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MOTIVATION Multiple cell-cell communication (CCC) tools exist, yet results are specific to the tool of
choice due to the diverse assumptions made across computational frameworks. Moreover, tools are often
limited to analyzing single samples or performing pairwise comparisons. As experimental design
complexity and sample numbers continue to increase in single-cell datasets, so does the need for versatile
methods to decipher cell-cell communication in such scenarios. By integrating LIANA and Tensor-cell2cell,
we present a protocol that enables the use of a diverse array of tools and resources to assess interpretable
CCC programs across multiple samples.
SUMMARY
In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological
processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when com-
bined, can deploy multiple existing methods and resources to enable the robust and flexible identification
of cell-cell communication programs across multiple samples. In this work, we show how the integration
of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an
unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the
analysis step by step in both Python and R and provide online tutorials with detailed instructions available
at https://ccc-protocols.readthedocs.io/. This workflow typically takes �1.5 h to complete from installation
to downstream visualizations on a graphics processing unit-enabled computer for a dataset of�63,000 cells,
10 cell types, and 12 samples.
INTRODUCTION

Cell-cell communication (CCC) coordinates higher-order biolog-

ical functions in multicellular organisms,1,2 dictating phenotypes

in response to different contexts such as disease state, spatial

location, and organismal life stage. In recent years, many tools

have been developed to leverage single-cell and spatial tran-

scriptomics data to study CCC events driving various biological

processes.2–4 While each computational strategy contributes

unique and valuable developments, many are tool specific and

challenging to integrate due to the large number of different infer-

ence methods and resources housing prior knowledge.2,5–7

Moreover, most tools do not account for the relationships of
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coordinated CCC events (CCC programs) across different con-

texts,8 either disregarding context altogether by analyzing sam-

ples individually or being limited to pairwise comparisons. Thus,

as the ability to generate large single-cell and spatial transcrip-

tomics datasets and the interest in studying CCC programs

continue to increase,9–11 the need to robustly decipher CCC is

becoming essential.

Comparison with other methods
A plethora of ligand-receptor (LR) methods have emerged, most

of which were published with their own resources.1,5,12 Many of

these provide distinct scoring functions to prioritize interactions,

yet studies have reported low agreement between their
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Figure 1. Integration of LIANA and Tensor-

cell2cell to identify context-driven programs

of cell-cell communication

LIANA and Tensor-cell2cell can be used together to

infer the molecular basis of cell-cell interactions by

running analysis across multiple samples, condi-

tions, or contexts. Given a method, resource, and

expression data, LIANA outputs CCC scores for all

interactions in a sample. We adapted both tools to

be highly compatible with each other, so LIANA

outputs can be directly passed to Tensor-cell2cell

to detect the programs from the scores computed

with LIANA. Tensor-cell2cell uses the communica-

tion scores generated for multiple samples to

identify context-driven CCC programs.
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predictions.5,13,14 Due to the lack of a gold standard, the bench-

mark of thesemethods remains limited,2,5 and it is challenging to

choose the method that works best. To this end, in addition to

providing multiple individual methods via ligand-receptor

analysis framework (LIANA), we also enable their consensus,

which we use in this protocol, under the assumption that the wis-

dom of the crowd is less biased than any individual method.15

While many methods exist to infer ligand-receptor interac-

tions from a single sample, fewer approaches were designed

to compare CCC interactions across conditions. These include

CrossTalkeR,16 which utilizes network topological measures to

compare communication patterns, CellPhoneDB,17 which ac-

cepts user-provided lists of differentially expressed genes to

return relevant ligand-receptor interactions, and scDiffCom,18

which uses a combined permutation approach across both

cell types and conditions. Still, the aforementioned ap-

proaches are limited to pairwise comparisons. Other ap-

proaches can directly compare CCC across more than two

conditions; however, their analysis often relies on pairwise19

or targeted20 comparisons to integrate multiple samples. A
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key feature of Tensor-cell2cell is that it

considers all samples simultaneously

while preserving the relationships be-

tween ligand-receptor interactions and

communicating cell-type pairs. Thus,

Tensor-cell2cell preserves higher-order

CCC relationships and translates those

into mechanistic CCC programs of

potentially interacting ligands, receptors,

and communicating cell types.

Development of the protocol
We combine two independent yet highly

complementary tools that leverage exist-

ing methods to enable robust and hypoth-

esis-free analysis of context-driven CCC

programs (Figure 1). LIANA5 is a computa-

tional framework that implements multiple

available ligand-receptor resources (i.e.,

database of ligand-receptor interactions)

andmethods to analyze CCC. In particular,

the user can employ LIANA to select any
method and resource of choice or combine multiple approaches

simultaneously to obtain consensus predictions. Tensor-cell2-

cell12 is a dimensionality reduction approach devised to uncover

context-driven CCC programs across multiple samples simulta-

neously. Specifically, Tensor-cell2cell uses CCC scores inferred

by any method and arranges the data into a four-dimensional

(4D) tensor to capture the coordinated relationship between

ligand-receptor interactions, communicating cell-type pairs,

and samples. Together, LIANA and Tensor-cell2cell unify exist-

ing approaches to enable researchers to easily use their

preferred CCC resource and method and subsequently analyze

any number of samples into biologically relevant CCC insights

without the additional complications of installing separate tools

or reconciling discrepancies between them.

For this protocol, we adapted LIANA and Tensor-cell2cell to

enable their smooth integration. Thus, our protocol demon-

strates the concerted use of both tools, describes the insights

they provide, and facilitates the interpretation of their outputs.

We base this protocol on recent best practices for single-cell

transcriptomics and CCC inference.21 We begin by processing



conda create -n ccc_protocols

conda activate ccc_protocols

conda install pytorch torchvision torchaudio pytorch-

cuda=11.8 -c pytorch -c nvidia

pip install cell2cell liana decoupler

jupyter notebook

use_gpu = True

if use_gpu:

import tensorly as tl

tl.set_backend(’pytorch’)
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the key inputs of our tools. Then, we guide the selection

of methods and prior-knowledge resources to score intercel-

lular communication using LIANA’s consensus method and

resource to infer the potential CCC events for each sample.

We use Tensor-cell2cell to summarize the intercellular

communication events across samples, and we describe key

technical considerations to enable consistent decomposition

results. Finally, we guide the interpretation of the decomposi-

tion results and show multiple downstream analyses and visu-

alizations to facilitate interpretation of the context-dependent

CCC programs. For example, we illustrate how biologically

relevant results can be obtained by coupling the outputs with

pathway enrichment analyses. We also provide quick-start

and in-depth online tutorials with detailed descriptions of all

steps described in this protocol and their crucial parameters.

All these materials are available in both Python and R at

https://ccc-protocols.readthedocs.io/. While here we show-

case an analysis on coronavirus disease 2019 (COVID-19)

data, online tutorials also show applications on transcriptom-

ics data of lupus peripheral blood mononuclear cells and

spatial transcriptomics data of myocardial infarction, further

demonstrating the adaptability of our combined tools. Collec-

tively, these materials provide a comprehensive and flexible

playbook to investigate CCC from single-cell transcriptomics.

Applications of the protocol
LIANA and Tensor-cell2cell have been used for diverse pur-

poses. LIANA was initially used to compare and evaluate

different ligand-receptor methods in diverse biological con-

texts. Tensor-cell2cell was originally applied to link CCC pro-

grams with different severities of COVID-19 and autism spec-

trum disorder (ASD).12 Briefly, LIANA evaluated different

methods and showed that they have limited agreement in

terms of communication mechanisms,5,12 while Tensor-

cell2cell revealed distinct CCC program dysregulations associ-

ated with severe COVID-19 specifically rather than moderate

cases, as well as combinations of programs distinguishing

ASD from neurotypical samples. Notably, LIANA provides a

consensus resource and can aggregate multiple methods

into consensus communication scores. Additionally, there is

a natural complementarity between the two tools, as Tensor-

cell2cell can use input scores from any CCC method (Figure 1)

and generates consistent decomposition results across

methods. Thus, our tools are highly generalizable and appli-

cable to the analysis of any single-cell transcriptomics data-

sets. For example, LIANA has been used for the analysis of

myocardial infarction22 and transforming growth factor b

signaling in breast cancer,23 among others. Our tools are

also applicable to other data modalities containing potentially

interacting cell populations. Specifically, one can adapt

LIANA or use existing spatial tools24 and combine their outputs

with Tensor-cell2cell to generate spatially informed CCC in-

sights across contexts. Similarly, one can also obtain metabo-

lite-mediated intercellular interactions25,26 and decompose

those into patterns across contexts with Tensor-cell2cell.27

One can also apply Tensor-cell2cell to extract CCC programs

occurring at specific tissues28 or at a whole-body organism

level.28,29 In this protocol, we focus on how one can leverage
the different CCC methods and resources, generalized by

LIANA, to infer context-dependent CCC programs with

Tensor-cell2cell from single-cell transcriptomics data.

RESULTS

In this section, we introduce our protocol (Figure 2) using Python.

The same protocol is implemented in R and is available online at

https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc_

R/QuickStart.html.

Step 1: Installation and environment setup
Install Anaconda or Miniconda through the official instructions at

https://docs.anaconda.com/anaconda/install/index.html.

Then, open a terminal to create and activate a conda

environment.
If you will be using a graphics processing unit (GPU), then install

PyTorch using conda.
Install Tensor-cell2cell, LIANA, and decoupler using PyPI.
For fully reproducible runs of our tutorials in both Python and R,

we have specified the required packages and their versions in

the software requirements table (STAR Methods). You can also

follow instructions in the environment setup section to install a

clean virtual environment with all package requirements.

Notebooks to run this tutorial can be created by starting a Ju-

pyter Notebook.
Step 2: Initial setups
First, if you are using an NVIDIA GPU with Compute Unified De-

vice Architecture (CUDA) cores, then set ‘‘use_gpu = True’’ and

enable PyTorch with the following code block. Otherwise, set

‘‘use_gpu = False’’ or skip this part.
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percent_top=None,
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Then, import all the packages we will use in this tutorial.
import cell2cell as c2c

import liana as li

import pandas as pd

import decoupler as dc

import scanpy as sc

import matplotlib.pyplot as plt

%matplotlib inline

import plotnine as p9

import seaborn as sns

log1p=False,

inplace=True)

adata = adata[adata.obs.pct_counts_mt < 15, :]
Afterward, specify the data and output directories.
data_folder = ’../../data/quickstart/’

output_folder = ’../../data/quickstart/outputs/’

c2c.io.directories.create_directory(data_folder)

c2c.io.directories.create_directory(output_folder)
Webegin by loading the single-cell transcriptomics data. For this

tutorial, we will use a lung dataset of 63,000 immune and epithe-

lial cells across three control, three moderate, and six severe

COVID-19 patients (Zenodo Data: https://doi.org/10.5281/

zenodo.7706962).30 We use a convenient function to download

the data and store it in the AnnData format, on which the

scanpy31 package is built.
adata = c2c.datasets.balf_covid(data_folder + ’/Liao-

BALF-COVID-19.h5ad’) # Save the raw counts to a layer

adata.layers["counts"] = adata.X.copy()

# Normalize the data

sc.pp.normalize_total(adata, target_sum=1e4)

sc.pp.log1p(adata)
Step 3: Data preprocessing
Data preprocessing is crucial for the correct application of this

(Figure 2A). Here, we only highlight the essential steps. However,

other aspects of data preprocessing should be considered and

performed according to the best practices of single-cell analysis

(https://github.com/theislab/single-cell-best-practices).

Quality control (timing: <5 min)

The loaded data have already been preprocessed to a degree

and come with cell annotations. Nevertheless, we highlight

some of the key steps. To mitigate noise, we filter non-informa-

tive cells and genes.
sc.pp.filter_cells(adata, min_genes=200)

sc.pp.filter_genes(adata, min_cells=3)
We additionally remove a high mitochondrial content.
adata.var[’mt’] = adata.var_names.str.startswith

(’MT-’)

sc.pp.calculate_qc_metrics(adata,

qc_vars=[’mt’],
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This is followed by removing cells with a high number of total

uniquemolecular identifier (UMI) counts, potentially representing

more than one single cell (doublets):
Caution: Here, we covered the absolute basics. We omit other

common practice steps, such as the removal of doublets and

cells with high ribosomal content and the correction of ambient

RNA. Additionally, in certain scenarios, particularly in those

where technical variation is expected to be notable, the applica-

tion of quality control steps by sample is desirable.21

Normalization (timing: <2 min)

We have now removed the majority of noisy readouts and

can proceed to count normalization, as most CCC tools typically

use normalized count matrices as input. Normalized counts are

usually obtained in two essential steps, the first being count

depth scaling, which ensures that the measured count depths

are comparable across cells. This is then usually followed up

with log1p transformation, which stabilizes the variance of the

counts and enables the use of linear metrics downstream.

adata = adata[adata.obs.n_genes < 5500,:]
Critical: A key parameter of this command is as follows:

d ‘‘target_sum’’ ensures that after normalization, each

observation (cell) has a total count equal to that number.

These normalization steps ensure that the aggregation of cells

into cell types, a common practice for CCC inference, is done on

comparable cells with approximately normally distributed

feature values.

Troubleshooting: Expression matrices with ‘‘not a number’’

(nan), negative, or infinity (inf) values cause errors. Users should

stick to common normalization techniques, and any nan, nega-

tive, or inf values must be filled to avoid errors.

Step 4: Inferring CCC
Following preprocessing of the single-cell transcriptomics

data, we proceed to the inference of potential CCC events (Fig-

ure 2B). In this case, we will use LIANA to infer the ligand-recep-

tor interactions for each sample. LIANA is available in Python and

R and supports Scanpy, SingleCellExperiment, and Seurat

https://doi.org/10.5281/zenodo.7706962
https://doi.org/10.5281/zenodo.7706962
https://github.com/theislab/single-cell-best-practices


Building 4D-Tensor

• Selecting Cells & LR pairs
• Handling Missing Data
• Generating Metadata
• Ordering Elements

• Tensor Subset

Tensor Decomposition
• Number of

Factors or Signatures
• Methods of Decomposition

• Parameter Tuning
• Controlling Robustness

• Using CPU or GPU
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Sender Cell Receiver Cell Ligand Receptor Communication Score
Cell A Cell B L1 R1 0.52
Cell A Cell B L2 R2 0.88
Cell A Cell A L1 R3 0.66
Cell B Cell A L1 R1 0.13
Cell B Cell A L3 R4 0.90

Sample N

Sender Cell Receiver Cell Ligand Receptor Communication Score
Cell A Cell B L1 R1 0.05
Cell A Cell B L2 R2 0.14
Cell A Cell A L1 R3 0.36
Cell B Cell A L1 R1 0.14
Cell B Cell A L2 R2 0.23

Sample 2

Sender Cell Receiver Cell Ligand Receptor Communication Score
Cell A Cell B L1 R1 0.15
Cell A Cell B L2 R2 0.24
Cell A Cell A L1 R3 0.06
Cell B Cell A L1 R1 0.11
Cell B Cell A L2 R2 0.07

Sample 1

4D-Communication Tensor cell cell
Tensor

Sender Cell Receiver Cell Ligand Receptor Communication Score
Cell A Cell B L1 R1 0.15
Cell A Cell B L2 R2 0.24
Cell A Cell A L1 R3 0.06
Cell B Cell A L1 R1 0.11
Cell B Cell A L2 R2 0.07

Table of Results

Cell-Cell Communication Tool
Scoring Function(Ligand Expression in Sender Cell,

Receptor Expression in Receiver Cell )

Ligand-Receptor Interactions
Resources & Databases

0 3 4 0 1

5 2 1 8 2

3 0 0 0 0

1 3 3 1 5

0 0 0 1 2

2 0 1 0 0

Cells

G
en

es

Cell A Cell B

Tools in LIANA
• CellChat

• CellPhoneDB
• Connectome

• NATMI
• SingleCellSignalR

• And Others!

Data Preprocessing

• Quality Control
• Scaling

• Transformation
• Correction & Integration

• Annotation

Resources in LIANA
• ConnectomeDB

• CellTalkDB
• CellPhoneDB
• CellChatDB
• OmniPath

• And Others!

A

B

C

Figure 2. Overview of the protocol for inferring cell-cell communication through LIANA and Tensor-cell2cell

Main inputs, steps, resources, and options are summarized for the distinct steps of this protocol.

(A) A preprocessed gene expressionmatrix according to the best practices of single-cell analysis is expected as input (data preprocessing in the results section).

(B) The input data are integrated with the ligand-receptor resources available in LIANA to infer cell-cell communication using any of the methods implemented in

LIANA (inferring cell-cell communication in the results section). An output containing the cell-cell communication scores across all interactions per sample is

generated.

(C) The LIANA output is then directly passed to Tensor-cell2cell to build the respective communication tensor used by the tensor component analysis (building a

4D-communication tensor and running Tensor-cell2cell across samples in the results section). The output generated by Tensor-cell2cell can be later employed

for other downstream analyses (downstream visualizations: making sense of the factors and pathway enrichment analysis: interpreting the context-driven

communication in the results section).
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objects as input. LIANA is highly modularized, and it natively

implements the formulations of several methods, including

CellPhoneDBv2,32 Connectome,33 log2 fold change (log2FC),

NATMI,34 SingleCellSignalR,35 CellChat,19 and a geometric
mean, as well as a consensus score in the form of a rank aggre-

gate36 from any combination of methods (Figure 3). The high

modularity of LIANA further enables the straightforward addition

of any other ligand-receptor method.
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CellPhoneDB

CellTalkDB

Ramilowski
CellChatDB

ConnectomeDB

Resources

OmniPath

 + 10 others

Clustered scRNA Data

Cell-Cell Communication

LIANA

Methods

NATMI

CellPhoneDB
logFC

Connectome

+ others

NCellChat

Rank 
Aggregate

SingleCellSignalR

Figure 3. LIANA is a user-friendly andmodular

ligand-receptor analysis framework

LIANA provides a variety of methods and resources

to infer cell-cell communication, making it easy to

use multiple existing methods in a coherent manner.

It also provides consensus scores and resources to

provide generalized results. Figure was adapted

from Dimitrov et al.5

lr_pairs = li.resource.select_resource(’consensus’)
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LIANA classifies the scoring functions from the different

methods into two categories: those that infer the ‘‘magnitude’’

and ‘‘specificity’’ of interactions. The magnitude of an interaction

is a measure of the strength of the interaction, and the specificity

of an interaction is a measure of how specific an interaction is

to a given pair of cell groups. Generally, these categories are

complementary, and the magnitude of the interaction is often

in agreement with the specificity of the interaction. In other

words, a ligand-receptor interaction with a highmagnitude score

in a given pair of cell types is likely to also be specific, and vice

versa.

Selecting a method to infer CCC

While there are many commonalities between the different

methods implemented in LIANA, there also are many variations

and different assumptions affecting how the magnitude and

specificity scores are calculated (see STAR Methods). These

variations can result in limited agreement in inferred predictions

when using different CCC methods.5,13,14 To this end, in LIANA,

we additionally provide a ‘‘rank_aggregate’’ score, which can be

used to aggregate any of the scoring functions above into a

consensus score.

By default, LIANA calculates an aggregate rank using a re-im-

plementation of the RobustRankAggregatemethod36 and gener-

ates a probability distribution for ligand-receptors that are

ranked consistently better than expected under a null hypothesis

(see STAR Methods). The consensus of ligand-receptor interac-

tions across methods can therefore be treated as a p value.

We show in detail how LIANA’s rank aggregate or any of the in-

dividual methods can be used to infer communication events

from a single sample or context at ‘‘Python Tutorial 02 Infer-

Communication-Scores’’ (https://ccc-protocols.readthedocs.

io/en/latest/notebooks/ccc_python/02-Infer-Communication-

Scores.html).

Critical: When using LIANA with Tensor-cell2cell, we

recommend selecting a scoring function that reflects the

magnitude of the interactions, as how the interactions’ spec-

ificity relates to changes across samples is unclear. In this

protocol, we will use the ‘‘magnitude_rank’’ scoring

function from LIANA, under the assumption that ensemble ap-
6 Cell Reports Methods 4, 100758, April 22, 2024
proaches are potentially less biased than any single method

alone.15

We further show that Tensor captures consistent CCC

programs when using different methods and add a tutorial

to explore method consistency on any dataset: https://ccc-

protocols.readthedocs.io/en/latest/notebooks/ccc_python/S3B_

Score_Consistency.html.

Troubleshooting: The default decomposition method of

Tensor-cell2cell is a non-negative tensor component analysis,

which, as implied, expects non-negative values as the inputs.

Thus, when selecting the method of choice, make sure that

you do not have negative CCC scores. If so, you can replace

them by zeros or the minimum positive value.

Selecting ligand-receptor resources

When considering ligand-receptor prior-knowledge resources,

a common theme is the trade-off between coverage and quality,

and similarly, each resource comes with its own biases.5 LIANA

takes advantage of OmniPath,37 which includes expert-curated

resources of CellPhoneDBv2,32 CellChat,19 ICELLNET,38 con-

nectomeDB2020,34 and CellTalkDB,39 as well as 10 others.5,37

LIANA further provides a consensus expert-curated resource

from the aforementioned five resources, along with some

curated interactions from SignaLink.40 In this protocol, we will

use the consensus resource from LIANA, though any of the other

resources are available via LIANA, and one can also use LIANA

with their own custom resource.

Selecting any of the lists of ligand-receptor pairs in LIANA can

be done through the following command.
Here, ‘‘consensus’’ indicates the use of LIANA’s consensus

resource, but it can be replaced by any other available resource

(e.g., ‘‘cellphonedb,’’ ‘‘cellchatdb,’’ ‘‘connectomeDB,’’ etc.).

Note that any of the resources available in LIANA can be used

by passing them as a string to ‘‘resource_name.’’ All of LIANA’s

https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc_python/02-Infer-Communication-Scores.html
https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc_python/02-Infer-Communication-Scores.html
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li.pl.dotplot_by_sample(adata=adata,

colour=’magnitude_rank’,

size=’specificity_rank’,

source_labels=["B", "pDC", "Epithelial"],
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resources can be listed with ‘‘li.resource.show_resources().’’

Users can also provide custom resources as a pandas

DataFrame to run in LIANA so long as they are formatted

the same as other resources (i.e., include two columns named

ligand and receptor, containing the respective partners in the

ligand-receptor interactions). Hence, users may pass a data-

frame containing a personalized list of interactions to liana using

the ‘‘resource’’ parameter in the next ‘‘rank_aggregate’’ function

below.

Troubleshooting: Users should choose a resource with gene

identifiers and an organism that corresponds to that of their

data. By default, LIANA uses human gene symbol identifiers

but additionally provides a murine resource as well as function-

alities to convert via orthology to other organisms.

Running LIANA for each sample (timing: 4 min)

Here, wewill run LIANA’s ‘‘rank_aggregate’’ with six methods (by

default, CellPhoneDBv2, CellChat, SingleCellSignalR, NATMI,

Connectome, and log2FC) on all of the samples in the dataset.
li.mt.rank_aggregate.by_sample(adata,

sample_key=’sample_new’,

groupby=’celltype’, resource_name=’consensus’,

expr_prop=0.1,

min_cells=5,

n_perms=100,

use_raw=False,

verbose=True,

inplace=True

)

target_labels=["Macrophages", "Mast", "pDC", "NK"],

ligand_complex=[’VIM’, ’SCGB3A1’],

receptor_complex=[’CD44’, ’MARCO’],

sample_key=’sample_new’,

inverse_colour=True,

inverse_size=True,

figure_size=(14, 10),

size_range=(1, 6),

)

adata.uns[’liana_res’].to_csv(output_folder + ’/LIA-

adata.write_h5ad(output_folder + ’/adata_processed.

h5ad’, compression=’gzip’)
Critical: Key parameters here are as follows:

d ‘‘adata’’ stands for AnnData, the data format used by

scanpy.31

d ‘‘sample_key’’ corresponds to the sample identifiers, avail-

able as a column in the ‘‘adata.obs’’ dataframe.

d ‘‘groupby’’ corresponds to the cell group label stored in

‘‘adata.obs.’’

d ‘‘resource_name’’ is the name of any of the resources

available via LIANA.

d ‘‘expr_prop’’ is the expression proportion threshold (in

terms of cells per cell type expressing the protein) for any

protein subunit involved in the interaction, according to

which we keep or discard the interactions.

d ‘‘min_cells’’ is the minimum number of cells per cell type

required for a cell type to be considered in the analysis.

d ‘‘n_perms’’ is the number of permutations for p value esti-

mation.

d ‘‘use_raw’’ is a Boolean that indicates whether to use the

‘‘adata.raw’’ slot; here, the log-normalized counts are as-

signed to ‘‘adata.X,’’ and other options include passing

the name of a layer via the ‘‘layer’’ parameter or using the

counts stored in ‘‘adata.raw.’’

Critical: LIANA considers interactions as occurring only if the

ligand and receptor, and all of their subunits, are expressed in
at least 10% of the cells (by default) in both clusters involved

in the interaction. Any interactions that do not pass these

criteria are not returned by default. To return those, the user

can use the ‘‘return_all_lrs’’ parameter. These results will later

be used to generate a tensor of ligand-receptor interactions

across contexts that will be decomposed into CCC programs

by Tensor-Cell2cell. Thus, how non-expressed interactions

are handled is critical to consider when building the tensor

later on (see ‘‘Python Tutorial 03 Generate-Tensor’’ (https://

ccc-protocols.readthedocs.io/en/latest/notebooks/ccc_python/

03-Generate-Tensor.html).

One can visualize the output as a dot plot while including every

sample in the dataset.
Key parameters here are as follows:

d ‘‘source_labels’’ is a list containing the names of the sender

cells of interest.

d ‘‘target_labels’’ is a list containing the names of the

receiver cells of interest.

d ‘‘ligand_complex’’ is a list containing the names of the li-

gands of interest.

d ‘‘receptor_complex’’ is a list containing the names of the

receptors of interest.

d ‘‘sample_key’’ is a string containing the column name

where samples are specified.

This command leads to the generation of Figure 4.

Pause point: We can export the LIANA results by sample to a

CSV and save them for later use.
Alternatively, one could just export the whole AnnData object,

together with the ligand-receptor results stored at ‘‘adata.uns

[‘liana_res’].’’

NA_by_sample.csv’, index=False)
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Figure 4. Dot plot of cell-cell communication

between immune cells per sample

Here, sender and receiver cells are represented as

source and target (y and x axes, respectively). Each

major column groups cells by sample, while each

major row groups cells by the ligand-receptor

interaction they are using. Dot size represents the

specificity (ranks) assigned by LIANA, while the

color represents the magnitude (ranks) of the inter-

action.
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Step 5: Comparing CCC across multiple samples
Building a 4D-communication tensor (timing: <1 min)

First, we generate a list containing all samples from our AnnData

object. For visualization purposes, we sort them according to

COVID-19 severity. Here, we can find the names of each of the

samples in the ‘‘sample_new’’ column of the adata.obs

information.
sorted_samples = sorted(adata.obs[’sample_new’].

unique())
Tensor-cell2cell performs a tensor decomposition to find

context-dependent patterns of CCC. It builds a 4D-communica-

tion tensor, which, in this case, is built from the communication

scores obtained from LIANA for every combination of ligand-re-

ceptor and sender-receiver cell pairs per sample (Figures 2B and

2C). For this protocol and associated tutorials, we implemented

a function that facilitates building this communication tensor.
tensor = li.multi.to_tensor_c2c(liana_res=adata.uns

[’liana_res’],

sample_key=’sample_new’,

source_key=’source’,

target_key=’target’,

ligand_key=’ligand_complex’,

receptor_key=’receptor_complex’,

score_key=’magnitude_rank’,

inverse_fun=lambda x: 1 - x,

how=’outer’,

outer_fraction=1/3.,

context_order=sorted_samples,

)
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Troubleshooting: Since the ‘‘magnitude_

rank’’ from LIANA represents a score

where the values closest to 0 repre-

sent the most probable communication

events, we need to invert the communica-

tion scores to use it with Tensor-cell2cell.

See the parameter ‘‘inverse_fun’’ below

for further details for transforming this

score.
Critical: Key parameters here are as follows:

d ‘‘liana_res’’ is the dataframe containing the results from

LIANA, usually located in ‘‘adata.uns[‘liana_res’].’’ We

can pass directly the AnnData object to the parameter

adata to this function. If the AnnData object is passed,

then we do not need to specify the liana_res parameter.

d ‘‘sample_key,’’ ‘‘source_key,’’ ‘‘target_key,’’ ‘‘ligand_key,’’

‘‘receptor_key,’’ and ‘‘score_key’’ are the column names in

the dataframe containing the samples, sender cells,

receiver cells, ligands, receptors, and communication

scores, respectively. Each row of the dataframe contains

a unique combination of these elements.

d ‘‘inverse_fun’’ is the function we use to convert the

communication score before building the tensor. In this

case, the ‘‘magnitude_rank’’ score generated by LIANA

considers low values as the most important ones, ranging

from 0 to 1. In contrast, Tensor-cell2cell requires higher

values to be the most important scores, so here we pass

a function (lambda x: 1 � x) to adapt LIANA’s magnitude-

rank scores (subtracts LIANA’s score from 1). If ‘‘None’’

is passed instead, then no transformation will be per-

formed on the communication score. If using other scores

coming from one of the methods implemented in LIANA,

then a similar transformation can be done depending on

the parameters and assumptions of the scoring method.

d ‘‘how’’ controls ‘‘which’’ ligand-receptor pairs and cell

types to include when building the tensor. This decision

depends on whether the missing values across a number

of samples for both ligand-receptor interactions and

sender-receiver cell pairs are considered to be biologically

relevant. Options are as follows:
o ‘‘inner’’ is the most strict option since it only considers

cell types and ligand-receptor pairs that are present in

all contexts (intersection).



c2c.io.export_variable_with_pickle(variable=tensor,

filename=output_folder + ’/Tensor.pkl’)

c2c.io.export_variable_with_pickle(variable=meta_

tensor,

filename=output_folder + ’/Tensor-Metadata.pkl’)

tensor = c2c.io.read_data.load_tensor

(output_folder + ’/Tensor.pkl’)

meta_tensor = c2c.io.load_variable_with_pickle

(output_folder + ’/Tensor-Metadata.pkl’)

c2c.analysis.run_tensor_cell2cell_pipeline

(interaction_tensor=tensor,

tensor_metadata=meta_tensor,

tensor = c2c.io.read_data.load_tensor

(output_folder + ’/Tensor.pkl’)

meta_tensor = c2c.io.load_variable_with_pickle

(output_folder + ’/Tensor-Metadata.pkl’)
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o ‘‘outer’’ considers all cell types and ligand-receptor

pairs that are present across contexts (union).

o ‘‘outer_lrs’’ considers only cell types that are present in

all contexts (intersection) but all ligand-receptor pairs

that are present across contexts (union).

o ‘‘outer_cells’’ considers only ligand-receptor pairs that

are present in all contexts (intersection) but all cell types

that are present across contexts (union).

d ‘‘outer_fraction’’ controls the elements to include in the

union scenario of the how options. Only elements that

are present at least in this fraction of samples/contexts

will be included. When this value is 0, the tensor includes

all elements across the samples. When this value is 1, it

acts as using how = ‘‘inner.’’

d ‘‘context_order’’ is a list specifying the order of the sam-

ples. The order of samples does not affect the results,

but it is useful for posterior visualizations.

We can check the shape of this tensor to verify the number of

samples, ligand-receptor pairs, sender cells, and receiver cells,

respectively:

tensor.shape

In addition, optionally, we can generate the metadata for

coloring the elements in each of the tensor dimensions (i.e.,

for each of the contexts/samples, ligand-receptor pairs,

sender cells, and receiver cells) in posterior visualizations.

These metadata correspond to dictionaries for each of the di-

mensions containing the elements and their respective major

groups, such as a signaling categories for a ligand-receptor

interactions, a hierarchically more granular cell type, or a dis-

ease condition for a sample. In cases where we do not ac-

count for such information, we do not need to generate

such dictionaries.

For example, we can build a dictionary for the contexts/sam-

ples dictionary by using the metadata in the AnnData object. In

this example dataset, we can find samples in the column ‘‘sam-

ple_new,’’ while their major groups (representing COVID-19

severity) are found in the column ‘‘condition.’’
context_dict = adata.obs.sort_values(by=’sample_

new’) \

.set_index(’sample_new’)[’condition’] \

.to_dict()

rank=None,

tf_optimization=’robust’,

random_state=0,

device=’cuda’,

output_folder=output_folder,

)

Then, the metadata can be generated with:
dimension_dicts = [context_dict, None, None, None]

meta_tensor = c2c.tensor.generate_tensor_metada-

ta(interaction_tensor=tensor, metadata_dicts=dimen-

sion_dicts, fill_with_order_elements=True)
Notice that the ‘‘None’’ elements in the variable dimensions_-

dicts represent the dimensions where we are not including addi-
tional metadata. If you want to include metadata about major

groups for those dimensions, then you have to replace the corre-

sponding ‘‘None’’ with a dictionary as described before.

Pause point: We can export our tensor and its metadata for

performing the tensor decomposition later:
Then, we can load them with:
Running Tensor-cell2cell across samples (timing: 5 min

with a ‘‘regular’’ run or 40 min with a ‘‘robust’’ run, using

a GPU in both cases)

Now that we have built the tensor and its metadata, we can run

tensor component analysis via Tensor-cell2cell with one simple

command that we implemented for our unified tools.
Critical: Key parameters of this command are as follows:

d ‘‘rank’’ is the number of factors or latent patterns we want

to obtain from the analysis. You can either indicate a spe-

cific number or leave it as ‘‘None’’ to perform the decom-

position with a suggested number from an elbow analysis

(Figure 5A).

d ‘‘tf_optimization’’ indicates whether running the analysis in

the regular or the robust way. It essentially controls the

convergence parameters of the tensor decomposition.

The former employs less strict convergence parameters

to obtain optimal results than the latter, which is also trans-

lated into a faster generation of results.
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Figure 5. Cell-cell communication programs

obtained by combining LIANA and Tensor-

cell2cell

(A) Elbow analysis to select an optimal number of

factors (rank of the tensor). The red dot represents

the number selected by Tensor-cell2cell.

(B) After inferring cell-cell communication with

LIANA from the COVID-19 data and running a tensor

component analysis with Tensor-cell2cell, 10 fac-

tors were obtained (rows here), each of which rep-

resents a different cell-cell communication pro-

gram. Within a factor, loadings (y axis) are reported

for each element (x axis) in every tensor dimension

(columns). Elements here are colored by their major

groups as indicated in the legend.

groups_order = [’Control’, ’Moderate COVID-19’, ’Se-

vere COVID-19’]

fig_filename = output_folder + ’/BALF-Severity-

Boxplots.pdf’
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d ‘‘random_state’’ is the seed for randomization. It controls

the randomization used when initializing the optimization

algorithm that performs the tensor decomposition. It is

useful for reproducing the same result every time that the

analysis is run. If ‘‘None,’’ then a different randomization

will be used each time.

d ‘‘device’’ indicates whether we are using the ‘‘cpu’’ or a

GPU with ‘‘cuda’’ cores. See the installation section of

this tutorial for instructions to enable the use of GPU(s).

This command will output three main results: a figure with the

elbow analysis for suggesting a number of factors for the decom-

position (only if ‘‘rank =None’’), a figurewith the loadings assigned

to each element within a tensor dimension per factor obtained,

and anExcel file containing the values of these loadings. Figure 5A

represents the elbow plot generated in this case, while Figure 5B

shows the loadings assigned to each tensor dimension per factor.

Troubleshooting: Elbow analysis returns a rank equal to one,

or the curve is increasing instead of decreasing. This may be

due to high sparsity in the tensor. The sparsity can be decreased

by re-building the 4D tensor after re-running LIANA (running

LIANA for each sample) with a smaller ‘‘expr_prop’’ (e.g., ‘‘ex-

pr_prop = 0.05’’) or by only re-building the tensor (building a

4D-communication tensor) with a higher ‘‘outer_fraction’’ (e.g.,

‘‘outer_fraction = 0.8’’).

Downstream visualizations: Making sense of the factors

(timing: <2 min)

The figure representing the loadings in each factor generated in

the previous section can be interpreted by interconnecting all di-
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mensions within a single factor (Figure 5B).

For each factor, we obtain four vectors that

represent the sample, ligand-receptor

interaction, sender cell type, and receiver

cell-type loadings. These loadings are the

relative importance of each element in

each dimension of the original tensor. All

these vectors together define a CCC pro-

gram in which high loadings represent

key cells and mediators. By focusing on

sample loadings associated with a given

condition label, we can thus identify the

cell types and interactions also associated
with that label. Relevant interactors can be interpreted according

to their loadings (i.e., ligand-receptor pairs, sender cells, and

receiver cells with high loadings play a more prominent role in

an identified CCC program). Ligands in high-loading ligand-re-

ceptor pairs are sent predominantly by high-loading sender cells

and interact with the cognate receptors on the high-loadings

receiver cells. In this regard, the program would be predomi-

nantly driven by changes in the receptor expression of receiver

cells such as macrophages, neutrophils, and myeloid dendritic

cells.

We can access the loading values of samples in each of the

factors with

tensor.factors[’Contexts’]

In this case, we obtain a dataframe where rows represent the

samples, columns the factors generated by the decomposition,

and entries the loadings of each element within the corresponding

factor. We can also access the loadings for the elements in the

other dimensions by replacing ‘‘Contexts’’ with ‘‘Ligand-

Receptor Pairs,’’ ‘‘Sender Cells,’’ or ‘‘Receiver Cells.’’ Then, we

can use these loadings to perform various downstream analyses.

For example, we can use loadings to compare groups of sam-

ples (Figure 6) with boxplots and statistical tests.



Figure 6. Identifying patterns and differences across groups of conditions

Context or sample loadings can be used to compare statistically different condition groups within the same cell-cell communication program. Here, COVID-19

patients are grouped by severity, and pairwise t tests are performed. Here, * and ** indicate p values lower than 0.05 and 0.01, respectively, while ns means not-

significant (or p value greater than 0.05). The case of ‘‘ns’’ indicates that the significance is lost after multiple test correction (false discovery rate, in this case).

_ = c2c.plotting.context_boxplot(context_loading-

s=tensor.factors[’Contexts’],

metadict=context_dict,

nrows=3,

figsize=(16, 12),

group_order=groups_order,

statistical_test=’t-test_ind’,

pval_correction=’fdr_bh’,

cmap=’plasma’,

verbose=False,

filename=fig_filename

)

fig_filename = output_folder + ’/Clustermap-LRs.pdf’

_ = c2c.plotting.loading_clustermap(loadings=ten-

sor.factors[’Ligand-Receptor

Pairs’],

loading_threshold=0.1,

use_zscore=False,

figsize=(28, 8),

filename=fig_filename,

row_cluster=False

)
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Critical: In this case, we can change the statistical test and the

multiple-test correction with the parameters ‘‘statistical_test’’

and ‘‘pval_correction.’’ Here, we used an independent t test

and a Benjamini-Hochberg correction. Additionally, we can set

‘‘verbose = True’’ to print exact test statistics and p values.

We can also generate heatmaps for the elements with loadings

above a certain threshold in a given dimension (Figure S1).
Furthermore, we can cluster these elements by the similarity of

their loadings across all factors.
Troubleshooting: Note that here, we plot the loadings of the

dimension representing the ligand-receptor pairs. In addition,

we prioritize the pairs with high loadings using the parameter

‘‘loading_threshold = 0.1.’’ In this case, the elements are

included only if they are greater than or equal to that threshold

in at least one of the factors. If we use ‘‘loading_threshold =
Cell Reports Methods 4, 100758, April 22, 2024 11



lr_loadings = tensor.factors[’Ligand-Receptor Pairs’]
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0,’’ then we would consider all of the elements. Considering all of

the elements would require modifying the parameter ‘‘figsize’’ to

enlarge the figure.

Caution: Changing the parameter ‘‘use_zscore’’ to ‘‘True’’

would standardize the loadings of one element across all factors.

This is useful to compare an element across factors and highlight

the factors in which that element is most important. Modifying

‘‘row_cluster’’ to ‘‘True’’ would also cluster the factors depend-

ing on the elements that are important in each of them.

Furthermore, factor-specific networks of cell-cell interactions

(Figure S2) can be visualized by using the loadings of sender

and receiver cells.
threshold = 0.075

c2c.plotting.ccc_networks_plot(tensor.factors,

included_factors=[’Factor 3’, ’Factor 5’, ’Factor

10’],

ccc_threshold=threshold, # Only important

communication

nrows=1,

panel_size=(16, 16), # This changes the size of each

figure panel.

filename=output_folder + ’Factor-Networks.pdf’,

)

# Generate list with ligand-receptors pairs in DB

lr_list = [’^’.join(row) for idx, row in lr_pairs.

iterrows()]

# Specify the organism and pathway database to use for

building the LR set

organism = "human"

pathwaydb = "KEGG"

# Generate ligand-receptor gene sets

lr_set = c2c.external.generate_lr_geneset(lr_list,

complex_sep=’_’,

lr_sep=’^’,

organism=organism,

pathwaydb=pathwaydb,

readable_name=True,

output_folder=output_folder

)

Critical: Key parameters of this command are as follows:

d ‘‘included_factors’’ is a list of factors to plot. If ‘‘None’’ is

passed, then all factor-specific networks are shown.

d ‘‘ccc_threshold’’ is a loading value to set as threshold to

select key cell-cell interactions. This threshold filters the

outer products between sender and receiver cells, and it

can be either arbitrary or determined as shown in the online

tutorials.
pvals, scores, gsea_df = c2c.external.run_gsea

(loadings=lr_loadings,

lr_set=lr_set,

output_folder=output_folder,

weight=1,

min_size=15,

permutations=999,

processes=6,

random_state=6,

significance_threshold=0.05,

)

Step 6: Pathway enrichment analysis: Interpreting the
context-driven communication
The decomposition of ligand-receptor interactions across sam-

ples into loadings associated with the conditions reduces the

dimensionality of the inferred interactions substantially. Never-

theless, we are still working with 1,054 interactions across mul-

tiple factors associated with the disease labels. To this end, as

is commonly done when working with omics data types, we

can perform pathway enrichment analysis to identify the general

biological processes of interest. By using the loadings for each

ligand-receptor pair (Figure 5B), we can rank them within each

factor and use this ranking as input to enrichment analysis.

Pathway enrichment thus serves two purposes: it further re-

duces the dimensionality of the inferred interactions and it en-

hances the biological interpretability of the inferred interactions.

Here, we show the application of classical gene set enrich-

ment analysis (GSEA) on the ligand-receptor loadings. We use

GSEA41 with KEGG Pathways,42 as well as a multivariate linear

regression from decoupler-py43 with the PROGENy pathway

resource.44

First, we assign ligand-receptor loadings to a variable.
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Classic pathway enrichment (timing: <1 min)

For the pathway enrichment analysis, we use ligand-receptor

pairs instead of individual genes. KEGG was initially designed

to work with sets of genes, so first we need to generate ligand-

receptor sets for each of its pathways. A ligand-receptor pair is

assigned as part of a pathway set if all of the genes in the pair

are part of the gene set of such a pathway.

Note that we use the ‘‘lr_pairs’’ database that we loaded in the

selecting ligand-receptor resources section.
Critical: Key parameters of this command are as follows:

d ‘‘complex_sep’’ indicates the symbol separating the gene

names in the protein complex.

d ‘‘lr_sep’’ is the symbol separating a ligand and a receptor

complex.

d ‘‘organism’’ is the organismmatching the gene names in the

single-cell dataset. It could be either ‘‘human’’ or ‘‘mouse.’’

d ‘‘pathwaydb’’ is the name of the database to be

loaded, provided with the cell2cell package. Options are

‘‘GOBP,’’ ‘‘KEGG,’’ and ‘‘Reactome.’’

Run GSEA via cell2cell, which calls the ‘‘gseapy.prerank’’

function internally.



Figure 7. Assigning functions to factors from GSEA

By using the loadings of ligand-receptor pairs per factor, they can be ranked

within a factor (factor-specific analysis), and this information can be used to

run an enrichment analysis such as GSEA to associate each of the programs

with different functions or pathways. This dot plot shows the enriched KEGG

pathways per factor. Dot size indicates the –log(p value), while the color in-

# We first load the PROGENy gene sets

net = dc.get_progeny(organism=’human’, top=5000)

# Then convert them to sets with weighted ligand-recep-

tor pairs

lr_progeny = li.rs.generate_lr_geneset(lr_pairs, net,

="^")

estimate, pvals = dc.run_mlm(lr_loadings.transpose(),

title_size=20,

tick_size=12,

filename=fig_filename

)
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Critical: Key parameters of this command are as follows:

d ‘‘lr_set’’ is a dictionary associating pathways (keys) with

sets of ligand-receptor pairs (values).

d ‘‘weight’’ represents the original parameter p in GSEA. It is

an exponent that controls the importance of the ranking

values (loadings, in our case).

d ‘‘min_size’’ indicates the minimum number of LR pairs that

a set has to contain to be considered in the analysis.

d ‘‘permutations’’ indicates the number of permutations to

perform to generate the null distribution.

d ‘‘random_state’’ is the reproducibility seed.

d ‘‘significance_threshold’’ is the p value threshold to

consider significance.

Now that we have obtained the normalized enrichment scores

(NESs) and corresponding p values from GSEA, we can plot

those using the following function from cell2cell (Figure 7).

dicates the normalized enrichment score (NES) from the GSEA.
pathway_label = ’{} Annotations’.format(pathwaydb)

fig_filename = output_folder + ’/GSEA-Dotplot.pdf’

with sns.axes_style("darkgrid"):

dotplot = c2c.plotting.pval_plot.generate_dot_plot

(pval_df=pvals,

score_df=scores,

significance=0.05,

xlabel=’’,

ylabel=pathway_label,

cbar_title=’NES’,

cmap=’PuOr’,

figsize=(5, 12),

label_size=20,
Footprint enrichment analysis (timing: <1 min)

In footprint enrichment analysis, instead of considering the

genes whose products (proteins) are directly involved in a pro-

cess of interest, we consider the genes affected by it—i.e., those

that change downstream as a consequence of the process.45 In

this case, we will use the PROGENy resource to infer the path-

ways driving the identified context-dependent patterns of

ligand-receptor pairs. PROGENy was built in a data-driven

manner using perturbation data.44 Consequently, it assigns

different weights to each gene in its pathway gene sets accord-

ing to its importance. Thus, we need an enrichment method that

can account for weights. To do so, we will use a multivariate

linear regression implemented in decoupler-py.43

As we did in GSEA using Tensor-cell2cell, we first have to

generate ligand-receptor gene sets while also assigning a weight

to each ligand-receptor interaction. This is done by taking the

mean between the ligand and receptor weights. For ligand and

receptor complexes, we first take the mean weight for all sub-

units. We keep ligand-receptor weights only if all the proteins

in the interaction are sign coherent and present for a given

pathway. Load the PROGENy gene sets and then convert

them to sets of weighted ligand-receptor pairs.
Run footprint enrichment analysis using the ‘‘mlm’’ method from

decoupler-py:

lr_sep="^")
lr_progeny,

source="source",

target="interaction",

use_raw=False
Here, ‘‘estimate’’ and ‘‘pvals’’ correspond to the t values and p

values assigned to each pathway.

Finally, we generate a heatmap for the 14 pathways in

PROGENy across all factors (Figure S3A).
fig_filename = output_folder + ’/PROGENy.pdf’

_ = sns.clustermap(estimate,

xticklabels=estimate.columns,

Cell Reports Methods 4, 100758, April 22, 2024 13



cmap=’coolwarm’,

z_score=4)

plt.savefig(fig_filename, dpi=300, bbox_inches=’tight’)
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From the heatmap, we can also generate a bar plot for the

PROGENy pathways for a specific factor (Figure S3B).
selected_factor = ’Factor 5’

fig_filename = output_folder + ’/PROGENy-{}.pdf’.for-

mat(selected_factor.replace(’ ’, ’-’))

dc.plot_barplot(estimate,

selected_factor,

vertical=True,

cmap=’coolwarm’,

save=fig_filename)
DISCUSSION

In this protocol, we illustrate how LIANA and Tensor-cell2cell can

be used together to provide robust and flexible solutions to infer

CCC programs across contexts. In addition to established

methods for studying ligand-receptor interactions19,32 that

LIANA also includes, approaches geared toward the systematic

inference of CCC programs across diverse conditions are less

common. A few of them, such as CellChat,19 summarize

pathway-focused similarities across conditions based on pair-

wise comparisons, while MultiNicheNet20 depends on differen-

tial expression analysis and requires a hypothesis to be defined

a priori. MultiNicheNet was recently proposed to systematically

identify deregulated CCC interactions along with associated

intracellular signaling. MultiNicheNet uses a flexible statistical

framework and is capable of handling complex experimental de-

signs. However, MultiNicheNet depends on differential expres-

sion analysis and hence requires a predefined hypothesis. As

such, we see MultiNicheNet and Tensor-cell2cell as comple-

mentary, since the latter can identify patterns across all cell types

and conditions in an untargeted manner. An analogous strategy

to Tensor-cell2cell can be adopted by using factor analysis11 in

LIANA to identify patterns directly from the CCC scores.46

Hence, Tensor-cell2cell and LIANA can help researchers to

generate a specific hypothesis and identify cell types to later

use MultiNicheNet as a downstream analysis to additionally infer

intracellular signaling triggered by key ligands.

Since our pipeline is intended as a generalizable approach for

use with many different resources and methods, we additionally

assessed the robustness of our results across different inputs.

Specifically, we showed how communication scores may be

different for individual samples across methods (see Tutorial 02

in the online tutorials),whereas thosedifferencesmaybemitigated

by using the consensus score or when running Tensor-cell2cell

across multiple samples (see Python Supplementary Tutorials

S3A-2 and S3B in the online tutorials). Moreover, we provide an

in-depth assessment of Tensor-cell2cell’s sensitivity to missing

values and batch effects (STARMethods). Additional benchmarks

canbe found in theoriginal Tensor-cell2cell12 and recentLIANA+46

articles, where we have shown that Tensor-cell2cell consistently
14 Cell Reports Methods 4, 100758, April 22, 2024
captures CCC events deregulated across diverse contexts and

conditions. Finally, we demonstrate the broad applicability of our

protocol by also providing an example of defining contexts to

analyze CCC using spatial transcriptomics (see STAR Methods

and Python Supplementary Tutorial S4 in the online tutorials).

Although the example using spatial transcriptomics presented in

our extended tutorials is a simplified application of the concept,

it could be extended to compare multiple samples if users are

able to align tissues from different donors. Similarly, our protocol

can also aid users in applications beyond single-cell transcriptom-

ics data, including extracting metabolite-mediated CCC pro-

grams27 or similar extensions to multiomics data.46

Limitations of the study
Similar to any other approach to infer CCC from transcriptomics

data, our protocol also inherits assumptions leading to certain lim-

itations. These include the assumption that gene co-expression is

indicative of active signaling events,which are largelymediatedby

proteins and their interactions, while also disregarding multiple

biological processes, such as protein translation, post-transla-

tionalmodifications, secretion, diffusion, and trigger of intracellular

events, that precede and follow the interaction itself.2,5 Moreover,

the aggregation of single cells into cell groups is essential when

inferring potential CCC events, which could occlude some signals

in heterogeneous tissues,2,3 thereby biasing the insights that can

be obtained. Furthermore, the input of Tensor-cell2cell is a 4D

tensor, so it requires that all elements bemeasured across all fea-

tures and samples (i.e., cell types and genes expressing ligands

and receptors). Consequently, one should consider how to handle

missing values across samples that do not capture the same cell

typesand/orexpressedgenes.Decidingwhether those reflectbio-

logically meaningful zeros or a technical artifact may lead to varia-

tions in the resulting CCC programs. We provide an extended

explanation of the related parameter choices that may help users

decide how to handle this challenge (STAR Methods).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

COVID BALF single-cell RNA-seq dataset Liao et al.30 GEO: GSE145926; Zenodo Data: https://doi.org/10.5281/

zenodo.7706962

PBMC single-cell RNA-seq dataset Kang et al.47 GEO: GSE96583; Zenodo Data: https://doi.org/10.5281/

zenodo.10069528

Myocardial Infarction spatial

transcriptomics dataset

Kuppe et al., 202222 Zenodo Data: https://doi.org/10.5281/zenodo.6578047

Software and algorithms

Protocol source code This paper https://doi.org/10.5281/zenodo.10700956

Code for benchmarking batch effects This paper https://doi.org/10.5281/zenodo.10713331
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Nathan E. Lewis

(nlewisres@ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table. In particular, the BALF single-cell RNA-seq dataset is available at https://zenodo.org/record/7706962, the PBMC single-

cell RNA-seq dataset is available at https://zenodo.org/records/10069528, and the Myocardial Infarction spatial transcriptom-

ics dataset is available at https://zenodo.org/record/6578047.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table. Additionally, source code is available at https://github.com/saezlab/ccc_protocols and can be viewed at

https://ccc-protocols.readthedocs.io/.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Computational Infrastructure
All code was ran on a computer with the following specifications.

d CPU: AMD Ryzen Threadripper 3960x (24 cores)

d Memory: 128GB DDR4

d GPU: NVIDIA RTX A6000 48GB

However, the minimal requirements for running this protocol are.

d CPU: 64-bit Intel or AMD processor (4 cores)

d Memory: 16GB DDR3

d GPU: NVIDIA GTX 1050 Ti (Optional)

d Storage: At least 10GB available

Timing
Expected timing for this protocol using the dataset in the key resources table:

Step 1. Installation of Anaconda/Miniconda and Python packages: 5–30 min.

Step 2. Initial setups: �1 min.

Step 3. Data preprocessing: 5–7 min.

and missing values
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Step 4. Inferring cell-cell communication with LIANA: �5 min.

Step 5. Comparing cell-cell communication across multiple samples with Tensor-cell2cell: Running selection of number of factors

via elbow analysis and the tensor decomposition takes 5 min with the ‘regular’ pipeline, while the ‘robust’ pipeline takes 40 min.

Step 6. Functional Enrichment Analysis of KEGG and PROGENy pathways respectively using GSEA and linear regression take

1 min each.

Protocol details
To run our protocol presented in this manuscript and the tutorials available online (https://ccc-protocols.readthedocs.io/), software

specifications are summarized in the Software Requirements Table. To facilitate the setup of a virtual environment containing all

required packages with their corresponding versions, we provide an executable ‘setup_env.sh‘ script together with instructions

on a Github repository we prepared for this protocol: https://github.com/saezlab/ccc_protocols/tree/main/env_setup.

Software Requirements Table
Package Name Package Version Language Install With

jupyter conda

ipywidgets conda

pip R22 Python conda

scanpy R1.9 Python conda

*cuda-toolkit conda

*pytorch-cuda 11.8 conda

*torchvision conda

*torchaudio conda

pytorch, *cuda enabled conda

scvi-tools R0.18 Python conda

scikit-misc 0.1.4 Python conda

cell2cell 0.7.3 Python pip

liana 1.0.3 Python pip

decoupler 1.5.0 Python pip

omnipath 1.0.7 Python pip

plotnine R0.12.4 Python pip

seaborn 0.11.2 Python pip

statannotations 0.5.0 Python pip

matplotlib 3.7.3 Python pip

singlecellexperiment R conda

remotes R2 R conda

devtools R2 R conda

seuratobject R conda

biocmanager R1.30 R conda

seurat R4 R conda

hd5r R conda

furrr R conda

textshape R conda

forcats R conda

rstatix R conda

ggpubr R conda

scater R conda

zellkonverter R conda

liana 0.1.13 R remotes

seurat-disk 0.0.0.9020 R remotes

decoupleR 2.3.3 R biocmanager

*: For GPU enabled use only.

Python packages should always be installed. R language packages only need to be installed if planning to run the notebooks in R.
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Advice to deal with potential issues running this protocol, either in its original or personalized forms, is summarized in the Trouble-

shooting Table.

Troubleshooting Table.
Step Problem Possible reason Solution

3 & 4 Error: Expression matrix contains

non-finite values (nan or inf)

Warning: Make sure that normalized

counts are passed

Mishandling counts processing Ensure that the matrix containing normalized

counts is passed. Replace nan and inf values

by zeros.

4.1 Negative values in LIANA outputs Using preprocessed data with negative

expression values.

Avoid using preprocessing methods that

generate negative values (e.g., centering the

data to the mean values, using batch-

corrected expression values, etc.).

4.2 Not enough ligand-receptor pairs

in the data for the analysis

Mismatched symbol IDs LIANA by default uses a resource with gene

symbol IDs. When working with e.g., Ensembl

IDs users need to provide an external resource;

see https://ccc-protocols.readthedocs.io/en/

latest/notebooks/ccc_python/02-Infer-

Communication-Scores.html

5.1 CCC scores representing opposed

importance

When using ‘magnitude_rank’ scores

from LIANA, lower values are more

important. However, Tensor-cell2cell

prioritizes high values as the important

ones.

Build the 4D tensor using an ‘inverse_fun‘ to

make lower values to be the most important

scores.

5.2 Rank selection through the elbow

analysis is not behaving properly

High sparsity or number of missing

values in the tensor

Re-run LIANA with less stringent parameters

(e.g., smaller expr_pror). Re-build the tensor

with more strict how parameters (e.g., using

how = ‘inner’ or increasing outer_fraction).

5.3 Visualization of loadings are not

properly displayed in heatmaps

Too many or few elements in the

dimension to visualize

To visualize all elements, use the parameter

‘loading_threshold = 00 to create the heatmaps.

If you have too many elements, you can

prioritize those with high loadings, so a

threshold can be set. E.g., ‘loading_

threshold = 0.10
Benchmarking batch effects and missing values
To help users make informed decisions regarding choices in their computational pipeline, we benchmarked two key factors that can

influence Tensor-cell2cell0s outputs: batch effects and missing data (which result in missing tensor indices) across samples. For

comprehensive details on the motivation, methods, and results of this benchmarking, please see the online description.48

Here we describe our pipeline for both the Missing Indices and Batch Effects benchmarking simulations. All associated code

can be found in the following repository: https://github.com/hmbaghdassarian/tc2c_benchmark. For downstream analyses,

unless otherwise specified, all linear regressions were performed using a generalized linear model (GLM) with an identity link func-

tion; multivariate regressions with >1 independent variable were combined additively and do not include interaction terms. Addi-

tionally, all p-values were multiple-test-corrected using the Benjamini-Hochberg (BH) method to control for false discovery

rates (FDRs).

We simulated single-cell RNA-sequencing expression data using Splatter,49 adapting a previously described computational

approach.50 We generated a single-cell expression matrix containing 2000 genes and 5000 cells evenly distributed across 6 cell

types and 5 samples. Each sample represents a context.

Next, for each sample, we applied quality control filters to the cells and genes as implemented previously.50 Briefly, low-quality

cells were identified and filtered using the scuttle package based on standard metrics (mitochondrial fraction, library size, and num-

ber of genes detected); genes detected in fewer than 1% of cells are discarded. Next, counts were normalized using scran pooling51

and a log+1 transformation. For batch-effect benchmarking, batch correction was further implemented; Scanorama52 was run on the

log-normalized counts matrix and scVI53 was run on the raw counts matrix.

From the expression counts matrices, a random subset of 200 genes were chosen to simulate a ligand-receptor interaction

network as previously described.12 Briefly, we use StabEco’s54 BiGraph function, with the power law exponent value set to 2 and

the average degree value set to 3, to generate a scale-free, directed, bipartite network of the 200 genes. Half the geneswere assigned

to be ligands and the other half to be receptors. Not all genes were part of the connected network (70/200), and these were excluded
Cell Reports Methods 4, 100758, April 22, 2024 e3
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fromdownstream analyses. This interaction networkwas used as custom ligand-receptor resource input to LIANA’s cell-cell commu-

nication scoring.

Then, 4D-Communication tensors were built from the output of LIANA as described in our protocol. To generate missing indices in

the 4D-Communication Tensor, we iteratively omitted a random subset of genes or cell types from the expression data. Specifically,

we iterated through combinations of the following two variables: the fraction of cell types to remove in a given sample (16, 13, 12, and

23), the fraction of genes (within the 130 in the simulated LR interaction network) to remove in a given sample (110, 310, 12), and the

fraction of samples to apply these omissions to (15, 25, 23). We compared this to a gold-standard tensor with no missing indices.

We compared decomposition outputs usingCorrIndex55 as previously described.12 Briefly, theCorrIndex represents a dissimilarity

between decomposition outputs and lies between 0 and 1; we convert this to a similarity metric by using (1-CorrIndex).

For batch-correction, iterating across increasing levels of batch severity, we generated four counts matrices.

(1) Gold-standard: a processed counts matrix with no batch effects

(2) Log-normalized: a processed counts matrix with batch effects present

(3) Scanorama batch-corrected: a processed counts matrix with batch effects corrected for using Scanorama

(4) scVI batch-corrected: a processed counts matrix with batch effects corrected for using scVI

We ran the combined LIANA and Tensor-cell2cell pipeline on each of these counts matrices. Finally, we assessed the similarity

between each of the decomposition outputs as follows.

d Log-normalized similarity: Similarity between Tensor-cell2cell0s decomposition output from the log-normalized counts matrix

(2) and that of the gold-standard input (1)

d Scanorama similarity: Similarity between Tensor-cell2cell0s decomposition output from the Scanorama batch-corrected

counts matrix (3) and that of the gold-standard input (1)

d scVI similarity: Similarity between Tensor-cell2cell0s decomposition output from the scVI batch-corrected countsmatrix (4) and

that of the gold-standard as input (1)

Additionally, for batch correction benchmarking, each counts matrix was quantified for its level of batch severity using two previ-

ously applied metrics50,56: (1) kBET,57 is an inverse measure of ‘‘mixability’’, or the extent to which batch effects are removed, and (2)

normalized mutual information (NMI) between cell type identity and cluster identity - a measure of ‘‘clusterability’’, or the extent to

which biological variation is conserved. For the clusterability metric, we subtracted the NMI from 1 to quantity batch severity. In

this manner, both mixability and clusterability ranged between 0 and 1, with increasing values indicating increasing batch severity.

Clusterability was assessed using both k-means clustering58 and Louvain clustering.59

Batch severity does not affect the results of our pipeline. We saw that the gold-standard matrix performed as expected, showing

clear Louvain clusterability and little-to-nomixability. The log-normalizedmatrix also performed as expected across all batch severity

metrics. While the batch-corrected counts matrices increased along with the Splatter parameters on occasion, the increases were

overall less severe than that of the log-normalized matrix (Figure S4). The gold-standard counts matrices demonstrate comparably

low batch severity across all iterations (Figure S5A). We also saw that across all batch severity metrics, similarity does not decrease

beyond 0.963, indicating that Tensor-cell2cell is robust to batch effects (Figure S5B). Furthermore, we evaluated whether the fraction

of negative counts is a confounder of batch severity (Figures S5C–S5E). The fraction of negative counts does not substantially affect

the Scanorama similarity as indicated by the small regression coefficient estimate and insignificant p-value (Figure S5F). This tells us

that using batch correction methods that introduce negative values and simply replacing those with 0 prior to running communication

scoring can be appropriate for recovering biological signals from Tensor-cell2cell.

If batch correction improves decomposition, we would expect batch-corrected similarity (Scanorama and scVI) to a) score higher

than log-normalized similarity across batch similarity metrics and b) decrease at a lower rate with increasing batch severity than log-

normalized similarity. Across batch severity metrics, we see that this tends not to be the case, though all similarity types maintain a

high similarity score across batch severity levels (Figure S6) Overall, while batch effect correction may not be necessary to recover

biological signals using Tensor-cell2cell, if the user feels it is important, they can be comfortable in implementing the batch correction

method of choice.

Regarding missing values, we found that there was a significant decrease in the similarity of Tensor-cell2cell0s output with that of

the gold-standard as the fraction of missing indices increased when filling both with NaN (masked) or zero (not masked). However,

those that were not masked had a substantially larger decrease in similarity than those that were (Figure S7A). When considering the

two filling methods in combination with the missing fraction, we see that similarity is lower by 0.094 on average when filling with zero

(Figure S7B). Altogether, our pipeline is robust enough to impute missing values and sensitive enough to handle true biological zeros.

QUANTIFICATION AND STATISTICAL ANALYSIS

Notations for the scoring functions in LIANA
k is the k-th ligand-receptor interaction

L - expression of ligand L
e4 Cell Reports Methods 4, 100758, April 22, 2024
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R - expression of receptor R

C - cell cluster

i - cell group i

j - cell group j

M - the library-size normalized and log1p-transformed gene expression matrix

X - normalized gene expression vector

We denote the two interaction proteins, via their genes L & R, yet we use this for convenience as these can also denote the inter-

action of any other event category, such as those between membrane-bound or extracellular matrix proteins. Furthermore, in the

case of heteromeric complexes L & R denote the summarized expression of the complex.

CellPhoneDBv232 function.

Magnitude: 1) LRmeank;i;j =
LCi +RCj

2

Specificity: A permutation approach also adapted by other methods, see 4)

Geometric Mean function.

Magnitude: 2) LRgeometric:meank;i;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi$RCj

p
Specificity: An adaptation of CellPhoneDB’s permutation approach; see 4)

CellChat’s19 LR probabilities* function.

Magnitude: 3) LRprobk;i;j =
TriMeanðLci Þ$TriMeanðRcj

Þ
Kh+TriMeanðLci Þ$TriMeanðRcj

Þ
where Kh = 0.5 by default and ‘TriMean‘ represents Tuckey’s Trimean function:

TriMean ðXÞ =
Q0:25ðXÞ+2$Q0:5ðXÞ+Q0:75ðXÞ

4

Specificity: An adaptation of CellPhoneDB’s permutation approach; see 4)

*Note: The original CellChat implementation uses information of mediator proteins (e.g. activators and inhibitors) and signaling

pathways, which is specific to the CellChat resource. Since LIANA allows combining any resource with different scoring

methods, LIANA does not utilize this information, and hence the implementation of CellChat’s scoring function in LIANA

was simplified to be resource-agnostic.
p � valuek;i;j =
1

P

XP
p = 1

h
funpermuted

�
L�
Ci
;R�

Cj

�
R funobserved

�
L�
Ci
;R�

Cj

�i
Equation 4

where P is the number of permutations, and L� and R� are ligand and receptor expressions summarized according to the aggre-

gation function per cluster used by each method, i.e., by default the arithmetic mean for CellPhoneDB and Geometric Mean, and

TriMean for CellChat.

SingleCellSignalR35 function.

Magnitude: 5) LRscorek;i;j =

ffiffiffiffiffiffiffiffiffiffi
LCi RCj

p
ffiffiffiffiffiffiffiffiffiffi
LCi RCj

p
+m

where m is the mean of the expression matrix M

NATMI34 function.

Magnitude: 6) LRproductk;i;j = LCi
RCj

Specificity: 7) Specificity Weightk;i;j =
LCiPn
LCi
$

RCiPn
RCj

Connectome33 function.

Magnitude: 6) LRproductk;i;j = LCi
RCj

Specificity: 8) LRz:meank;i;j =
zLCi

+zRCj
2

where z is the Z score of the expression matrix M

Log2FC function.

Specificity: 9) LRlog2FCK;I;J =
Log 2FCCi;L

+Log 2FCCj;R

2

where log2FC for each gene is calculated as:

log 2 FC = log2ðmean ðXiÞÞ � log2

�
mean

�
Xnoti

��
Equation 10

Rank Aggregate function.
Cell Reports Methods 4, 100758, April 22, 2024 e5
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When generating a consensus from the different methods in LIANA, a rank aggregate36 is calculated for themagnitude and spec-

ificity scores from the methods separately. First, a normalized rank matrix[0,1] is generated separately for magnitude and speci-

ficity as:

ri;j =
ranki;j

maxðranki;jÞ ð1 % i % m; 1 % j % nÞ Equation 11

wherem is the number of ranked score vectors, n is the length of each score vector (number of interactions), ranki;j is the rank of the

j-th element (interaction) in the i-th score rank vector, and maxðrankiÞ is the maximum rank in the i-th rank vector.

For each normalized rank vector r, we then ask how probable it is to obtain rnullðkÞ < = rðkÞ, where rnullðkÞ is a rank vector generated under

the null hypothesis. The RobustRankAggregate (https://github.com/cran/RobustRankAggreg) method expresses the probability

rnullðkÞ < = rðkÞ as bk;nðrÞ through a beta distribution. This entails that we obtain probabilities for each score vector r as:

pðrÞ = min
1;/;n

bk;nðrÞ � n Equation 12

where we take theminimum probability r for each interaction across the score vectors, and we apply a Bonferroni correction to the

p-values by multiplying them by n to account for multiple testing.

For all the methods above, LIANA considers interactions as occurring only if the ligand and receptor, and all of their subunits, are

expressed in a certain proportion of the cells (0.1 by default) in both clusters involved in the interaction. This can be formulated as an

indicator function as follows:

I
n
Lexpr:prop
Cj

R 0:1 and Rexpr:prop
Cj

R 0:1
o
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