
−0.159
−0.172
 0.158
 0.134
 0.142
 0.140
 0.148
−0.841
−0.139
−0.166
−0.117
−0.112
 1.057
 0.154
 0.137
 0.166
 0.176
−5.172
−0.291
−0.259
−0.339
−0.368
−0.225
−0.207
−0.236
−0.338
−0.345
−0.897
−0.120
−0.156
−0.050
−0.063

1.936
0.127
0.100
0.194
0.171
4.463
0.148
0.110
0.207
0.146
2.454
0.122
0.098
0.188
0.127
1.973
0.099
0.067
0.156
0.139
1.631
0.112
0.081
0.181
0.160
3.116
0.112
0.086
0.172
0.152
1.590
0.089
0.066
0.115
0.107
2.520
0.124
0.098
0.170
0.156
2.277
0.114
0.088
0.192
0.152
1.346
0.108
0.079
0.180
0.154
2.969
0.102
0.071
0.156
0.148
0.461
0.091
0.067
0.105
0.095
0.632
0.087
0.065
0.145
0.127
0.818
0.073
0.055
0.121
0.110
3.001
0.120
0.084
0.191
0.171
1.568
0.092
0.071
0.167
0.164
0.672
0.090
0.067
0.140
0.128

P value
0.458
0.072
0.008
0.562
0.323
0.591
0.400
0.020
0.276
0.394
0.168
0.186
0.031
0.486
0.279
0.131
0.389
0.025
0.954
0.839
0.416
0.178
0.027
0.824
0.715
0.607
0.048
0.042
0.101
0.092
0.641
0.079
0.004
0.376
0.250
0.089
0.177
0.021
0.523
0.297
0.438
0.193
0.031
0.067
0.370
0.400
0.035
0.023
0.095
0.086
0.921
0.085
0.008
0.327
0.267
0.740
0.138
0.035
0.214
0.151
0.208
0.111
0.010
0.434
0.394
0.214
0.036
0.012
0.187
0.127
0.123
0.015
0.002
0.109
0.060
0.888
0.025
0.001
0.064
0.056
0.209
0.184
0.021
0.727
0.633

OR (95% CI)
4.645(0.105−206.454)
1.257(0.98−1.613)
1.302(1.07−1.584)
1.126(0.769−1.647)
1.199(0.858−1.677)
12.335(0.002−77703.059)
1.132(0.848−1.513)
1.293(1.042−1.604)
1.275(0.849−1.914)
1.141(0.856−1.52)
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1.029(0.783−1.353)
4.092(0.167−100.095)
1.162(0.934−1.447)
1.196(1.021−1.402)
1.043(0.731−1.486)
1.062(0.776−1.455)
5.348(0.012−2400.838)
1.248(1.002−1.554)
1.192(1.007−1.412)
1.376(0.981−1.929)
1.337(0.993−1.8)
0.468(0.021−10.56)
0.855(0.717−1.019)
0.828(0.728−0.942)
0.9(0.718−1.128)
0.879(0.713−1.085)

1.183(0.927−1.509)
1.252(1.034−1.517)
1.121(0.803−1.564)
1.192(0.878−1.618)
0.156(0.002−13.505)
0.862(0.69−1.078)
0.828(0.697−0.983)
0.67(0.46−0.977)
0.866(0.642−1.167)
0.299(0.021−4.182)
0.796(0.644−0.984)
0.837(0.717−0.976)
0.712(0.5−1.012)
0.739(0.546−1)
0.741(0.002−249.65)
0.839(0.688−1.024)
0.829(0.721−0.953)
0.853(0.628−1.159)
0.842(0.63−1.125)
1.171(0.475−2.889)
1.144(0.958−1.366)
1.152(1.01−1.314)
1.15(0.936−1.413)
1.159(0.962−1.397)
0.431(0.125−1.487)
0.871(0.734−1.032)
0.847(0.746−0.962)
0.889(0.669−1.182)
0.894(0.697−1.147)
2.879(0.579−14.305)
1.167(1.01−1.348)
1.147(1.03−1.276)
1.181(0.932−1.497)
1.193(0.962−1.48)
0.006(0−2.035)
0.747(0.591−0.945)
0.772(0.655−0.909)
0.712(0.49−1.036)
0.692(0.495−0.968)
0.799(0.037−17.27)
0.813(0.678−0.974)
0.79(0.687−0.909)
0.713(0.514−0.989)
0.708(0.513−0.978)
0.408(0.109−1.522)
0.887(0.743−1.059)
0.856(0.75−0.977)
0.951(0.723−1.252)
0.939(0.731−1.207)

165.678(1.186−23143.211)

0.5 1 2 3

Worse Better

F I G U R E 1 Forest plot showing the
association between tongue microbiome
species and breast cancer. IVW, inverse
variance-weighted; MR, Mendelian
randomization; SNP, single nucleotide
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These results suggest significant differences in the abun-
dance of several species between salivary samples from the
BC and control groups. Subsequently, the oral microbiota
may serve as a predictive biomarker for BC risk. LEfSe uti-
lizes LDA to estimate the effect size of the abundance of

each component (species) on the differences observed,
thereby identifying the communities or species that signifi-
cantly and differentially affect sample classification. An
absolute LDA score of ≥2.5 was used as a criterion for signif-
icance. The larger the absolute LDA score associated with a
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F I G U R E 2 Forest plot showing the association between salivary microbiome species and breast cancer. IVW, inverse variance-weighted; MR, Mendelian
randomization; SNP, single nucleotide polymorphism.
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differential bacterium, the higher the degree of difference
between the groups. At the species level, LEfSe (Figure 4e)
revealed significantly different strains among the groups;
Prevotellaceae, Pasteurellaceae, Streptococcaceae, Flavobac-
teriaceae, Proteobacteriaceae, Bacteroidales, and Bacterium
ZOR0006 were identified as biomarkers for BC. Next, an RF
model was trained using 10 biomarkers. The area under the
curve (AUC) of the ROC curve was used to evaluate the per-
formance of the constructed model. As per RF analysis, the
AUC was 60.36%–68.03% for the mentioned bacterial spe-
cies (Figure 4f). The p-values for Veillonella, Prevotellaceae,
Streptococcaceae, Bacteroidales, and Proteobacteriaceae are
all less than 0.05, indicating strong predictive power for
breast cancer with statistical significance. Among these, Pre-
votellaceae has the highest AUC value of 0.6803 (95%CI
0.573–0.788, p = 0.001, Table 3).

To corroborate the conclusions drawn via MR analysis,
we determined the relative abundance of Pasteurellaceae,
Streptococcaceae, and Bacteroidaceae. The relative abun-
dance of Pasteurellaceae and Streptococcaceae was higher
in the BC group than in the control group (Figure 5a, b).
Simultaneously, the abundance of Bacteroidaceae was
higher in the healthy control group (Figure 5c). These find-
ings are consistent with the MR results. The abundance of
the other families was not significantly different between
both groups; this could be attributed to the limited
sequencing data.

DISCUSSION

Our study was a pioneering effort to apply MR to explore
the causal association between the oral microbiome and
BC. In this study, stringent quality control procedures were
employed to prevent potential confounding factors and
reverse causation during SNP selection. MR analysis
revealed significant associations between 30 and 37 tongue
and salivary bacteria species and BC incidence. By intersect-
ing the tongue and salivary bacterial species findings, we
identified six oral bacterial genera distributed across five
families. Through our MR-based research, we unveiled sig-
nificant causal associations between the salivary and dorsal
tongue microbiomes and BC. These relationships were fur-
ther substantiated using sequencing data derived from our
case–control study.

Recently, studies have continually revealed how micro-
bial communities affect human health and diseases, particu-
larly cancer. For example, a study has suggested that gut
microbiome imbalance is associated with the occurrence of
various cancers.27 Our findings extend this theory to the oral
microbiome, particularly its association with BC risk. Spe-
cific bacterial genera, including Pasteurellaceae and Strepto-
coccaceae, are relatively more abundant in patients with BC,
possibly affecting cancer development via mechanisms that
promote inflammation and immunoregulation. The signifi-
cant causal relationship between the oral microbiome and

T A B L E 2 Clinical characteristics of patients in case control study.

Characteristics BC (N = 102) Controls (N = 22) p-value

Age, years
Median (IQR)

49 (18.5) 54 (15.25) 0.163

BMI—kg/m2

Median (IQR)
24.46 (5.01) 24.8 (5.47) 0.460

Smoking status 0.793

Never smoker 97 (95.1%) 20 (90.91%)

Former smoker 5 (4.9%) 2 (9.09%)

Current smoker 0 0

Alcohol consumption 0.933

Never drink 87 (85.29%) 18 (81.82%)

<1 standard drink per day 15 (14.71%) 4 (18.18%)

One standard drink per day 0 0

Diabetes 0.464

Yes 61 (59.8%) 15 (68.18%)

No 41 (40.2%) 7 (31.82%)

Oral contraceptives use past 1.000

Yes 90 (88.24%) 19 (86.36%)

No 12 (11.76%) 3 (13.64%)

Number of live births 0.618

0 4 (3.92%) 1 (4.55%)

1–2 57 (55.88%) 10 (45.45%)

≥3 33 (32.35%) 8 (36.36%)

Abbreviations: BMI, body mass index; IQR, interquartile range.
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BC adds a new dimension to our understanding of the mul-
tifactorial nature of cancer. The potential contribution of the
oral microbiome to BC risk complements the findings from
gut microbiome research, suggesting that microbial

communities broadly affect systemic health and disease
states, including cancer.

Studies on the effect of the oral microbiome on other
cancer types, including colorectal and pancreatic cancers,
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have revealed the mechanisms that may also be associated
with BC. For example, gut microbiome dysbiosis is associ-
ated with inflammation, DNA damage, and immune
response alterations, which are key pathways in carcinogen-
esis. The effect of the oral microbiome on BC is mechanisti-
cally similar to the effect of the gut microbiome on other
cancer types, including colorectal cancer. These include
pathways that promote inflammatory responses, regulate
immune surveillance, and affect hormone levels.28 Because
the effect of the gut microbiome on colorectal cancer has
been extensively researched, one identified mechanism is
increasing cancer risk by promoting chronic
inflammation,29 Similarly, specific bacteria in the oral
microbiome, including Porphyromonas gingivalis, are associ-
ated with increased risks of inflammation and cancer.30 This
commonality suggests that the inflammation-promoting

actions of different microbiomes can be a universal pathway
affecting cancer development. Gut microbiota regulates the
immune responses of the host, affecting cancer immune sur-
veillance. Similarly, the oral microbiome, via similar mecha-
nisms, may affect distant breast tissues by modulating
cytokine activation and secretion by immune cells, affecting
the risk of BC. While both oral and gut microbiomes can
produce metabolites that affect host health, there can be dif-
ferences in the specific metabolites produced. For example,
short-chain fatty acids (such as butyrate) produced by the
gut microbiota confer a protective effect against colorectal
cancer31; in contrast, some oral microbiota, including Por-
phyromonas gingivalis, produce proinflammatory metabo-
lites such as lipopolysaccharides (LPS), which can travel to
distant breast tissues via the bloodstream. In breast tissues,
LPS binds to Toll-like receptor 4 and activates the nuclear
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factor kappa B signaling pathway, promoting the release of
inflammatory cytokines such as tumor necrosis factor-α and
interleukin (IL)-6, thereby promoting cancer cell prolifera-
tion and survival.32

Species such as Streptococcus and Haemophilus, which
predominantly colonize the oral cavity, may modulate
immune responses.33–35 Notably, Streptococcus salivarius
suppresses IL-8 secretion.34 In contrast, Haemophilus is
inversely associated with C-reactive protein levels, a well-
known indicator of acute inflammation.36 Haemophilus and
Aggregatibacter, members of the phylum Proteobacteria
and family Pasteurellaceae, can trigger interferon-γ secretion
from leukocytes and T cells.37 Furthermore, the genus Ori-
bacterium in the family Lachnospiraceae can help differenti-
ate patients with liver and oral cavity cancers from healthy
individuals; furthermore, this genus is associated with anti-
cyclic citrullinated peptide levels in patients with rheuma-
toid arthritis.36 The family Bacteroidaceae, belonging to the
class Bacteroidia, plays a vital role in complex sugar
fermentation,38 metabolic activities,39 and bile salt deconju-
gation.40 An increased abundance of Bacteroidaceae is asso-
ciated with an increased risk of Alzheimer’s disease,
potentially owing to increased serum LPS levels.41 In the
present study, we revealed that specific bacterial genera,
including Pasteurellacea, Streptococcaceae, and Lachnospira-
ceae, are relatively more abundant in patients with
BC. These observations are consistent with our findings,
providing empirical support for how the oral microbiome
affects BC risk by affecting the immune responses and
inflammatory state of the host. In our case–control study,
we further corroborated the conclusions of MR analysis,
suggesting significant differences in the abundance of spe-
cific bacterial genera between the BC and healthy control
groups. In particular, Streptococcus, Neisseria, and Haemo-
philus were more abundant in BC tissue samples, whereas
Veillonella and Prevotella were primarily identified in con-
trol tissues but were significantly decreased in BC tissues.
These bacterial composition differences highlight the

variations between the oral microbial communities and BC
tissues, potentially serving as predictive biomarkers for
BC risk.

In a previous study, researchers identified a direct asso-
ciation between the microbial enrichment of Fusobacterium,
a common species in the oral microbiota, and BC.42 Fur-
thermore, a review in 2022 illustrated that oral microbes can
colonize the lactiferous ducts of breast tissues by moving
into systemic circulation.43 While previous studies have
underscored a direct association between Fusobacterium
enrichment and BC, our MR analysis did not confirm this
association. Nevertheless, Fusobacterium was identified as
one of the top 20 most prevalent bacterial genera in our
study.

In addition, oral microbiota can affect hormone levels in
the host via their metabolic activity, particularly estrogen
metabolism. Enzymes such as β-glucuronidase produced by
some bacteria (Bacteroides and Lactobacillus) can affect
estrogen recycling, increasing local or systemic estrogen
levels, which, in turn, affects BC cell proliferation. Moreover,
oral microbiota can produce bioactive small molecules,
including peptides and polypeptides, that may travel to
breast tissues via the bloodstream and directly or indirectly
affect the behavior of cancer cells. For example, peptides
produced by certain microbes may have functions similar to
growth factors, promoting BC cell proliferation and migra-
tion. Furthermore, by affecting the local concentration of
immune cells and inflammatory factors, the metabolic prod-
ucts of oral microbiota can promote the formation of a
tumor microenvironment conducive to the growth and
metastasis of cancer cells. This includes promoting angio-
genesis, immune evasion, and extracellular matrix
remodeling.

By comparing these mechanisms with those suggested
for the effect of the oral microbiome on BC, researchers can
identify the common and unique pathways via which micro-
biomes affect cancer risk. The commonality and differences
in these mechanisms provide new directions for additional
research, particularly in exploring how microbiomes affect
cancer risk and progression via specific biomarkers and met-
abolic pathways. Gut microbiome modulation can decrease
BC risk by altering estrogen metabolism and affecting
immune responses.44 In particular, probiotics have demon-
strated tumor inhibition potential and can be customized
based on patient-specific strain and dosage require-
ments.45,46 Notably, microbiomes can affect the efficacy of
chemo-, immuno-, and radiotherapies, with some bacteria
such as Lactobacillus acidophilus capable of restoring the
antitumor activity of platinum-based drugs in germ-free
mice, thereby highlighting the potential of microbiome
cocktails to enhance the effectiveness of conventional cancer
treatments.47 Overall, microbes play a vital role in prevent-
ing and treating cancer. Analyzing the advantageous or
unique members of the oral microbiome may propel new
directions in bacteriotherapy.

This study possesses several robust aspects, including the
application of the most recent GWAS data associated with

T A B L E 3 Results of ROC curves for different bacterial species in
predicting breast cancer.

Species AUC 95% CI SE p-value

Pasteurellaceae 0.6072 0.464–0.750 0.073 0.105

Peptococcus 0.5920 0.457–0.727 0.069 0.105

Shuttleworthia 0.6237 0.494–0.753 0.066 0.100

Veillonella 0.6170 0.525–0.709 0.047 0.032

Prevotellaceae 0.6803 0.573–0.788 0.055 0.001

Streptococcaceae 0.6036 0.488–0.719 0.059 0.005

Bacteroidales 0.6228 0.488–0.758 0.069 0.028

Flavobacteriaceae 0.6346 0.497–0.772 0.070 0.114

Actinomyces 0.5671 0.426–0.708 0.072 0.068

Proteobacteriaceae 0.6493 0.526–0.773 0.063 0.040

Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver
operating characteristic; SE, standard error.

FENG ET AL. 983



the oral microbiome, application of MR to establish causal
connections, and validation via 16S rRNA sequencing. Nota-
bly, MR analysis and validation were conducted on the East
Asian population, adding to the depth of our findings.

However, our study had some limitations that should
be acknowledged. First, the potential for horizontal pleiot-
ropy may affect the selection of IVs in the MR process. Sec-
ond, genetic predisposition, lifestyle habits, dietary
variations, and environmental influences can affect the oral
microbiome; this suggests that IVs only account for a small
proportion of the variance; therefore, additional studies are
warranted to investigate the complexity of alterations
within the oral microbiome. Third, the marked disparity in
sample sizes between the control and case groups can
introduce potential bias. Therefore, caution should be exer-
cised when extrapolating these findings to a broader popu-
lation. Lastly, the study’s focus on the East Asian
population constrains the external validity of its
conclusions.

Although we identified the potential causal associations
between the oral microbiome and BC, we also highlighted
the need for additional studies to bridge existing gaps. In the
future, studies should aim to explore these associations in
diverse populations and via longitudinal designs to under-
stand how changes in the microbiome over time affect can-
cer risk and progression. Longitudinal studies will involve
the enrollment of a diverse cohort of high-risk and diag-
nosed individuals and the systematic sampling of their oral
microbiomes during regular clinical evaluations. Their goals
include characterizing baseline microbiome profiles, moni-
toring their changes at predetermined intervals, and corre-
lating these changes with clinical outcomes. Furthermore,
long-term follow-up should be emphasized to capture the
comprehensive effect of the microbiome on BC, committing
to data harmonization for enhanced validity and reproduc-
ibility among different populations. Moreover, mechanistic
studies should delve into how specific microbes promote or
inhibit tumor development by affecting the immune
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responses, metabolic pathways, and hormonal balance of the
host. In addition, preclinical and clinical studies should
investigate the potential effects of modulating the oral
microbiome (e.g., probiotic supplementation) on decreasing
BC risk. Such studies can facilitate the development of
microbiome-based diagnostics, preventive strategies, and
adjuvant therapies that enhance the efficacy of conventional
cancer therapies.

Collectively, integrating our study findings with existing
research not only reinforces the significance of the micro-
biome in cancer research but also opens new interdisciplin-
ary avenues for understanding and combating cancer. This
holistic approach, considering both microbial and tradi-
tional cancer risk factors, promises to enrich the strategies
for preventing, diagnosing, and treating cancer, leading to
more personalized and effective healthcare solutions.

In conclusion, in this study, MR analysis presents sup-
portive evidence for a potential causal association between
the oral microbiome and BC, with partial validation accom-
plished via 16S rRNA sequencing. Oral microbes can play a
significant role in preventing and treating BC, warranting
additional investigation to entirely understand the underly-
ing mechanisms.
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