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Purpose: Genome-wide association studies have recently uncovered many loci associated with variation in
intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic
knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation.

Design: Experimental study.
Subjects: Primary TMCs collected from human donors.
Methods: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines.

All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell
staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal
control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological
variation in gene knockouts to identify potential pathological perturbations.

Main Outcome Measures: Degree of morphological variation as measured by deep learning algorithm ac-
curacy of differentiation from normal controls.

Results: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological vari-
ation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7
multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for patho-
logical gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morpho-
logical variation (33.9% of cell lines).

Conclusions: We demonstrate a robust method for functionally interrogating genome-wide association
signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation
can be readily identified, allowing for the gene-based dissection of loci associated with complex traits.
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Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
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Primary open-angle glaucoma (POAG) is a blinding disease
characterized by progressive degeneration of the optic nerve
and retinal nerve fiber layer.1,2 Primary open-angle
glaucoma is one of the leading causes of blindness
globally.3 Whilst the precise pathophysiology of glaucoma
is unknown, the most important modifiable risk factor is
raised intraocular pressure (IOP).1,4 Raised IOP in POAG
is primarily caused by dysfunctional aqueous humor
drainage through the trabecular meshwork.1 Family
heritage studies and genome-wide association studies
(GWASs) have demonstrated a genetic contribution to
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/). Published by Elsevier Inc.
trabecular meshwork dysfunction in POAG; however, the
exact cellular and genetic processes involved remain un-
known.1 Current treatments for POAG focus on reducing
IOP by decreasing the production of aqueous humor or
increasing outflow, with medications, or through the use
of pressure-lowering surgery. However, there is currently
no definitive cure for all patients with POAG.5 For novel
pressure-lowering treatments to be developed, the patho-
physiology of raised IOP in POAG must be understood and
molecular pathways for this vision threatening disease
uncovered.
1https://doi.org/10.1016/j.xops.2024.100504
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Previous research has implicated a number of genes that
contribute to POAG development and variation in IOP.1,6

Linkage analysis identified variants in the MYOC gene as
being strongly associated with POAG.7e9 Disease-causing
mutations in this gene have been shown to cause accumula-
tion of a misfolded protein (myocilin), resulting in endoplasmic
reticulum stress in trabecular meshwork cells (TMCs) and a
subsequent rise in IOP.6Genome-wide association studies have
identified numerous genetic variants associated with raised
IOP, many of which have also been associated with
POAG.10,11 However, further investigation into these genetic
variants is required to identify which individual genes may
be affected by these variants and, thus, what cellular
mechanisms may be involved. The ongoing development of
artificial intelligence (AI) and deep learning tools such as
convolutional neural networks (CNNs) provides a unique
opportunity to investigate the genes of interest highlighted in
GWAS and their effect on single cell morphology.

Deep learning is a rapidly advancing field of machine
learning that relies on neural networks to learn abstract
representations of data. A CNN is a specialized deep
learning model designed to learn features of image data. In
supervised learning, the original images are labeled, allow-
ing CNNs to learn the correct representation for a given
label. Given the effectiveness of CNNs at image classifi-
cation,12 they have been extensively used in the analysis of
cellular morphology, which is relevant in many domains of
biology and medicine such as phenotype analysis,13,14 drug
screening,15,16 and cell sorting.17,18

This study aimed to train a CNN to distinguish between
primary TMCs that had specific genes from selected IOP-
associated loci,10,11 knocked out using clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas, and
control TMCs transfected with nontargeting guide RNAs.
The accuracy, as measured by the area under the receiver
operator curve (AUC) metric, was used to quantify
variation in morphological profiles between target gene
knockouts and control cells. This high-throughput
approach uncovered genes at IOP loci, which, when per-
turbed, lead to marked variation in TMC morphology.
Methods

Cell Culture and Passaging

Primary TMCs were collected from a 58-year-old donor through
the Lions Eye Donation service (Human Research Ethics Com-
mittee of the Royal Victorian Eye and Ear Hospital - reference
number 13-1151H). Cells were cultured in Dulbecco’s Minimal
Essential Medium (Gibco, 11965118) with 10% fetal bovine serum
(Gibco, 16000044) and 0.5% antibiotic-antimycotic (Gibco,
15240-062) (herein referred to as “culture medium”) at 37�C with
5% CO2. Cells were passaged by removing the culture medium and
washing twice with phosphate buffered saline (Gibco, 14190144).
Trypsin 0.25% diluted in phosphate buffered saline (Gibco,
25200056) was then added and the cells were incubated for 3
minutes at 37�C with 5% CO2. The trypsin was deactivated with
cell culture medium and cells were then aspirated into tubes and
centrifuged at 1000 rpm for 5 minutes. The supernatant was
aspirated and the cell pellet was resuspended in culture medium
before being plated at the desired ratio for ongoing culture. All
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TMCs were cultured in tissue-culture treated polystyrene plates
(Corning, 3516, 3524). Prior to use, our primary TMCs were
characterized as previously described.19 In brief, we verified
phagocytosis and expression of CAV1 and TIMP3 by
immunostaining, as well as MYOC induction by dexamethasone
exposure (Fig S1). Cell lines were tested for mycoplasma on an
alternate weeks using the PCR Mycoplasma Test Kit
(PromoKine, PK-CA91-1096). The primary TMCs were regarded
as passage zero and were seeded at passage 3 before undergoing
respective cell painting immunohistochemistry or RNA-sequencing
protocols at passage 4.

Cell Transfection and CRISPR Gene Knockout

A total of 67 TMC lines were generated using a library of 124 tar-
geting single guide RNAs (sgRNAs) (2 for each target gene),
together with 10 nontargeting sgRNAs as negative controls. Single
guide RNAs were designed using GUIDES20 and are displayed in
Table S1. Following synthesis, sgRNAs were cloned into a novel
construct that had previously been developed for the pooled
single-cell RNA sequence profiling of primary cells (CROPseq-
Guide-pEFS-SpCas9-p2a-puro; Addgene: #99248).21 The
lentivirus was then packaged by transfecting human embryonic
kidney 293FT cells with pCMV delta 8.91, pMDG, and the
recombinant plasmid via lipofectamine 2000. Lentivirus was
chosen as the optimal viral vector due to its large size of w8.5 kB
allowing sgRNA, Cas9, and puromycin resistance genes to be
packaged into 1 viral vector.22

P1 primary TMCs were transfected with 50 ml of lentiviral
plasmid to give a multiplicity of infection of approximately 3, and
each CRISPR/Cas9/sgRNA/puromycin plasmid in an arrayed
format. Individually cloned CRISPR/Cas9/sgRNA/puromycin
plasmids were separately added to 450 ml of TMCs in culture
mixed with 1:100 lentiblast (OZ Bioscience, LB01500) in 24 well
plates. Each well was seeded with approximately 3.0 � 104 cells.
Cell cultures were incubated for 3 days before 1 mg/ml puromycin
selection occurred over 4 days. Transfected TMCs underwent
standard cell passaging and were then resuspended in 100 ml to 500
ml Dulbecco’s Minimal Essential Medium depending on initial cell
density. Initial cell density was qualitatively checked with bright-
field microscopy before seeding. The predicted on-target editing
efficiency for each sgRNA was generated for each sgRNA
(Table S1). The mRNA expression of each gene knockout can be
quantified from RNA sequencing data; however, while CRISPR
introduces indels into the targeted sequence, the transcription of
mRNA for each target gene still occurs. To investigate the
efficacy of these CRISPR-constructs we compared the targeted
gene transcript in each knockout line to that of the nontargeting
control cells. Overall, 25 of the target cells had lower transcript
counts compared with the controls at the Bonferroni corrected level
(P < 0.0008; Fig S2), which is reassuring given that the transcripts
would be transcribed though susceptible to nonsense mediated
decay.

Cell Painting and Imaging Protocols

Cells were seeded at random in triplicates across 96 well plates at a
density of 4.0 � 103 cells per well using a Beckman Coulter MoFlo
Astrios EQ fluorescence-activated cell sorter to ensure an equal
distribution of cells. The Cell Painting protocol as described by Bray
et al23 was then followed. Briefly, TMCs were incubated in culture
medium containing 500 nM Mitotracker (Invitrogen, M22436) and
30 mg/ml wheat germ agglutinin Alexa594 conjugate (Invitrogen,
W11262) for 30 minutes at 37�C. Then TMCs were fixed with
4% paraformaldehyde at room temperature for 20 minutes and
washed with 150 ml of Hanks’ balanced salt solution (HBSS)



Table 1. Cell Painting Reagents, Fluorescent Channels, and Associated Cellular Organelles

Cell Painting Reagent
Fluorescent
Channel

Excitation
Filter (nm) Emission Filter (nm) Organelles

Hoechst 33342 DAPI 387/11 417e477 Nucleus
Concanavalin A/Alexa Fluor 488 conjugate EGFP 472/30 503e538 Endoplasmic reticulum
SYTO 14 Green Fluorescent Nucleic Acid stain AF514 531/40 573e613 Cytoplasmic RNA, nucleolus
Phalloidin/AlexaFluor 568
WGA/AlexaFluor 555 conjugate

AF594 581/609 (phalloidin)
590/617 (WGA)

622e662 F-actin, golgi complex, cell membrane

MitoTracker deep red AF647 628/40 672e712 Mitochondria

WGA ¼ wheat germ agglutinin.
The Cell Painting protocol was designed to allow a maximum number of cellular organelles to be visualized with minimal overlap of fluorescent channels.
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(Gibco, 14025134). Next, TMCs were permeabilized with 0.1%
solution of Triton X-100 (Sigma, T8787) for 20 minutes and
washed with 150 ml HBSS twice. Lastly, TMCs were incubated
with HBSS staining solution containing 1% bovine serum albumin
(Merck, A8806), 50 mg/ml ConcanavalinA (Invitrogen, C11252),
3 mM Syto14 (Invitrogen, S7576), 5 mg/ml Hoechst (Invitrogen,
H3570), and 1 unit/ml Phalloidin (Invitrogen, A12381) for 30
minutes at room temperature. Trabecular meshwork cells were
washed 3 times with HBSS without final aspiration and then
sealed with parafilm. All 96 well plates were kept at 4�C in the
dark before imaging. Then the TMCs were imaged with high
content microscopy taken at 20� magnification across 5
fluorescent channels on a Zeiss CellDiscoverer7 as outlined in
Table 1. Images were autofocused using the definite focus strategy
(a set focus point for each image) at 25 sites per well as shown in
Figure 1.

Image Preprocessing and Quality Control

All images were separated into multiple single-cell images using
the “Save Cropped Objects” function in CellProfiler (version 3.1.9,
Broad Institute, Massachusetts Institute of Technology).24,25 This
was undertaken to ensure that single-cell morphology was the
only feature of the image, and classification was not influenced by
overall cell confluency. An image quality filter was then applied
using CellProfiler, which flagged any low-quality images that may
contain artefacts or were inadequate for analysis, and these were
subsequently removed. CellProfiler analysis data was used to
calculate Spearman’s rank correlation of individual cells for all cell
lines. Noncorrelated cells from each line were then removed by
setting a Spearman correlation cutoff value of 0.15 to reduce well-
to-well and batch-to-batch variation.

CNN Architecture, Training, and Evaluation

The CNN architecture is outlined in Table S2 and accessible via
GitHub. We sought to randomly select 3000 cell images from
control and gene knockout groups to allocate into training (80%),
validation (10%), and testing (10%) sets. A separate CNN was
trained for each fluorescent channel of each gene across 5
replicates (each with a different random seed to create individual
datasets). Training was conducted for 100 epochs, with the
model being saved at each epoch. An Adam optimizer was used
with a learning rate of 0.0001. For evaluation, the best
performing model of the 100 epochs as per the loss function was
selected and evaluated on the test set. Testing was performed by
training a network which sought to distinguish control images
from gene knockouts and the AUC metric was used to quantify
CNN performance and thus, the degree of morphological
variation induced by genetic variations. The highest performing
models were all selected prior to reaching 100 epochs where
model overfitting began to reduce model accuracy.

Results

Image Filtering and Data Split

Filtering using CellProfiler and by Spearman correlation
reduced the total dataset size from 225 095 images per
channel to 114 830 images per channel, yielding a total of
574 150 images for analysis. The proportion of images
removed via Spearman filtering varied across groups from
22.1% (ANTXR1) to 70.0% (nontargeting group 1). The 5
nontargeting control lines had the greatest proportion of
images removed via Spearman filtering as shown in
Figure 2. The total number of cell images after filtering
ranged from 221 (ADAMTS6) to 4323 (ANTXR1). This
intergroup variability was balanced during training with
image rotation data augmentation (0, 90, 180, 270, with or
without horizontal mirroring) to reach 3000 images per
group. When 3000 were not obtained using data
augmentation, the control group numbers were reduced to
match and maintain a 50:50 balanced split between
knockout and control images. This occurred in only 6
knockout cell lines (ADAMTS6, PRSS23, RALGPS1,
ANGPT1, TXNRD2, and LTBP2) which had 1768, 2296,
2488, 2520, 2688, and 2872 images, respectively. A
random selection of nontargeting control images was then
selected to produce a balanced dataset of gene knockout
and nontargeting control images. The same nontargeting
images were chosen for each knockout comparison. The
dataset was split into training (80%), validation (10%),
and testing (10%) sets.

Overall Morphological Variation Induced by
Genetic Knockouts

The AUC metric was used to assess the ability of the CNN
to distinguish genetic knockout lines from nontargeting
control lines, thereby providing a quantifiable value of
morphological variation induced by gene knockouts. The
mean AUC of 5 replicates across 5 channels was calculated
to produce an overall AUC for each target gene. Knockout
of RALGPS1 produced the most morphologically distinct
3



Figure 1. Cell Painting of trabecular meshwork cells (TMCs). Example images of TMCs stained with the Cell Painting protocol in which 6 fluorophores are
imaged over 5 channels to identify 8 distinct intracellular organelles for morphological profiling. Each row shows different cells stained with the single
fluorophore, or 1 group with all fluorophores combined (bottom row); columns indicate excitation wavelengths. Single channel testing shows minimal
overlap across channels except for the phalloidin and wheat germ agglutinin stains which are analyzed together. This ensures that only a single stain will
fluoresce when exposed to a particular wavelength of light. This figure shows whether a single stain would contaminate other emission channels and whether
the signal of the light emission channel was dominated by the dyes we selected. Scale bar 50 mm.
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TMCs (AUC 0.851, standard deviation [SD] 0.030); how-
ever, the RALGPS1 cell line was not significantly knocked
down by the CRISPR system (P ¼ 0.605) as seen in Fig S2.
The second most morphologically distinct was LTBP2
(AUC 0.846, SD 0.029), followed by BCAS3 (AUC
0.845, SD 0.020). Both LTBP2 and BCAS3 had
statistically significant gene knockout efficacy
(P ¼ 2.22 � 10�16 and 2.29 � 10�3). The overall AUCs
ranged from 0.564 (LMO7) to the most distinguishable at
0.851 (RALGPS1) as displayed in Figure 3.
4

Morphological Variation Induced in Individual
Organelles

Twenty-one (33.9%) gene knockout groups had greater
morphological distinction in the mitochondrial channel
(mean AUC 0.760 of all cell lines, SD 0.070) compared
with other organelles, illustrating that mitochondrial vari-
ation occurs in a large proportion of the gene knockouts.
The relative AUC of each gene across all organelles is
shown in Figure 4. Endoplasmic reticulum showed the
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Figure 2. Total number of images for each arrayed cell line following Spearman correlation filtering. Images were removed from the dataset if the Spearman
correlation was > 0.15 in order to improve the quality of the dataset and reduce the effect of well-to-well and batch-to-batch variation. Ultimately, the
percentage of cells removed ranged from 67% (control line 1) to 22% (ANTXR1).
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next greatest morphological variation evident in 16
(25.8%) of the gene knockout lines (mean AUC 0.756,
SD 0.079). The F-actin/cell membrane/Golgi body
channel showed the highest morphological variation in
13 (20.9%) gene knockout lines (mean AUC 0.751, SD
0.073), followed by 11 (17.7%) knockout lines in the
cytoplasmic RNA/nucleolus channels (mean AUC 0.753,
SD 0.078). Finally, only the ANAPC1 knockout showed
morphological variation most in the nucleus (mean AUC
0.677, SD 0.079).

Gene Prioritization

Finally, we used the trained CNNAUCmetrics to investigate
TMC morphological variation for genes at multigene
loci.10,11 Table 2 displays the AUC (knockout of target gene
compared to nontargeting control) for 15 genes at
overlapping IOP associated loci. These analyses prioritized
4 gene knockouts (ALDH9A1, CAV2, ME3, and RALGPS1)
at these loci, which resulted in greater morphological
variation than knockout of their neighboring gene
counterparts. However, when considering gene knockdown
efficacy, of these 4 targets only ALDH9A1 and CAV2 had
statistically significant changes in respective gene
expression (P ¼ 3.47 �10�2 and 2.22 �10�16,
respectively). Knockout of genes at 2 multigene loci
(EMID1-KREMEN1 and GNB1L-TXNRD2) generated
TMCs that were morphologically similar and thus could
not be resolved. KREMEN1 had a statistically significant
knockdown effect (P ¼ 1.84 �10�11) while the remaining
3 had no significant change in gene expression, which may
explain why these multigene loci could not be resolved.
Discussion

There has been a shift in recent years towards using high-
throughput profiling to undertake large-scale studies inves-
tigating the cellular basis of disease. This shift has been
accelerated by advancements in computational technology
and AI as a method of rapidly analyzing large, complex
datasets. In this study, we utilized a CNN to perform a high-
throughput morphological analysis of genetic variations
associated with IOP variation in primary human TMCs. By
training the CNN to distinguish gene knockout cells from
healthy control cells, we could use the AUC as a metric to
quantify differences in cellular morphology induced by
various genetic variations. Therefore, the AUC can be used
to identify which variations invoke a greater degree of
morphological change and thus, which are more likely to be
involved in IOP dysregulation and the pathogenesis of
POAG.

This study highlights the complex genetic basis of
POAG, and has clinical relevance in the development of
new therapeutics to treat this vision-threatening disease. If
the precise pathophysiology of POAG can be understood at
the cellular level, new drug targets may be uncovered.
Further, the characterization of gene-based perturbations in
TMCs is an important first step in the high-throughput
screening of TMC modulators. Herein, we have described
an AI framework for the large-scale profiling of TMCs.

Of the genes known to cause primary congenital glau-
coma or anterior segment dysgenesis, LTBP2 and TEK
showed marked differentiation from normal control
morphology. The LTBP2 knockout cell line was readily
distinguished from normal control TMCs (AUC 0.846) with
5



0.5

0.6

0.7

0.8

0.9
R
A
LG
P
S
1

LT
BP
2

B
C
A
S
3

A
N
TX
R
1

E
TS
1

E
M
ID
1

FN
D
C
3B

M
E
C
O
M

K
R
E
M
E
N
1

C
AV
2

A
N
A
P
C
1

A
N
G
P
TL
2

LM
X
1B

M
E
3

A
N
G
P
T2

A
D
AM
TS
6

A
N
G
P
T1

C
O
L2
4A
1

G
A
S
7

TI
M
P
3

FE
R

TE
K

P
D
E
7B

D
G
K
G

A
N
K
H

PA
R
D
3B

FE
R
M
T2

P
K
H
D
1

FB
X
O
32

C
D
H
11

A
B
O

TN
S
1

G
N
B
1L

C
A
P
ZA
1

K
A
LR
N

C
AV
1

P
R
S
S
23

A
R
H
G
E
F1
2

TR
IO
B
P

P
LE
K
H
A
7

P
TB
N
1

A
LD
H
9A
1

AT
XN
2

E
FE
M
P
1

ZN
F2
80
D

TE
S

G
M
D
S

P
TP
R
J

A
B
C
A
1

TX
N
R
D
2

TE
X
41

FM
N
L2

E
M
C
N

R
U
N
X2

FO
XC
1

A
FA
P
1

TM
C
O
1

M
YO
F

M
YO
C

C
Y
P
1B
1

C
TT
N
B
P
2

LM
O
7

Gene Knockout

AU
C

Figure 3. Mean convolutional neural network (CNN) area under the receiver operator curve (AUC) scores for each gene knockout cell line. The mean
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distinct morphological variation induced by a particular gene knockout. The gene knockouts are in decreasing order of mean AUC across all organelles. The
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the greatest degree of difference occurring in mitochondrial
morphology, indicating that LTBP2 may play a role in
mitochondrial function. LTBP2 encodes for latent trans-
forming growth factor beta binding protein 2, which is an
extracellular matrix protein associated with fibrillin-1 con-
taining microfibrils and is hypothesized to modulate extra-
cellular matrix production.26 Variations in LTBP2 have been
previously associated with primary congenital glaucoma,
microspherophakia, megalocornea, and Weill-Marchesani
syndrome.26e29 A previous study has identified that
LTBP2 knockout may contribute to the development of
POAG via dysregulation of the extracellular matrix, a
crucial component of the trabecular meshwork.30 Studies
looking at dilated cardiomyopathy and right ventricular
failure have also implicated LTBP2 function in fibrosis
regulation which may indicate a role in the pathogenesis
of trabecular meshwork dysfunction.31,32 Interestingly,
although LTBP2 encodes for an extracellular protein, we
demonstrated a distinct mitochondrial morphology in
LTBP2 knockout cell lines for which we speculated that
6

LTBP2 may lead to oxidative stress on mitochondria
either directly or via changes in gene expression involved
in TGFb and bone morphogenetic protein signaling
pathway that may affect mitochondrial function.

The TEK knockout cell line also showed significant dif-
ferentiation (AUC 0.768) most prominent in the cytoplasmic
RNA and nucleolus channel. Variations in TEK have been
associated with raised IOP and congenital glaucoma pri-
marily due to disruption of Schlemm’s canal, indicating a
potential interaction with ANGPT1 in the development of
glaucoma.33e36 However, it must be noted that the knock-
down efficacy of TEK in this study was insignificant
(P ¼ 0.858), indicating that the learned morphological
variation may be due to a confounding factor learned by the
deep learning system.MYOC, CYP1B1, GMDS, and FOXC1
knockouts resulted in only mild differentiation from control
TMC morphology (AUCs of 0.615, 0.612, 0.704, and 0.665,
respectively) despite an association with glaucoma and
anterior segment dysgenesis;7,37e40 however, these genes
were seen to have low knockout efficiency which may
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individual fluorescent channels for each gene knockout. Red shading indicates a higher degree of morphological variation as indicated by a higher AUC.
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explain the limited morphological change. Additionally,
these gene knockouts may not invoke significant morpho-
logical variation as they are primarily involved with
trabecular meshwork development rather than their homeo-
static maintenance.41 Furthermore, some gene mutations
associated with congenital glaucoma are gain-of-function
mutations, and may not show significant change when
knocked out. Another reason for not seeing change in
cellular morphology is that these genes may primarily act
extracellularly, such as MYOC, which has been shown to
demonstrate accumulation of extracellular products in spe-
cific mutations.42
Overall, the mitochondrial channel most frequently dis-
played the greatest degree of differentiation (33.9% of all
cell lines). This supports previous work, where TMCs in
POAG have been shown to demonstrate mitochondrial
dysfunction resulting in sensitivity to calcium stress.43 The
endoplasmic reticulum channel also showed the most
morphological variation in a large proportion of cell lines
(25.8%), which is in keeping with many studies that have
highlighted a link between glaucoma and endoplasmic
reticulum stress.44e46

This work introduced a novel method for prioritizing
genes at overlapping loci identified in GWAS using CNN
7



Table 2. Comparison of Convolutional Neural Networks to Morphologically Distinguish Trabecular Meshwork Cells With Knockout of
Genes at Overlapping IOP-Associated Loci10

Top IOP GWAS SNP Overlapping Genes (Mean AUC) P Value

rs7518099 ALDH9A1 (AUC 0.709, SD 1.93e-02)
TMCO1 (AUC 0.634, SD 4.76e-02)

7.78 � 10�05

rs11795066 RALGPS1 (AUC 0.851, SD 3.05e-02)
ANGPTL2 (AUC 0.811, SD 2.50e-02)

4.12 � 10�04

rs6478746 LMX1B (AUC 0.803, SD 2.03e-02)
RALGPS1 (AUC 0.851, SD 3.12e-02)

5.5 � 10�06

rs10281637
rs55892100

CAV1 (AUC 0.726, SD 5.53e-02)
CAV2 (AUC 0.817, SD 2.71e-02)
TES (AUC 0.704, SD 5.79e-02)

4.49 � 10�01 (CAV1 vs. TES)
3.00 � 10�03 (CAV2 vs. TES)
4.00 � 10�03 (CAV1 vs. CAV2)

rs9608740 EMID1 (AUC 0.834, SD 6.50e-02)
KREMEN1 (AUC 0.824, SD 5.70e-02)

5.73 � 10�01

rs8141433 GNB1L (AUC 0.729, SD 5.97e-02)
TXNRD2 (AUC 0.695, SD 4.47e-02)

3.75 � 10�01

rs746491 ME3 (AUC 0.803, SD 2.45e-02)
PRSS23 (AUC 0.725, SD 4.25e-02)

3.47 � 10�04

AUC ¼ area under the receiver operator curve; GWAS ¼ genome-wide association studies; IOP ¼ intraocular pressure; SD ¼ standard deviation.
The mean AUC across all fluorescent channels of target knockouts vs. nontargeting control cells was compared for genes at the same locus. A higher AUC
indicates a larger degree of morphological variation compared with normal control cells. This allows for prioritization of overlapping genes at given loci.
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analysis.10,11 The results show that ALDH9A1 and CAV2
show statistically greater differentiation from control cells
than the respectively associated gene at the same locus.
Studies have previously associated POAG with genetic
variants at the intergenomic region of TMCO1 and
ALDH9A1.47e49 The results of this study point toward
ALDH9A1 being the implicated gene in POAG due to
inducing a greater degree of morphological change
compared with TMCO1 (P ¼ 7.78 � 10�05). The mito-
chondrial channel in ALDH9A1 displayed the greatest de-
gree of differentiation, highlighting the potential role of
mitochondrial dysfunction in ALDH9A1 interruption in
POAG. This is supported by the role of ALDH9A1 in
carnitine synthesis, which takes place in the mitochondrial
matrix.50 There have also been numerous studies illustrating
an association between POAG and variations at the
intergenomic region of CAV1 and CAV2.51e54 This anal-
ysis prioritized CAV2 as a potential causative gene, with a
higher degree of morphological change from control cells
than CAV1 (P ¼ 4.00 �10�03). The CAV2 knockout cell
line displayed the most prominent changes in the F-actin,
Golgi complex, and cell membrane fluorescent channel.
Supporting this, previous studies have highlighted the
interaction between CAV2 and the Golgi complex.55e57 The
remaining genes at overlapping loci (EMID1 vs. KREMEN1
and GNB1L vs. TXNRD2) showed no statistically significant
differences in morphology as well as limited gene knock-
down efficiency. They will require further investigation to
prioritize which of these may be the causative gene.

A further application of AI-based analysis of single cell
morphology is to predict gene expression as demonstrated in
prior studies. For example, Chlis et al58 developed a
machine learning model to predict gene expression of
human mononuclear blood cells and mouse myeloid
8

progenitor cells based on cellular morphology. Our study
further highlights the complex interaction between cell
morphology and gene expression and the opportunity that
AI poses as a means of analyzing the large amounts of
data produced. Further investigation into this field could
uncover the genetic drivers behind pathological changes in
morphology that drive disease processes and allow for
identification of novel therapeutic targets.58,59

One of the main limitations of this study lies in the intrinsic
difficulty in interpreting the decision-making process of
CNNs. This means it can be difficult to establish if morpho-
logical features learned by the CNN are truly pathological or
simply due to systematic bias. For example, if wells had lower
cell density, the cells may grow to a larger size, and as such
cell size may inadvertently influence the decision-making of
the CNN. Certain gene knockouts may invoke cell death,
which may account for lower cell numbers in particular cell
lines as illustrated in Figure 2. A potential solution to this is to
utilize attention-based CNN models which highlight areas of
interest within the image used for decision-making.60 This
may reveal which cell features are responsible for
morphological variation and if features such as cell size or
cell density are contributing. In addition, alternative
functional systems, such as animal models, could be used to
validate our findings. A further limitation of this study is
that TMC cell lines were generated from a single donor
which may reduce the generalizability of these results to the
general population. Of course, carrying out such a study
with larger donor numbers would provide a more robust
dataset and increase generalizability. As well as this, it was
noted that a number of cell lines had limited gene knockout
efficacy as demonstrated by insignificant variations in gene
expression (Fig S2). Nevertheless, this study does provide
the foundations for similar larger scale studies to follow
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with greater donor numbers. Finally, given that we applied the
Cell Painting protocol as described by Bray et al,23 which
combines wheat germ agglutinin and phalloidin into the
same fluorescent channel (Fig 1), it was challenging for us
to distinguish actin cytoskeleton from Golgi apparatus and
cell membrane features. Future studies may be able to
expand on the use of Cell Painting by utilizing phalloidin
alone in a separate assay to assess cytoskeletal changes that
have been proposed to contribute to POAG.

In summary, this study used a powerful approach to
quantify morphological change induced by genetic varia-
tions associated with POAG. RALGPS1 produced the
greatest morphological variation. In addition, we could
prioritize genes at overlapping loci identified to have an
association with IOP. However, there are some limitations
due to the difficulty in removing systematic bias from the
methodology. This bias may result in the CNN learning
features that are not directly associated with IOP physi-
ology. This study highlights a new avenue for utilizing
CNNs trained on single-cell morphology to further interpret
the results of GWASs.
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