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Abstract

In the field of behavioral neuroscience, the classification and scoring of animal behavior play pivotal
roles in the quantification and interpretation of complex behaviors displayed by animals. Traditional
methods have relied on video examination by investigators, which is labor-intensive and susceptible
to bias. To address these challenges, research efforts have focused on computational methods and
image-processing algorithms for automated behavioral classification. Two primary approaches have
emerged: marker- and markerless-based tracking systems. In this study, we showcase the utility of
“Augmented Reality University of Cordoba” (ArUco) markers as a marker-based tracking approach
for assessing rat engagement during a nose-poking go/no-go behavioral task. In addition, we introduce
a two-state engagement model based on ArUco marker tracking data that can be analyzed with a rect-
angular kernel convolution to identify critical transition points between states of engagement and
distraction. In this study, we hypothesized that ArUco markers could be utilized to accurately estimate
animal engagement in a nose-poking go/no-go behavioral task, enabling the computation of optimal
task durations for behavioral testing. Here, we present the performance of our ArUco tracking program,
demonstrating a classification accuracy of 98% that was validated against the manual curation of video
data. Furthermore, our convolution analysis revealed that, on average, our animals became disengaged
with the behavioral task at ∼75 min, providing a quantitative basis for limiting experimental session
durations. Overall, our approach offers a scalable, efficient, and accessible solution for automated
scoring of rodent engagement during behavioral data collection.

Key words: ArUco markers; automated scoring; computer vision; engagement analysis; go/no-go;
real-time tracking

Significance Statement

This paper presents an accessible and effective solution for automating the scoring of rodent engage-
ment during a go/no-go nose-poking behavioral task. Here, we showcase the effectiveness of imple-
menting a marker-based tracking approach by mounting ArUco markers to the animal's head and using
webcams with open-source tracking software to reveal transition points between states of engagementContinued on next page.
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and distraction throughout a behavioral session. This approach offers a significant advancement for
simplifying the scoring process with marker-based tracking while also showing promise in broad ap-
plicability toward quantifying optimal task durations for various behavioral paradigms. By making this
software freely available, we aim to facilitate knowledge exchange, encourage the scientific commu-
nity's engagement, and expand its application across diverse research endeavors.

Introduction
In behavioral neuroscience, the classification and assessment of animal behavior are

crucial for comprehending and quantifying the complex routines displayed by animals.
Traditional methods for behavioral analysis have often relied on labor-intensive video ex-
amination, which can be both time-consuming and susceptible to bias (Marsh andHanlon,
2007; von Ziegler et al., 2021). In response to these challenges, recent work has sought
innovative approaches that leverage computational methods, specifically those employ-
ing image-processing algorithms (Walter and Couzin, 2021; Isik and Unal, 2023). To auto-
mate the process of behavioral analysis, two predominant approaches have emerged:
marker- and markerless-based tracking systems (Mathis et al., 2018; Bala et al., 2020;
Haalck et al., 2020; Moro et al., 2022; Pereira et al., 2022). Each method, however, pos-
sesses its own advantages and disadvantages when capturing, quantifying, and classify-
ing animal movement behavior.
Recent trends in behavioral tracking have favored markerless systems, particularly

those based on machine-learning algorithms for pose estimation (Nath et al., 2019;
Liang et al., 2021). These systems rely on the inherent features of the animals themselves
to serve as reference points, eliminating the need for attached physical markers.
Altogether, they offer an advantage in achieving strong consistency while simultaneously
tracking multiple points on an animal's body for analysis of complex behaviors without
hindering movement (Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2022).
However, these advanced systems introduce several challenges, including the need for
high-end equipment to meet computational demands, as well as the acquisition of exten-
sive training data to construct a robust model (Mathis et al., 2018; Pereira et al., 2022). For
example, the creators of the leading markerless tracking system, DeepLabCut, recom-
mend using an NVIDIA GPU with a minimum of 8 GB of VRAM for training models
(Mathis et al., 2018). In accordance with their GitHub repository documentation, failure
to utilize such GPUs or relying on CPU alone can result in significantly slower execution
with a performance difference of approximately 10×. Moreover, markerless systems de-
pend on the presence of numerous reference points for computing accurate orientation
data. As a result, increasing the number of tracked subjects often amplifies computational
demands as it needs to differentiate which points belong to each subject (Walter and
Couzin, 2021; Pereira et al., 2022). For each of these reasons, markerless approaches
are usually employed as a post-session analysis tool to alleviate the burden of real-time
processing demands.
In contrast, marker-based tracking systems offer a simpler yet potentially effective so-

lution. A marker-based tracking algorithm relies on detecting and tracking physical mark-
ers that can be placed/mounted on the subject (Menolotto et al., 2020; Moro et al., 2022;
Vagvolgyi et al., 2022). Unlikemarkerless pose estimation, a singlemarker design can hold
sufficient information for estimating the position and orientation of a subject within an im-
age or video (Garrido-Jurado et al., 2014; Sampathkrishna, 2022). One notable example is
the ArUco marker, named for “Augmented Reality University of Cordoba,” developed in
2014 by the University of Cordoba, Spain (Garrido-Jurado et al., 2014). ArUco markers
are physical markers that consist of black-and-white square grid patterns, serving as fidu-
cial target markers – objects that are easily detected and tracked by cameras. Since ArUco
markers do not rely on machine learning or the need for prior training data, this approach
inherently requires minimal computational resources for real-time analyses (Garrido-
Jurado et al., 2014). For example, a low-end CPU-driven system with an Intel Core 2
Quad 2.40 GHz processor and 2,048 MB of RAM is readily capable of detecting an
ArUco maker under the open-source Ubuntu operating system (Garrido-Jurado et al.,
2014). This ensures that ArUco markers can enable real-time tracking at 60 frames per
second (fps) while making it feasible and accessible to track multiple markers simulta-
neously with over 100+ uniquely identifiable patterns in the ArUco library.
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In the present work,we investigated the utility of ArUcomarkers to automatically score animal engagement (e.g., “engaged”
or “distracted”) during a rat nose-poking go/no-go task where the animals received electrical stimulation via an intracortical
microelectrode array. We show that ArUco markers can reliably estimate animal engagement in the go/no-go task with high
accuracy and precision. Furthermore, this approach demonstrated an adjustable method for estimating the time point at
which an animal begins to disengage from their behavioral task, providing a quantitative basis for limiting experimental session
durations. Altogether, we provide an accessible, scalable, and precise procedure for real-time automated scoring of rodent
engagement during behavioral data collection. To enhance transparency, we have made the code/software, 3D models, and
data essential for replicating our results accessible as Extended Data. These resources can also be obtained online for free at
https://github.com/tomcatsmith19/ArucoDetection.

Materials and Methods
Animal use. All animal handling, housing, and procedures were approved by The University of Texas at Dallas IACUC

(protocol #21-15) and in accordance with ARRIVE guidelines (Percie du Sert et al., 2020). We used three (N=3) male
Sprague-Dawley rats (Charles River Laboratories Inc.) individually housed in standard home cages under a reverse
12 h day/night cycle that began at 6:00am. Behavioral experiments were performed during the night period (Zeitgeber
Time 12–24). To ensure consistent engagement during behavioral sessions, we slightly modified an established mild
food deprivation regime with ad libitum access to water (Schindler et al., 1993). Each rat was maintained at a target weight
of 90% of their free-feeding levels which was adjusted weekly according to weight. Friday night throughMondaymorning,
animals had access to food ad libitum. During behavioral testing, dustless reward pellets (F0021, Bio-Serv) were used as
positive reinforcement, ensuring nutritional balance. Between sessions, we provided supplemental food pellets (5LL2 -
Prolab RMH 1800, LabDiet) that were adjusted based on reward pellet consumption.

Surgical procedure. All rats underwent a surgical procedure for a microelectrode array implantation that followed
established protocols. Briefly, rats were anesthetized with isoflurane (1.8–2.5%) mixed with medical-grade oxygen
(500 ml/min, SomnoSuite for Mice & Rats, Kent Scientific Corporation). Vital signs were monitored throughout the
procedure, and body temperature was maintained using a far-infrared warming pad (PhysioSuite for Mice & Rats, Kent
Scientific Corporation). The surgical area was prepared using three alternating applications of povidone-iodine (PVP
Iodine Prep Pads, Dynarex) and 70% isopropyl alcohol wipes (Isopropyl Alcohol Swabs, Becton Dickinson). Next, a
subcutaneous injection of 0.5% bupivacaine hydrochloride (Marcaine, Hospira) was administered followed by a 2.5–
3 cm incision through the scalp, muscles, and connective tissue. Three burr holes were drilled into the skull using a
motorized drill (H.MH-170 Rotary Handpiece, Foredom Electric Company) to anchor stainless steel bone screws
(1.59 mmO.D., 3.2 mm long, StoeltingCo.). A 2 mm×3 mmcraniotomywasmade targeting the left somatosensory cortex
(AP, −0.5 mm; ML, 4 mm), followed by a durotomy. Microelectrode arrays were implanted to a depth of 1.6 mm for one
animal and 2.0 mm for the remaining two animals using a precision inserter (NeuralGlider, Actuated Medical, Inc.) at a
speed of 0.1 mm/s with actuation on. When possible, the disruption of superficial blood vessels was avoided (Kozai et
al., 2010). The implant site was sealed with silicone elastomer adhesive (Kwik-Sil, World Precision Instruments),
followed by a dental cement head cap. The incision was closed with surgical staples (Autoclip Wound Clips, 9 mm,
Becton Dickinson) and tissue adhesive (GLUture, World Precision Instruments). After surgery, we injected each animal
with 0.05 ml/kg intramuscular cefazolin (SKU: 054846, Covetrus) as antibiotic prophylaxis, 0.5 ml/kg of extended-release
buprenorphine (Ethiqa XR, Fidelis Animal Health) as an analgesic, and topical triple-antibiotic ointment around the closure
site. Sulfamethoxazole and trimethoprim oral suspension liquid (200 mg/40 mg/5 ml, Aurobindo Pharma) was provided in
their drinking water (1 ml/100 ml drinking water) for 7 d postsurgery.

Marker mounting hardware. We designed a 3D-printed custommounting assembly to securely mount and unmount the
ArUco marker to the rat's headcap while tethered (Fig. 1A). Details about the 3D-printed components, which were created
using polylactic acid (PLA) filament, and the other assemblymaterials, can be found in Table 1. The 15 mm ×15 mmArUco
marker was printed on standard white paper and glued to the marker mount (Fig. 1A.1). The i-bracket was a low-profile
3D-printed object that was permanently glued to an animal's headcap (Fig. 1A.2), featuring strategically positioned holes
on each side-protrusion for quick insertion/removal of the 15 mm binder clip wires (Fig. 1A.3). Additionally, the rectangular
center hole and height of the i-bracket were specifically designed to surround our microelectrode array's connector port
(A79016-001, Omnetics Connector Corporation) for accessible attachment of the tether to the animal. Next, the c-clamps
were 3D-printed pieces that wrapped around the binder clip wires to grip the tether firmly and avoid detachment during
behavior (Fig. 1A.4). The 4" cable ties served a dual purpose when threaded through the ArUcomarker mount: (1) securing
the ArUco marker mount to the rest of the mounting assembly and (2) constricting the c-clamps around the tether. This
meticulous arrangement ensured that the ArUco marker remained positioned in the midline of the rat's neck, offering a
typically unobstructed line of sight to the overhead webcams. In total, the marker's position served as an approximation
for tracking head movement that remained reliably affixed throughout the study without impeding animal performance,
thus contributing to the accuracy of the research. All 3D-printed files are provided on our GitHub repository for the study
at https://github.com/tomcatsmith19/ArucoDetection.
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Nose-poking go/no-go behavioral paradigm and operant conditioning chamber. The behavioral methods and equip-
ment configurations utilized in this study were based on an established and validated paradigm (Smith et al., 2023).
Briefly, animals were trained to participate in an established nose-poke, go/no-go behavioral paradigm to evaluate
stimulation-evoked perception thresholds in rats. In the go/no-go paradigm, rats were trained to distinguish between
“go” signals (varying magnitudes of ICMS ranging from 0 to 4 nC/ph equivalent to 0–20 µA) and “no-go” signals (e.g., ab-
sence of stimulation). If the rats perceived the stimulus, they were trained to nose-poke into a designated hole on a cham-
ber wall to receive a sugar pellet reward (F0021, Bio-Serv). If a stimulus was not presented or perceived, then they were
trained not to poke. At all times, one of three LED light colors filled the behavioral chamber to indicate trial status: (1) green
lights indicated when an active trial was taking place, (2) red lights displayed when a punishment was being administered,
and (3) white lights represented an inter-trial period where nose-pokes were negated/ignored. All active trials lasted a
duration of 6 s, followed by an inter-trial period of 3 s. Behavioral sessions were condoned 4 d a week with a condensed
session time of 32 min per day compared to the original duration of 60 min.

Table 1. ArUco marker mounting assembly components list

Component name PLA filament usage (g) Estimated price (2023)

15 mm×15 mm ArUco marker N/A <$1.00
ArUco marker mount 0.8 $0.02
i-bracket 0.3 $0.01
C-clamp (1×) 0.3 $0.01
15 mm binder clip wire (1×) N/A <$1.00
4' cable tie N/A <$1.00
Total <$3.00

Prices for each of the 3D-printed pieces were estimated based on the approximate $20 cost of a standard 1.75 mm PLA 3D Printer Filament 1 kg (2.2 lbs) Spool in
2023. Filament usage measurements in grams were calculated using a 3D-printing slicer software (Ultimaker Cura, V4.13.0) with the layer height set to 0.2 mm and
cubic pattern infill density of 20%.

Figure 1. ArUco tracking hardware and classification parameters. A, Dimensions of the ArUco marker mounting assembly as positioned on a 3D-rendered
rat. B, Behavioral chamber components.C, Instance of an identified ArUco marker through the custom Python ArUco marker tracking program, as well as
an example of occlusion where the marker could not be identified. D, Overhead display of a rat inside of the behavioral chamber with the region of interest
for engagement outlined in blue. E, ArUco tracking parameters, based on the yaw angle, for engagement and distraction classification while inside the
region of interest. F, Examples of distraction and engagement classifications, during active and inter-trial periods.
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Figure 1B depicts the behavioral chamber utilized in this study. The go/no-go behavioral paradigm was conducted
within a commercially available operant conditioning chamber (OmniTrak, Vulintus, Inc.). This chamber featured two
side wall holes, one equipped with an infrared break-beam sensor (nose-pokemodule; Fig. 1B.1), and the other connected
to a precision pellet dispenser (reward module; Fig 1B.2). A rotating commutator (AC6023-18, Moog, Inc.; Fig. 1B.3) was
installed to allow animals freedomofmovement while connected to an external stimulator (PlexStim, Plexon Inc.; Fig. 1B.4)
used for intracortical microstimulation delivery. To safeguard against wire damage via biting, a custom leash/tether cord
(Fig. 1B.5) was micro-constructed using an Omnetics adapter (A79021-001, Omnetics Connector Corporation) and stain-
less steel spring cable shielding (#6Y000123101F, Protech International Inc.). Furthermore, a custom-built cable tensioner
(Fig. 1B.6) was utilized to keep the tether taut, minimizing the rats’ ability to pull and bite on the leash. Next, chamber il-
lumination was managed by an RGB LED strip fastened around the chamber walls (Fig. 1B.7). Three webcams were
mounted to a 3D-printed articulated webcam mount (Articulating Arms with holder for T & V slot and knobs, danid87,
Thingiverse; Fig. 1B.8) that was then affixed to the chamber. One webcam was used to record general animal behavior
from the back of the chamber at 30 fps (JVCU100, j5create; Fig. 1B.9), while the remaining two were mounted to the right
(Camera #1) and left (Camera #2) sides of the chamber facing inward and used to track ArUco markers at 60 fps 1,080p
resolution (960-001105, Logitech; Fig. 1B.10). All components of the chamber were linked and governed by an
ATMEGA2560 microcontroller board hub (OmniTrak Controller V3.0, Vulintus Inc.) and Dell Precision 5860 Workstation
computer (Dell) that was interfaced using custom MATLAB (R2023b, MathWorks) and Python (V3.10.11, Python
Software Foundation) software. A complete configuration list for the Dell workstation can be found on our GitHub repos-
itory at https://github.com/tomcatsmith19/ArucoDetection. Lastly, a custom MATLAB GUI application was developed to
control task parameters, monitor performance, and record session data in real-time, allowing for trial annotation and
offline validation.

Marker detection and classification of engagement. A bi-directional network communication data stream between
MATLAB and Python language environments was used to employ a unified behavioral and ArUco marker tracking pro-
gram, which was achieved through the use of the open-source socket library (V3.12). This configuration allowed each en-
vironment to act as both client and server on a single workstation computer. Internally, execution of the MATLAB
behavioral code would trigger a socket stream write command at the beginning and end of each trial where a data value
would be updated and readily accessible within the Python environment through a socket stream read command.
Depending on the value, the ArUco classification functions were either initiated or terminated. Upon detecting a termina-
tion signal at the end of each trial, a subsequent Python command would reverse the signaling process, sending a value
back to MATLAB as a representation of the classification result for the trial. This synchronization structure ensured seam-
less data collection with minimal adaptations added to the established go/no-go software operating within the MATLAB
environment.
For ArUcomarker detection, our Python programs utilized the Open Source Computer Vision Library (OpenCV) software

(V4.7.0), which offers a comprehensive toolkit for tasks related to computer vision, image processing, and machine learn-
ing. Notably, OpenCV comes equipped with an integrated ArUco marker detection feature (Hu et al., 2019; Ošˇádal et al.,
2020), which was implemented for identifying the location and orientation of the ArUco markers within captured video
frames. This detection process relies on analyzing one of the many unique patterns of ArUco markers, by combining pat-
tern recognition, corner detection, and pose estimation techniques (Garrido-Jurado et al., 2014; Sarmadi et al., 2019;
Čepon et al., 2023). However, detection relies on markers being displayed within the camera's direct line of sight
(Fig. 1C). Should themarker be visually obstructed by factors such as occlusion, unfavorable lighting conditions, ormotion
blur caused by rapid animal movement, then it may become unidentifiable, potentially resulting in incorrect trial classifi-
cations of distraction (Garrido-Jurado et al., 2014; Hu et al., 2019; Sampathkrishna, 2022). To counter instances of occlu-
sion and motion blur, we combined the perspectives of both 60 fps webcams mounted on the chamber for better marker
detection. Furthermore, we use the chamber's RGB lights to keep the marker illuminated above the minimum brightness
requirements of three lux (Hu et al., 2019).
The ArUco tracking program was used to automatically classify animal engagement in the go/no-go paradigm. This as-

sessment was based on both the marker's location and orientation within a specified region of interest inside the beha-
vioral chamber. In this work, only one region of interest was utilized. However, we have incorporated the ability to add
multiple regions of interest and independently modify existing regions for each camera within the Python program called
“AnimalDetect.py.”Here, our region of interest extended from themidline of the behavioral chamber's floor to thewall con-
taining the nose-poke and rewardmodules (Fig. 1D; right-hand side of chamber). If themarker was found within this region
of interest and was oriented in such a direction that the marker's edge closest to the animal's nose was facing the cham-
ber's module wall (within a yaw angle range of 5°–175°; 90° indicating orthogonality between the marker edge and wall),
then we classified the animal as “engaged” (Fig. 1E). Any orientation of the marker found outside of this range, regardless
of location, resulted in a behavioral classification of “distracted.” A broader yaw angle range for engagement was chosen
to give the animal more leeway in terms of orientation. However, situations where the animals fell on the border of these
parameters might have also led to incorrect classifications depending on how the expert evaluators interpreted the ani-
mal's behavior. During active trial periods, the program outlined the ArUco marker in green when the animal appeared
to be engaged with the task. When distractions were detected, the outline shifted to yellow, providing immediate visual
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feedback to the investigator. During the inter-trial periods, the marker's outline transitioned to pink when distractions were
detected and purple when the animal was engaged. Examples of each situation can be found in Figure 1F. Moreover, if the
animal met the parameter requirements for engagement at any time during an active trial, regardless of instances of dis-
traction, then the trial was scored as engaged. However, since the tracking program was not yet capable of distinguishing
between the distracting behaviors of locomotion, grooming, rearing, itching, etc., incorrect classifications of engagement
could be seen if the marker was detected in a position of engagement during that period.
To verify the model's accuracy, we validated the classification results of the ArUco tracking program against the human

expert scoring of animal behavior conducted by two independent investigators. The two investigators manually scored
each behavioral trial independently, via post-session video analysis, as either engaged or distracted; any differences
between them were re-analyzed, discussed, and agreed upon by both individuals.

Data analysis and statistics. All computer-generated data analysis was conducted through custom MATLAB (R2023b)
and Python (V3.10.11) programs, alongside GraphPad Prism (v10.0.2, GraphPad Software) as the primary statistical soft-
ware. First, we compiled the classification data generated through the ArUco tracking program and validated it against the
human-generated control data, focusing on instances where the animal did not nose-poke, which required judgments to
be made under engagement uncertainty. This comparison involved the creation of a confusion matrix which included the
following elements: true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), where positives
indicated engaged trials and negatives represented distracted trials. From that data, we used a customMATLAB algorithm
to calculate the accuracy (Eq. 1), precision (Eq. 2), sensitivity (Eq. 3), specificity (Eq. 4), and F1-score (Eq. 5) metrics of the
matrix, outlining the overall accuracy of the model in relation to manual analysis (Baratloo et al., 2015).

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN) ∗ 100, (1)

Precision = (TP)/ (TP+ FP) ∗ 100, (2)

Sensitivity = (TP)/(TP+ FN) ∗ 100, (3)

Specificity = (TN)/(TN+ FP) ∗ 100, (4)

F1 = 2
Precision ∗ Sensitivity
Precision+ Sensitivity

( )
∗ 100. (5)

To compute consistency in ArUco marker tracking throughout a behavioral session, we implemented a custom Python
program that calculated the total number of video frames where the marker was identified by Camera #1 exclusively,
Camera #2 exclusively, both cameras, or neither. Additionally, we compared the average computing resource benchmarks
of the workstation's CPU andmemory usage between both camera setups bymonitoring the performance tab inWindows
Task Manager while running the behavioral paradigm. Since our program is not GPU-dependent, its performance metrics
were negated. Next, we used a digital luxmeter (HRD-PN-79081807, Leaton) to measure the minimum brightness values,
in lux, produced inside the chamber throughout the varying light conditions of the behavioral paradigm. Lastly, to deter-
mine the velocity range of which the ArUco marker could still be identified within our setup, we used Equation 6 in refer-
ence to the experiments conducted in (Hu et al., 2019). Here, velocity in cm/s was derived as the product of the blur kernel
size in pixels, frame rate of the camera (fps), and the camera's field of view width (cm) divided by the camera's resolution
width (pixels).

velocity = blur kernel size ∗ frames per second ∗ field of viewwidth
resolutionwidth

. (6)

For behavioral optimization, a back-heavy rectangular kernel convolution was implemented to analyze the dynamics of
behavioral engagement over time in a nose-poking go/no-go paradigm. In our convolution, a 5 min kernel window with
a 1 min stepping pattern was used inMATLAB to estimate transition points between states of engagement and distraction.
This analysis was applied to two different permutations of the behavioral task: (1) a typical 32 min session and (2) an ex-
tended 2-h-long version of the same behavioral session. In this study, the animals were considered to be fully disengaged
from the task once their probability of engagement (Eq. 7) fell below a threshold of 50%.

probability of engagement = (# of engaged trials/# of total trials) ∗ 100. (7)

For statistical analysis, the Matthews correlation coefficient (MCC) – a statistic used in machine learning and statistical
analysis to measure the quality of binary classification models, particularly when dealing with imbalanced datasets –

was calculated in MATLAB (Eq. 8) to comprehensively evaluate the overall performance of the ArUco tracking program
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by comparing its correlation to the human-generated control data (Chicco, 2017; Chicco and Jurman, 2020).

MCC = (TP ∗ TN-FP ∗ FN)/
����������������������������������������������
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√
. (8)

This assessment is particularly relevant for our data, considering that our animals are actively participating in an estab-
lished behavioral paradigm designed to maintain rats’ nose-poking, therefore skewing our data distribution toward trials
of engagement. In addition, GraphPad Prism was used to calculate a one-tailed paired t-test for comparing the number of
video frames where an ArUco marker was identified between single- and double-camera setups. Lastly, tests of normality
in the data were analyzed using the Shapiro–Wilk test and confirmed results by examination of their respective Q-Q plots.
All statistical results are reported as the mean±SEM. We defined statistical significance as p<0.05.

Code/software accessibility. The code/software described in the paper is freely available online at https://github.com/
tomcatsmith19/ArucoDetection. The code is also available as Extended Data.

Data accessibility. The raw data supporting the conclusions of this article will be made available by the authors, without
undue reservation.

Results
Classification performance
In this study, we scored instances of engagement for three distinct animals across five 32-min go/no-go behavioral ses-

sions each, accumulating a total of 989 analyzed trials. During the manual scoring process, 941 trials (95.15%) were clas-
sified as “engaged,” while 48 trials (4.85%) were classified as “distracted.” Within this dataset, only four trials were
disputed and then reconciled between the two expert evaluators. Overall, this manually generated analysis displayed a
skew toward engagement, indicating that, during 32 min sessions, the animals were primarily focused on their behavioral
tasks. In comparison, the ArUco tracking program, when applied to the same subset of behavioral data, scored 952 trials
(96.3%) as “engaged” and 37 trials (3.7%) as “distracted,” respectively. Within the corresponding confusion matrix for this
data (Fig. 2A), we calculated an accuracy of 98.3%, precision of 98.5%, sensitivity of 99.7%, specificity of 70.8%, and
F1-score of 99.1% indicating high classification metrics for this specific behavioral paradigm in everything except speci-
ficity (Fig. 2B). This indicates that the current methodology could accurately identify as “engaged” those instances when
the animal was engaged in the task but could only moderately identify as “distracted” those instances when the animal
was in fact distracted. However, we found that the decrease in specificity could be attributed to instances of false posi-
tives, where the animal was grooming within the region of interest while the marker was scored as engaged; this ac-
counted for 100% of the false positive occurrences. Despite these issues, the value obtained from the MCC test (0.80),
indicated a strong positive correlation between the ArUco model's classifications and the human-generated control
data. Overall, this suggests that our model still demonstrated strong predictive accuracy and reliability when identifying
animal engagement.

Figure 2. ArUco tracking performance results. A, A confusionmatrix showing individual trial scoring for human-generated analysis (rows) and ArUco track-
ing program classifications (columns). Values depicted represent data gathered across 15 behavioral sessions with five sessions per animal. B, ArUco
tracking program performance metrics calculated from confusion matrix data. C, Results showcasing average differences in the number of total frames
where the ArUco marker was identified during a behavioral session when a single- and double-camera configuration was used. Box plots (left) show error
bars for min/max values, a center horizontal line for median values, and a plus sign for average values. The horizontal line and error bars in the right plot
signify average ±SEM. Significance was defined as p<0.05.
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ArUco detection performance
Throughout the behavioral paradigm, the minimum brightness values measured under three potential light conditions

were approximately 27 lux for red, 52 lux for green, and 62 lux for white light, all deemed sufficient for ArUco marker de-
tection (Hu et al., 2019). In addition to these measurements, we conducted comparisons between single- and double-
camera setups to evaluate whether employing multiple camera perspectives offered any significant advantages in terms
of ArUco tracking consistency. Overall, it was determined through the one-tailed paired t-test that a double-camera setup
outperformed the single-camera setup by 6.3 ± 0.9%of identified frames (p<0.0001a) (Fig. 2C). From each individual cam-
era's perspective, an average of 9,177.13 (15.5%) total frames were identified by Camera #1, and 36,706.33 (61.9%) total
frames were identified by Camera #2 exclusively. Considering the better-performing camera of the two, we report an av-
erage of 36,706.33 (61.9%) total frames identified within a single-camera setup out of 59,310.27 average total frames. In
contrast, an average of 40,459.87 (68.3%) total frames was identified from both cameras inclusively. In our setup, the de-
crease in total frames identified could be contributed, in part, by motion blur. Applying Equation 6 with our experimental
parameters – 60 frames per second, a 42 cm field of view, and a 1,920-pixel resolution – alongwith the blur kernel sizes of 2
pixels for nondeteriorated detection and 6 pixels for complete deterioration (as outlined in Hu et al., 2019), we determined
the nondeteriorated velocity threshold to be approximately 3 cm/s, with complete deterioration occurring at∼8 cm/s. This
meant that the ArUco marker could be tracked reliably at a velocity lower than 3 cm/s but with consistency declining to a
limit of 8 cm/s. Even though themaximumcount of detected frames is less than 75%, it does not impact the overall scoring
performance, as our data revealed only three instances of false negatives (0.3%). This is because engagement classifica-
tions only necessitate one detected frame during a 6 s active trial, granting a margin of resilience for nondetected frames.
Additionally, the performance benchmarks for testing computational resource load under both single- and double-camera
setups revealed no significant impact on the computer while utilizing the second camera. Compared to the computer's idle
state, the total CPU usage increased by∼28%, while the total memory usage increased by∼8%, regardless of the camera
configuration (Table 2). While these findings are context-specific to our behavioral chamber configuration, they under-
score the potential benefits of gaining multiple vantage points while utilizing a marker-based tracking approach.

Animal engagement performance
Our convolution analysis with a 5 min rectangular kernel and a 50% engagement threshold demonstrated the ability to

objectively identify transition points between animal engagement and distractions during a go/no-go task. During three of
the 2-h-long behavioral sessions (one session per animal), the animals initially maintained attention above the probability
of engagement threshold. However, there were noticeable declines at the 75.3 ± 2.3 min mark, indicating a significant shift
toward distraction and complete disengagement imposed by our predefined threshold (Fig. 3A). In contrast, three of the
typical 32 min behavioral sessions displayed constant engagement from the animals throughout their entirety (Fig. 3B).
These results suggest that our 32 min sessions were set within a reasonable range for achieving robust data through con-
sistent behavioral engagement and could potentially expand to a full hour of behavior without compromising data quality.

Discussion
In this study, we showcased the utility of ArUco markers for real-time assessment and automated scoring of rodent en-

gagement during a nose-poking go/no-go behavioral task. This innovative approach addresses the challenges of quan-
tifying animal behavior with high accuracy and precision, while also providing estimations of the critical transition points
between states of engagement and distraction.
While ArUcomarkers offer an economical and accurate tracking solution, they are subject to certain hardware and setup

constraints. For instance, the direct visibility of markers by the camera is imperative for accurate tracking (Garrido-Jurado
et al., 2014). Whenever a direct line-of-sight is lost between the camera and marker, occlusions may occur, hindering
tracking performance (Garrido-Jurado et al., 2014; Hu et al., 2019; Haalck et al., 2020). In this study, we show that multi-
camera setups can help to mitigate occlusions, but in more complex setups or paradigms, two cameras may not be avail-
able or enough to ensure consistent tracking. In such cases, we suggest utilizing the program's capacity for multi-marker

Table 2. Computational resource usage benchmarks

Configuration and task Approximate CPU usage Approximate memory usage

Idle computer on desktop 2% (1.0 GHz) 12% (8 GB)
Behavioral program with single-camera configuration 28% increase from Idle (2.2 GHz) 8% increase from Idle (5.3 GB)
Behavioral program with double-camera configuration 28% Increase from Idle (2.2 GHz) 8% Increase from Idle (5.3 GB)

This table presents the average computational burden imposed by the ArUco marker tracking program during a live behavioral session for both single- and
double-camera configurations. Values were monitored using the performance tab under the task manager application in Windows 11.

Data Structure Type of test Power

a Normal Distribution One-Tailed Paired T-Test 95% CI: 4.517 to 8.151
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tracking by modifying the marker mount to accommodate multiple adjacent markers with surfaces oriented at different
angles. Although not tested in this study, an example could be a tri-marker approach with adjacent surfaces facing (1)
the original upright position, (2) one angled to the left of the animal, and (3) one angled to the right of the animal. This
approach offers the advantage of additional viewing angles to address instances of occlusion. However, it comes with
the drawback of a bulkier device that animals may be able to scratch or pull, potentially putting strain on the headcap.
Furthermore, it is essential to note that the number of USB host controllers a computer possesses imposes bandwidth
limitations on multi-camera streaming. In our specific PC configuration, we determined that the maximum number of
cameras we could reliably use was three while all the behavioral chamber hardware was connected and running.
Although additional USB host controllers can be added to the PC through PCIe USB hubs, this emphasizes the need
to balance hardware limitations with tracking consistency when deploying multi-camera setups within a single computer
approach. Furthermore, the precise calibration of each camera's position and orientation is critical for accurate chamber-
relative tracking; permanent markers on the apparatus can provide a consistent reference, but their placement and cali-
bration demand careful attention (Hu et al., 2019). For instance, we found that Camera #2 was more consistent at iden-
tifying the ArUco marker throughout a behavioral session than Camera #1 by 46.4% even though both devices were
identical. This mismatch was a result of the two behavioral chamber modules being located on the leftmost half of the
chamber's wall; since the animal spent most of its time interacting with the modules, the left-mounted camera (Camera
#2) held a better overall viewing perspective. Moreover, the camera specifications themself are important for real-time
tracking while attached to an animal. Many studiesmaywish to opt for economical webcams despite the potential benefits
of enhanced resolution and frame rates (Alabbas et al., 2023). Additionally, the durability of the physical ArUco marker is
another consideration. Although robust materials like plastic can enhance marker resilience, wear and tear over time is a
concern, especially in long-duration experiments where the animals are monitored 24/7. Lighting conditions pose another
constraint on tracking. It has been shown that under dimmer or variable lighting conditions sub three lux, tracking perfor-
mance significantly declines (Hu et al., 2019). This limits our approach to behavioral paradigms that ensure adequate light-
ing. Although not tested here, some studies have implemented retroreflective materials over the ArUcomarker that can be
detected by infrared-capable cameras under dark conditions (Ehambram et al., 2019). However, our study operated at a
minimum illumination level of ∼27 lux, which ensured reliable tracking results without the need for additional materials. In
addition to ensuring adequate lighting conditions, the contrast between the ArUco marker's edges and the background
color is crucial. In studies involving Long-Evans or Brown Norway rats, if the fur color is too dark, there might not be suf-
ficient contrast for the ArUco tracking program to identify themarker border. To address these challenges, we recommend
printing a thin white border around the ArUco marker pattern. Software limitations further influence the program's tracking
performance. Without camera-specific intrinsic calibration, the algorithm defaults to 2D localization. However, simple
calibration tools available through the OpenCV library can enable 3D pose tracking, enhancing accuracy in 3D space.

Figure 3. Convolution analysis of task engagement. A, Representative example of engagement dynamics during a 2-h-long nose-poking go/no-go
behavioral session. B, Representative example of engagement dynamics during a 32 min nose-poking go/no-go behavioral session.
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Motion blur was another limitation to consider. At various times, we found that our rats could move faster than 8 cm/s,
which exceeded the blur kernel ranges for ArUco marker detection. Despite rapid animal movements exceeding these ve-
locities, the global reference frame used in marker tracking allows for swift recovery and accurate trajectory interpolation
between tracked positions. For future implementations of our tracking program involving animal movement velocities
exceeding 8 cm/s, we suggest considering higher frame rate cameras to potentially enhance tracking reliability.
Alternatively, a redesign of the behavioral task/chamber could be implemented to enforce temporarily slower movement
speeds or longer trial times, improving the likelihood of marker detection. Finally, marker distance from the camera can
affect accuracy. Although not assessed in this study, it has been shown that errors under 2% yaw and 3% translation
can occur when the marker is up to 15 times its size away from the camera (Sampathkrishna, 2022). Altogether, research-
ers should be mindful of these hardware, setup, and software limitations when implementing ArUco marker-based track-
ing systems in their experiments to ensure optimal performance and accurate behavioral data collection.
ArUco markers offer several advantages for behavioral research; their simplicity and efficiency make them an acces-

sible and scalable solution for real-time tracking, with the potential for tracking multiple animals simultaneously. In
contrast to well-established open-source markerless approaches, such as DeepLabCut (Mathis et al., 2018; Nath et
al., 2019) and SLEAP (Pereira et al., 2022), ArUco markers offer a robust CPU-driven tracking framework without re-
quiring high-end GPUs for uncompromised performance. This enhanced accessibility extends the utility of ArUco
markers to a broader research community. However, we recognize that our ArUco tracking program primarily excels
in basic movement and orientation studies, whereas systems like DeepLabCut allow for the complex tracking of mul-
tiple body parts capable of providing a more detailed behavioral analysis. When selecting a tracking approach, one
should consider the desired data output. In our study, we found that the ArUco tracking program demonstrated a clas-
sification accuracy of 98% that was validated against the manual curation of video data. Although specificity should
still be improved, this level of accuracy aligns with the performance of the markerless systems, but without the added
cost of manually labeling ∼200+ video frames to produce a working model (Mathis et al., 2018; Pereira et al., 2022).
However, our comparisons should not end with markerless systems alone. Turning to commercially available high-end
marker-based approaches, the Vicon system, a sophisticated motion capture system widely used as the gold-
standard for high sub-millimeter precision tracking in various research domains, operates effectively in low-light con-
ditions without compromising performance (Merriaux et al., 2017). This system relies on strategically placed reflective
ball markers on the subject, allowing the system to precisely capture and analyze the 3Dmovement of those markers in
real-time. Although effective, Vicon requires costly proprietary hardware and software, limiting its accessibility to many
research laboratories. Another commonly used and commercially available contender, Plexon CinePlex, offers multi-
ple tracking modes, including LED, color, and contour tracking for rodents (Jacobson et al., 2014; Xu et al., 2018;
Fustiñana et al., 2021). However, this system still possesses some of the common pitfalls of marker-based tracking.
The CinePlex Studio v3.7.1 User Guide notes that tracking challenges may arise when dealing with multiple ani-
mals/markers of the same color, movement speeds exceeding 200 fps, cameras lacking a direct line-of-sight, and
markers positioned either too closely or too far away from the camera. Additionally, it is crucial to recognize that ap-
plying a dye to the animal for color tracking poses another potential drawback, particularly in chronic studies where
variations in dye placement may occur. Nonetheless, this system also requires costly proprietary hardware and soft-
ware that limit its accessibility when compared to ArUco.
The successful application of ArUco markers in assessing rodent engagement has several important implications for

behavioral neuroscience research. One key implication is the potential for improving the efficiency of behavioral data col-
lection. ArUco marker-based tracking systems can streamline the process of scoring animal behavior by reducing the
need for labor-intensive manual video analysis. This efficiency is particularly valuable when conducting large-scale exper-
iments or long-duration behavioral sessions, as it can help researchers manage and analyze extensive datasets more ef-
fectively. Furthermore, our convolution analysis of engagement dynamics revealed a substantial decrease in animal
engagement around the 75 min mark during 2-h-long sessions. These insights have practical implications for experiment
design and protocol optimization. For example, researchers can use ArUco markers to estimate the optimal task duration
for their specific behavioral design, ensuring that behavioral sessions are aligned with practical animal engagement levels.
This not only improves data quality by focusing on periods of high engagement but can also help maximize the number of
behavioral sessions that are able to be run throughout the day.

Conclusion
In this study, we have validated a robust and highly accurate methodology for assessing animal engagement during

a nose-poking go/no-go behavioral task using ArUco markers. This innovative approach leverages the simplicity and
efficiency of ArUco markers to provide automated, accessible, and precise estimations of engagement dynamics.
Our findings demonstrate the feasibility of utilizing ArUco markers for real-time tracking and estimating critical
transition points in animals’ attention during prolonged behavioral sessions. This work not only validates the utility
of ArUco markers but also offers a versatile platform for further investigations into animal behavior and engagement
dynamics in various experimental settings by allowing automation of behavioral analysis. Future studies may delve
into exploring the impact of marker design, tracking algorithms, and behavioral parameters on animal engagement,
enhancing our understanding of producing robust behavioral protocols for nose-poking paradigms.
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