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As an output effector of the Hippo signaling pathway, the
TEAD transcription factor and co-activator YAP play crucial
functions in promoting cell proliferation and organ size. The
tumor suppressor NF2 has been shown to activate LATS1/2
kinases and interplay with the Hippo pathway to suppress the
YAP-TEAD complex. However, whether and how NF2 could
directly regulate TEAD remains unknown. We identified a
direct link and physical interaction between NF2 and TEAD4.
NF2 interacted with TEAD4 through its FERM domain and C-
terminal tail and decreased the protein stability of TEAD4
independently of LATS1/2 and YAP. Furthermore, NF2
inhibited TEAD4 palmitoylation and induced the cytoplasmic
translocation of TEAD4, resulting in ubiquitination and
dysfunction of TEAD4. Moreover, the interaction with TEAD4
is required for NF2 function to suppress cell proliferation.
These findings reveal an unanticipated role of NF2 as a binding
partner and inhibitor of the transcription factor TEAD, shed-
ding light on an alternative mechanism of how NF2 functions
as a tumor suppressor through the Hippo signaling cascade.

In multicellular animals, cell proliferation and death must be
precisely coordinated to ensure proper organ size and tissue ho-
meostasis. The Hippo signaling pathway was initially identified as
a key determinant of organ size (1–4). This pathway is highly
conserved from Drosophila to mammals (5, 6). The Hippo
pathway constitutes a major kinase cascade, including the
mammalian STE20-like protein kinase 1/2 (MST1/2) and large
tumor suppressor kinase 1/2 (LATS1/2), which inhibit two tran-
scriptional co-activators, Yes-associated protein (YAP) and tran-
scriptional co-activator with PDZ-binding motif (TAZ), via
phosphorylation (7). Dephosphorylated and activated YAP/TAZ
translocate into thenucleus,where they interactwithTEAdomain
transcription factors (TEADs) and induce the expression of target
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genes, such as CTGF and CYR61, to modulate cell proliferation,
differentiation, and tumorigenesis (8–10). Unlike Drosophila,
which expresses only one TEAD homolog, Scalloped (Sd), there
are four TEADhomologs inmammals (TEAD1, TEAD2, TEAD3,
and TEAD4). TEADs share a similar domain structure: a DNA-
binding domain (DBD) at the N-terminus and a YAP-binding
domain (YBD) at the C-terminus (9, 11). Dysregulation of the
Hippo pathway has been linked to many human diseases, and
targeted inhibition of the YAP-TEAD transcriptional complex for
cancer therapy is being actively explored (5, 12, 13).

In addition to YAP/TAZ, the transcriptional activity of
TEADs is regulated by different binding factors, including
VGLL4, the glucocorticoid receptor (GR), TCF4, and AP-1
(14–17). Specifically, VGLL4 directly competes with YAP/
TAZ for binding to TEADs, thereby suppressing their tran-
scriptional activity (18). p38 binding-dependent cytoplasmic
translocation of TEADs provides spatial modulation of tran-
scriptional activity (19). Post-translational modifications of
TEADs, such as phosphorylation and palmitoylation, govern
their protein stability and activity (20–23). Four TEAD ho-
mologs are palmitoylated in mammalian cells (24, 25), and
palmitoylation of TEAD is critical for protein stability and the
YAP-TEAD interaction (Noland et al. 2016; Chan et al. 2016).
Although targeting TEAD palmitoylation is considered a po-
tential strategy for Hippo pathway molecular therapy (26, 27),
the mechanisms regulating TEAD palmitoylation and depal-
mitoylation remain unclear.

Neurofibromin2 (NF2), also calledMerlin, is anEzrin, Radixin,
andMoesin (ERM) family protein that acts as a tumor suppressor,
and the development of human cancer, schwannoma, meningi-
oma, ependymoma, and malignant mesothelioma is strongly
associated with the loss-of-function mutation of NF2 (28–30).
NF2 functions in the Hippo pathway by responding to extracel-
lular stimuli, such as cell density and osmotic stress (31, 32). NF2
associates with LATS1/2, thus activating the major kinase
cascade of the Hippo pathway to inhibit YAP/TAZ and suppress
cell proliferation and tumorigenesis (33). Several binding part-
ners of NF2, including angiomotin (AMOT) and the E3 ubiquitin
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ligase CRL4DCAF1, are also involved in modulating the Hippo
pathway (34, 35). However, whether NF2 directly regulates
TEADs remains unclear and how NF2 modulates the Hippo
pathway is not yet fully understood.

In this study, we identified the physical interaction between
the tumor suppressor NF2 and transcription factor TEAD4. We
found that NF2 directly interacted with TEAD4 through its
FERM domain and the C-terminal tail, and weakened the
protein stability of TEAD4 independently of LATS1/2 and YAP.
We further revealed a molecular mechanism that NF2 inhibited
TEAD4 palmitoylation and retained its cytoplasmic trans-
location via direct interaction, resulting in ubiquitination and
dysfunction of TEAD4. Moreover, the TEAD4 interaction was
required for NF2-mediated suppression of tumor cell prolifer-
ation. These findings suggest a new role for NF2 as a binding
partner and inhibitor of TEADs and expand the molecular
mechanism of how NF2 functions as a tumor suppressor.

Results

NF2 decreases the protein level of TEAD4 independently of
LATS1/2 and YAP

As an upstream activator of the Hippo signaling pathway, the
tumor suppressor NF2 has been shown to activate LATS1/2
A B

D E

YAP

TAZ

p-YAP

TEAD4

HA-NF2

GAPDH

HA-NF2 (μg)
75

75

55
75

50
37

(kDa)0 0.5 1 1.5

YAP

NF2

TEAD4

Cyr61

GAPDH

Si-NF2 + ++- + -
WT YAP KO

75

75

50

37
37

p-YAP

LATS1

NF2

TEAD4

Cyr61

GAPDH

YAP

R
el

. m
R

N
A 

ex
pr

es
si

on
(F

ol
d 

ch
an

ge
)

0

5

10

15

20 0 ug
1 ug
3 ug

TE
AD

1

TE
AD

2

TE
AD

3

ns ns ns

(kDa)

Figure 1. NF2 decreases the protein levels of TEADs independently of LA
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kinases and suppress YAP function (33). NF2 also interacts
with other regulators, AMOT, DDB1, and CUL4-associated
factor homolog 1 (DCAF1), to modulate Hippo signaling (34,
35). We were curious whether other effectors might be directly
involved in NF2 function. We first examined the protein levels
of major Hippo pathway components in HEK293T cells over-
expressing NF2. Consistent with a previous report (33), NF2
promoted YAP phosphorylation (Fig. 1A). Unexpectedly, the
protein levels of TEAD4 were markedly reduced along with
NF2 overexpression (Fig. 1A). We then confirmed this result by
RNAi silencing and rescue assays. Depletion of NF2 by small-
interfering RNA (siRNA) induced an increase in both TEAD2
and TEAD4 protein levels, and re-expression of NF2 decreased
their protein levels again (Fig. S1A), indicating that TEAD2/4
protein levels are sensitive to the presence of NF2. Moreover,
the mRNA levels of TEADs were unaffected by NF2 over-
expression (Fig. 1B). These results suggest that NF2 may
regulate the protein levels of TEADs without changes at their
transcriptional levels.

We then examined the protein stability of TEAD4 in cells
treated with cycloheximide (CHX) to inhibit de novo protein
synthesis. Compared with that in control cells, the half-life of
the TEAD4 protein was significantly extended in cells with
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NF2 knockdown (Figs. 1C and S1B). However, the half-lives of
other components, LATS1 and LATS2, were unaffected by
NF2 expression or knockdown. Thus, NF2 decreases TEAD4
protein level by altering the posttranslational stability.

Since YAP is a well-known binding factor to TEAD4, we then
asked whether YAP is involved in the regulation of TEAD4 pro-
tein stability by NF2. We generated YAP knockout (KO) HeLa
cells byCRISPR/Cas9, inwhich successfulYAPKOwasverifiedby
western blotting (Fig. 1D). The knockdown of NF2 still increased
TEAD4protein levels in bothWTandYAPKOcells (Fig. 1D), and
NF2 overexpression decreased TEAD4 protein levels in YAP KO
cells (Fig. S1C), indicating thatNF2 decreased the protein levels of
TEAD4 independently of YAP. We also wondered whether
LATS1/2 might be involved in the regulation of TEAD4 protein
level by NF2. Again, in both WT and LATS1/2 KO cells, knock-
downofNF2 increasedTEAD4protein expression levels (Fig. 1E).
Additionally, the expression of Cyr61, a classic transcription
target of TEADs, increased with NF2 knockdown (Fig. 1E).
Therefore, our results suggest a direct regulation thatNF2 directly
regulates TEAD4 protein level and stability, irrespective of the
presence or absence of LATS1/2 and YAP.
NF2 physically interacts with TEAD4 through its FERM domain
and C-terminal tail

To further explore the direct connection between NF2 and
TEAD4, we purified the YBD domain of TEAD4 (TEAD4-
YBD) with a SUMO-His tag and full-length NF2 with a GST
tag from Escherichia coli and examined their interaction. We
found that TEAD4-YBD bound to GST-NF2 in vitro using a
GST pull-down assay (Fig. 2A), suggesting a direct interaction
and physical interaction between NF2 and TEAD4.

According to the domain organization of the NF2 protein,
which contains the N-terminal FERM domain, central helical
domain and C-terminal tail (35), seven truncations of NF2
were constructed to determine minimal region involved in the
TEAD4-YBD interaction (Figs. 2A and S2A). As shown by the
results of the pull-down assay, both the N-terminal FERM
domain (1–341 aa) and the C-terminal half (342–595 aa)
remained to interact with TEAD4-YBD at a comparable level
(Fig. 2A). Further, C-terminal tail (550–595 aa) was essential
for the interaction instead of helical region (342–550 aa) of the
C-terminal half (Fig. S2A). Additionally, the interaction be-
tween full-length NF2 and TEAD4 was verified by endogenous
coimmunoprecipitation in HEK293T cells. Moreover, the
interaction between endogenous NF2 and TEAD4 in vivo was
also observed (Fig. 2B).

The intramolecular interaction of NF2 has been suggested to
be maintained by the FERM domain and C-terminal tail
(35–37). We then wondered whether the intramolecular inter-
action of NF2 affects its interaction with TEAD4. Compared to
C-terminal fragments alone, co-incubation with the FERM
domain markedly enhanced their binding to TEAD4 (Fig. 2C),
indicating that the interaction between FERM and the C-ter-
minal tail of NF2 promotes the interaction with TEAD4.
Moreover, the A585Wmutation of NF2, which can stabilize the
intramolecular interaction and inactivate the LATS1/2
interaction (35), exhibited stronger binding activity to TEAD4
than NF2-WT (Fig. 2D). Taken together, these binding data
demonstrate that NF2 directly interacts with TEAD4 through
both the FERM domain and the C-terminal tail (Fig. 2E).

Characterization of the interaction between NF2 and TEAD4

We next investigated the interaction details between NF2
and TEAD4. Based on the crystal structure of human NF2
protein (35), single or combined point mutations on the
structural surface of NF2 were designed for the binding screen
(Fig. S2B). Overall, the binding results revealed that the L297,
I301, and H304 residues in the FERM domain F3 lobe and the
L582 and F591 residues in the C-terminal tail of NF2 were
required for the interaction with TEAD4 (Figs. 3, A and B and
S2C). We then generated two grouped mutants, NF2-5A
(L297A/I301A/H304A/L582A/F591A) and NF2-4A-del
(L297A/I301A/H304A/L582A and deletion of 590–595 aa)
(Fig. S2, C and D), and found that both mutants strongly
diminished their ability to interact with TEAD4 in a coim-
munoprecipitation assay (Fig. 3C).

To explore whether the binding-deficient mutant NF2-5A
affects the role of NF2 in decreasing TEAD4 protein level,
we subsequently generated NF2 KO stably expressing NF2
WT/mutants HEK293A cells and examined TEAD4 protein
levels (Fig. S3A). As the results showed, both NF2-WT and
NF2-A585W decreased TEAD4 protein levels compared to
control cells, but NF2-5A did not (Fig. 3D). Further, the
mRNA levels of TEADs were not significantly altered with
NF2 depletion (Fig. S3B). Thus, NF2 decreased TEAD4 protein
level via direct interaction.

Since both YAP and NF2 bind to the YBD domain of
TEAD4, we next investigated whether NF2 and YAP bind to a
similar surface on TEAD4. An in vitro competitive assay was
performed and showed that NF2 gradually competed off
TEAD4 from GST-YAP in a dose-dependent manner (Fig. 3E).
Additionally, we screened the surface sites on TEAD4-YBD
based on in vitro binding assay, and the results showed that
the mutation of Y429 to histidine (Y429H), which lost the
ability for YAP binding, impeded the interaction with NF2
(Fig. S2E). These results indicate that NF2 and YAP may
occupy the overlapping interface on TEAD4-YBD and that
NF2 inhibits the formation of the YAP-TEAD complex.

NF2 induces the cytoplasmic retention of TEAD4 via
interaction

TEAD4 functions as a transcription factor in the nucleus,
while NF2 is a plasma membrane-associated protein (33),
raising the interesting points of how and where these two
proteins interact in cellular environments. To determine the
spatial localization of the NF2-TEAD4 complex within cells,
we applied the bimolecular fluorescence complementation
(BiFC) assay, in which two non-fluorescent half fragments of
yellow fluorescent protein (n/cYFP) were fused with their
respective binding partners. We observed no fluorescence
upon co-expressing NF2-nYFP and NF2-cYFP in
HEK293T cells, similar to control cells expressing NF2-cYFP
J. Biol. Chem. (2024) 300(5) 107212 3
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Figure 2. NF2 interacts with TEAD4 through the FERM domain and C-terminal tail. A, the GST pull-down assay was performed to assess the interaction
between SUMO-tagged TEAD4-YBD and GST-tagged NF2 truncations. TEAD4 was indicated by western blotting, and schematic views of NF2 organization
are shown in the right panel. B, coimmunoprecipitation of endogenous NF2 with TEAD4 was performed in HEK293T cells. The cell lysates were incubated
with Protein-A Magnetic beads and TEAD4 antibodies or IgG. Immunoprecipitated samples were determined by western blotting. C, in vitro binding assay of
GST-tagged NF2 C-terminal fragments with His-TEAD4-YBD. The GST-NF2 C-terminal fragments were pre-bound to GST beads, and beads were further
incubated with TEAD4-YBD alone or the mixture of TEAD-YBD (His-tag) and FERM domain (His-tag). The FERM and TEAD4 on the beads were analyzed by
western blotting. Quantitative analysis of the relative protein binding activity of NF2 to TEAD4 is shown in the right panel. Mean ± sd. N = 3, **p < 0.01
(unpaired two-tailed t test with Welch’s correction). D, in vitro pull-down assay of MBP-NF2 WT and the A585W mutant with His-TEAD4-YBD to assess the
interaction between TEAD4 and NF2. The level of TEAD4 was determined by western blotting. Quantitative analysis of the relative protein binding activity of
NF2 to TEAD4 is shown in the right panel. Mean ± sd. N = 3, **p < 0.01 (unpaired two-tailed t test with Welch’s correction). E, a cartoon model of NF2
binding to TEAD4 through the FERM domain and C-terminal tail.

NF2 interacts with TEAD4 in Hippo pathway
or TEAD4-cYAP alone (Fig. 4A). Co-expression of well-known
binding partners, NF2-cYFP and LATS2-nYFP, resulted in
fluorescence at the plasma membrane (Fig. 4A). Co-expression
of NF2-cYFP and TEAD4-nYFP allowed the observation of
YFP signals at the plasma membrane, but more fluorescence
signals were observed in the cytoplasm (Fig. 4A), suggesting
that they form complexes in the cytoplasm rather than in the
nucleus. Fluorescence signals were sequentially quantified by
flow cytometry (Figs. 4B and S3C), confirming the strong
interaction between NF2 and TEAD4 in cells, similar to the
interaction between NF2 and LATS2. These findings indicate
that the spatial organization of the NF2-TEAD4 complex is
dominated by the extranuclear localization of NF2.
4 J. Biol. Chem. (2024) 300(5) 107212
A high cell density contributes to the cytoplasmic trans-
location of TEADs. To explore whether NF2 mediates the
cytoplasmic retention of TEAD at high cell density, the sub-
cellular localization of TEAD4 was examined. A high cell
density indeed induced cytoplasmic localization in WT
HEK293A cells but did not induce cytoplasmic localization in
NF2 KO HEK293A cells (Fig. S3D), suggesting that NF2 is
critical for TEAD4 subcellular localization. Further, we
examined TEAD4 subcellular localization in NF2 KO stably
expressing NF2-WT or mutants HEK293A cells. In contrast to
the nuclear localization of TEAD4 in NF2 KO cells, a clear
fluorescence signal of TEAD4 was observed in the cytoplasm
and at the cell surface in NF2-WT and A585W expressing cells
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NF2 interacts with TEAD4 in Hippo pathway
(Fig. 4C). Moreover, consistent with the above immunoblot-
ting results, the overall expression level of TEAD4 generally
decreased upon NF2-WT and A585W expression (Fig. 3D).
Conversely, the fluorescence signal of TEAD4 was not detec-
ted in the cytoplasm of NF2-5A expressing cells (Fig. 4C),
suggesting that NF2 induces the cytoplasmic retention of
TEAD4 through direct interaction.

NF2 inhibits TEAD4 palmitoylation and presumably causes
sequential ubiquitination

Palmitoylation of TEAD4 is required for its protein stability
(20, 23, 24), prompting us to investigate whether NF2
decreases the protein stability of TEAD4 through palmitoyla-
tion. We performed in vitro auto-palmitoylation assays using
click chemistry-based methods (38) (Fig. 5A). We observed
that TEAD4 auto-palmitoylation significantly decreased dur-
ing NF2 incubation but not during YAP incubation (Fig. 5, B
and C), indicating that NF2 directly inhibited the auto-
palmitoylation of TEAD4 in vitro.

Next, we examined the palmitoylation of TEAD4 in NF2 KO
293A cells using an acyl resin-assisted capture strategy (39)
(Fig. 5D). Depletion of NF2 promoted the palmitoylation of
TEAD4 compared to that in control cells (Fig. S4A), which is
consistent with the findings of previous report (24). As
J. Biol. Chem. (2024) 300(5) 107212 5
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Figure 4. NF2 induces the cytoplasmic retention of TEAD4 via interaction. A, BiFC assays were performed to determine the location of the NF2-TEAD4
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HEK293A cells stably expressing WT or mutants GFP-NF2 WT and mutants at a high cell density. Scale bar = 10 μm. The co-localization analysis of NF2 and
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expected, the stable expression of NF2-WT dramatically
reduced TEAD4 palmitoylation, while the NF2-5A mutant had
slight effects on TEAD4 palmitoylation in cells (Fig. 5E). In
particular, NF2-A585W inhibited the palmitoylation of
TEAD4 at a comparable level to NF2-WT, implying that the
inhibitory effect of NF2 on TEAD4 palmitoylation was protein
interaction dependent. Acyl-protein thioesterase 2 (APT2) and
Alpha/beta hydrolase domain-containing protein 17A
(ABHD17A) are proposed to be major depalmitoylases of
TEAD family proteins (24). However, we found that the pro-
tein levels of APT2 and ABHD17A were not affected by the
expression of NF2 (Fig. S4B), which excluded the possibility
that NF2 reduced TEAD4 palmitoylation through APT2 and
ABHD17A.

Previous studies have shown that depalmitoylation triggers
the degradation of TEAD protein mediated by E3 ligase CHIP
(24). In vitro ubiquitination assays confirmed that non-
palmitoylated mutant TEAD4-2CS (C335S/C367S) exhibited
markedly higher ubiquitination than TEAD4-WT (Fig. 5F). As
positively relevant, TEAD4-2CS also exhibited stronger bind-
ing to NF2 than TEAD4-WT (Fig. 5G), indicating that NF2
preferentially binds to non-palmitoylated form of TEAD4 and
6 J. Biol. Chem. (2024) 300(5) 107212
triggers its ubiquitination. Thus, NF2 inhibits TEAD4 palmi-
toylation and presumably causes the sequential ubiquitination
of TEAD4.
TEAD4 interaction is required for NF2-mediated suppression
of cell proliferation

We then explored whether the direct interaction between
NF2 and TEAD4 contributes to the tumor suppressor function
of NF2. The BrdU incorporation assay was performed in NF2
KO HeLa cells to examine cell proliferation rates. In com-
parison with WT cells, BrdU incorporation efficiency was
dramatically increased in NF2 KO cells, and the CCK-8 assay
also showed increased cell viability after NF2 depletion
(Fig. S5, A and B), confirming the inhibitory effect of NF2 on
cell growth. As expected, the expression of NF2-WT signifi-
cantly inhibited the incorporation of BrdU, while the expres-
sion of NF2-5A did not (Fig. 6, A and B). In addition, cells
expressing NF2-5A exhibited higher cell viability than cells
expressing NF2-WT (Fig. 6C). Further, the transcription of
Cyr61 and CTGF, the downstream targets of TEAD4, was not
effectively inhibited in cells expressing NF2-5A compared to
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those expressing NF2-WT, which was consistent with the
observation in cell proliferation (Fig. S5, C and D). Therefore,
the interaction with TEAD4 is required for NF2 to inhibit cell
proliferation and plays a role in Hippo signaling.

Notably, coimmunoprecipitation showed that, compared
with NF2-WT, NF2-5A maintained a similar binding capacity
to LATS2 (Fig. 6D). In addition, NF2-5A did not alter the
LATS activity (Fig. S5E), indicating that the suppression defect
of cell proliferation resulted by NF2-5A is independent of the
conventional Hippo pathway in which NF2 binds and activates
LATS kinase. NF2-A585W was introduced due to its inability
to interact with LATS but binding to TEAD4, and the results
showed that NF2-A585W expression also failed to effectively
8 J. Biol. Chem. (2024) 300(5) 107212
suppress cell growth (Fig. 6, B and C). These results highlight
the fact that the ability of NF2 to suppress cell proliferation
and function in Hippo signaling hinges on its binding activities
to both TEAD and LATS proteins, and neither can be
compromised.
Discussion

As a tumor suppressor, NF2 senses cell‒cell contact and
regulates the Hippo pathway by activating the LATS1/2 ki-
nases, resulting in phosphorylation and cytoplasmic retention
of YAP. Phosphorylated YAP cannot form the complex with
transcription factor TEADs in the nucleus, thereby inhibiting
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cell proliferation and suppressing tumor growth (33, 40–42).
In contrast to the classic model of NF2, our findings suggest a
straightforward regulatory mechanism in which NF2 directly
associates with TEAD4 to promote cytoplasmic retention and
inhibit palmitoylation of TEAD4, resulting in dysfunction of
TEAD4 and suppression of cell proliferation (Fig. 6E). We
further determined 5 key residues of NF2 that required for
TEAD4 interaction and cell proliferation suppression.
Missense mutations at these sites, such as L297V, H304Y, and
F591L, are also found in various cancers (43, 44). The NF-5A
mutant lost the binding ability to TEAD4 but still bound to
LATS2, which indicates that the functional deficiency of NF2-
5A is due to a defect in the binding of TEAD instead of the
classical Hippo pathway. This straightforward regulation
would shed light on an additional mechanism of how tumor
suppressor NF2 functions and complement the regulation
from LATS1/2 of Hippo pathway.

Palmitoylation is essential for protein stability and tran-
scriptional activity of TEADs (20, 23), and NF2 has been
shown to decrease the mRNA levels of fatty acid synthase
(FASN) and induce depalmitoylation of TEADs (24). Alter-
natively, we found that palmitoylation of TEAD4 could also be
inhibited by NF2 via direct interaction rather than through
alteration of potential Acyl-protein thioesterases (APT2 and
ABHD17A) activity in the downstream of FASN, which re-
flects a novel role of NF2 in regulating the palmitoylation and
homeostasis of TEAD protein in cells.

As transcription factors, TEAD family proteins form tran-
scriptional complexes with the major co-activators YAP/TAZ
to activate the transcription of important target genes and
promote cell proliferation and organ growth (5). Besides that,
the inhibitory binding partners of TEADs, such as VGLL4,
compete with YAP/TAZ and inhibit the transcriptional activity
of TEAD4 to suppress cell proliferation and tumor growth in
multiple cancers (15, 45). Our finding that the tumor sup-
pressor NF2 inhibits TEAD4 palmitoylation via direct inter-
action suggested a new role for the classical protein NF2 as the
inhibitory factor of TEAD4, which might update the functional
understanding of NF2 in the Hippo pathway.

Nuclear localization is also required for TEAD tran-
scription activity. Early studies have reported that the
cytoplasmic translocation of TEADs can be induced by cell
density and p38 (19). As a membrane-associated protein,
NF2 has been shown to recruit and activate LATS1/2 ki-
nases at the plasma membrane (33). Here, we show that
NF2 induces the cytoplasmic translocation of TEAD4 via
direct protein‒protein interactions. It is reminded that NF2
also triggers the LATS nucleus translocation to activate the
Hippo pathway (46). The NF2-induced translocations of
both LATS1/2 and TEADs reach the same goal of pre-
venting TEAD transcription activity, suggesting that this
straightforward regulation could complement the function
of the Hippo pathway.

In summary, we identified the direct link and physical
interaction between NF2 and TEAD4, which are important for
NF2 function as tumor suppressor and TEADs protein
homeostasis.
Experimental procedures

Protein purification

The human TEAD4 YBD domain (217–434) was cloned
into a pET-28a vector with an N-terminal SUMO and a 6 ×
His tag, a pETa-29a vector with a C-terminal 6 × His tag, and a
pGEX-6P-1 vector with an N-terminal GST tag. His-tagged
and GST-tagged TEAD4-YBD were expressed in E. coli BL21
(DE3) cells, purified using Ni2+-NTA agarose resin (GE
Healthcare) or GST agarose resin (GE Healthcare), and further
purified via size-exclusion chromatography using a Superdex
200 column (GE Healthcare). Purified SUMO-TEAD4/
TEAD4-6 × His and GST-TEAD4 were concentrated to 2 mg/
ml in buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl,
and 1 mM DTT.

For TEAD4-YBD alone, the GST tag was removed with 3C
protease overnight at 4 �C. The eluted TEAD4-YBD protein
was purified via size-exclusion chromatography using a
Superdex 200 column (GE Healthcare). Purified TEAD4-YBD
was concentrated to 2 mg/ml in buffer containing 20 mM Tris
(pH 8.0), 150 mM NaCl, and 1 mM DTT.

NF2 (18–595) was cloned into a pMAL-3C vector with an
N-terminal MBP tag. MBP-NF2 was purified using amylose
resin (New England Biolabs) and eluted using 10 mM maltose
(BioFroxx). The elution was further purified via size exclusion
chromatography using a Superdex 200 column (GE Health-
care) in buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl,
and 1 mM DTT. NF2-FERM was cloned into pET-29a with C-
terminal 6 × His tag. FERM-6 × His was purified using Ni2+-
NTA agarose resin (GE Healthcare) and a Superdex 200 col-
umn (GE Healthcare) in buffer containing 20 mM Tris (pH
8.0), 150 mM NaCl, and 1 mM DTT.

Human YAP (FL) and YAP (47–131) were cloned into a
PGEX-6P-1 vector with an N-terminal GST tag. GST-YAP
(FL) and GST-YAP (47–131) were purified using GST
agarose resin (GE Healthcare). 3C protease was used to
remove the GST tag overnight at 4 �C, GST-YAP (47–131) was
eluted by 40 mM GSH (Biosharp). Then, YAP (FL) and GST-
YAP (47–131) were further purified via size exclusion chro-
matography using a Superdex 200 column (GE Healthcare) in
buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl, and
1 mM DTT.

Human CHIP, Hsp70 and UbcH5b were cloned into PET-
28a vector with an N-terminal SUMO tag. Ubiquitin and E1
were cloned into PET-28a vector with an N-terminal 6 × His
tag. The proteins were purified using Ni2+-NTA agarose resin
(GE Healthcare) and eluted with 200 mM imidazole (Sigma‒
Aldrich). The proteins were then purified with a Superdex 200
column (GE Healthcare) in a buffer containing 20 mM Tris
(pH 8.0), 150 mM NaCl, and 1 mM DTT.

Cell culture and transfection

HEK293T, HEK293A, HeLa, and MCF-10A cells were
cultured in DMEM (Gibco) supplemented with 10% fetal
bovine serum (FBS, Gibco) and 1% penicillin/streptomycin.
The plasmids were transfected using HighGene Transfection
Reagent (ABclonal). The siRNAs were transfected using
J. Biol. Chem. (2024) 300(5) 107212 9
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Lipofectamine 2000 (Invitrogen). The sequences of the siRNAs
used in this study:
siCtrl: TTCTCCGAACGTGTCACGT
siNF2-1: CCGUGAGGAUCGUCACCAUTT
siNF2-2: GGUACUGGAUCAUGAUGUUTT
Western blotting and antibodies

The proteins in the samples were separated by 10% SDS‒
PAGE and transferred to PVDF membranes (Bio-Rad) at
200 mA for 2 h. The membranes were washed with PBST (PBS
and 0.05% Tween 20) and blocked by 5% skim milk in PBST at
room temperature for 1 h. Then, the membranes were incu-
bated with the primary antibodies at 4 �C overnight and
washed 3 times by PBST. The membranes were further incu-
bated with the secondary antibodies at room temperature in
the dark for 1 h and washed 3 times by PBST. Finally, the
membranes were developed with ChemiDoc XRS+ (Bio-Rad)
or Odysse CLx (LI-COR).

Antibodies used: TEAD4 (abcam, ab58310, 1:1000), TEAD2
(abcam, ab273017, 1:1000), LATS1 (abcam, ab70561, 1:1000),
LATS2 (abcam, ab243657, 1:1000), YAP (abcam, ab52771,
1:1000),TAZ(abcam, ab110239, 1:1000), p-YAP (abcam, ab76252,
1:500), Cyr61 (abcam, ab228592, 1:1000), GAPDH (Proteintech,
60004-1-Ig, 1:2000), beta-Actin (abcam, ab8227, 1:3000), NF2
(ABclonal, A2456, 1:1000), ATP2 (ABclonal, A15792, 1:000),
ABHD17A (Proteintech, 15854-1-AP, 1:500), His×6 (Proteintech,
66005-I-Ig, 1:1000), GST (ABclonal, AE001, 1:1000), Flag (Pro-
teintech, 20543-I-AP, 1:1000), Myc (Cell Signaling Technology,
71D10, 1:1000), HRP-Goat Anti-Mouse Recombinant Secondary
Antibody (Proteintech, RGAM001, 1:3000), HRP-Goat Anti-
Rabbit Recombinant Secondary Antibody (RGAR001, 1:3000),
IRDye 800CW, Steptavidin (LI-COR, D10114–10, 1:2000), IRDye
800CW Goat anti-Mouse IgG Secondary Antibody (LI-COR,
926–32210, 1:5000), IRDye 680RD Goat anti-Rabbit IgG Sec-
ondary Antibody (LI-COR, 926–68071, 1:3000).
TEAD1 F: ATGGAAAGGATGAGTGACTCTGC
TEAD1 R: TCCCACATGGTGGATAGATAGC
TEAD2 F: CTTCGTGGAACCGCCAGAT
Protein immunoprecipitation

The cells were lysed in lysis buffer (20 mM Tris pH 7.5,
150 mM NaCl, 1 mM EDTA, 1% Triton, and phosphatase
inhibitor cocktail) for 30 min at 0 �C. The supernatant was
incubated with red anti-FLAG beads (Millipore) or Protein-A
Magnetic beads (Bio-Rad) and 2 μg of Myc (Cell Signaling
Technology, 71D10)/TEAD4 (abcam, ab58310) antibody
overnight at 4 �C. The proteins on the beads were resolved by
SDS‒PAGE and analyzed via western blotting.
TEAD2 R: GGAGGCCACCCTTTTTCTCA
TEAD3 F: TCATCCTGTCAGZCGAGGG
TEAD3 R: TCTTCCGAGCTAGAACCTGTATG
TEAD4 F: GAACGGGGACCCTCCAATG
TEAD4 R: GCGAGCATACTCTGTCTCAAC
YAP F: CACAGCATGTTCGAGCTCAT
YAP R: GATGCTGAGCTGTGGGTGTA
NF2 F: TGCGAGATGAAGTGGAAAGG
NF2 R: GCCAAGAAGTGAAAGGTGAC
CTGF F: AAAAGTGCATCCGTACTCCCA
CTGF R: CCGTCGGTACATACTCCACAG
Cyr61 F: GGTCAAAGTTACCGGGCAGT
Cyr61 R: GGAGGCATCGAATCCCAGC
GADPH F: GGCATCCTGGGCTACACTGA
GADPH R: GAGTGGGTGTCGCTGTTGAA
In vitro protein-binding assay

5 μM (200 μl) recombinant GST-NF2 was bound to 20 μl
GST resin (GE Healthcare), and 5 μM (200 μl) MBP-NF2 was
bound to 20 μl MBP resin (New England Biolabs) in PBS for
1 h at 4 �C. After washing, the resin was incubated with 40 μM
(200 μl) SUMO-TEAD4 in PBS for 1 h at 4 �C and washed four
times. Proteins retained on the beads were analyzed using
SDS‒PAGE and western blotting. SUMO-TEAD4 was detec-
ted using an antibody against 6 × His.
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In vitro palmitoylation assay

Recombinant TEAD4 protein (500 ng) was incubated with
1 mM alkyne palmitoyl-CoA (Cayman Chemical) for 0.5 h in
20 mM Tris (pH 8.0) and 100 mM NaCl. A click reaction with
biotin-azide (Sigma‒Aldrich) was performed for 1 h at 25 �C.
The reactions were stopped using 2 × SDS sample buffer,
followed by SDS‒PAGE analysis. Biotinylated TEAD4 was
detected using streptavidin-IRDye (LI-COR, D10114–10,
1:2000).
In vivo palmitoylation assay

The cells were collected and subjected to the CAPTUR-
Eome S-Palmitoylated Protein Kit (Badrilla). Briefly, the
cells were lysed and blocked with a blocking buffer at 40 �C
for 4 h. The mixture was then subjected to ice-cold acetone
precipitation. The precipitate was re-dissolved in the bind-
ing buffer and incubated with the thioester cleavage reagent
and capture resin for 2 h. After washing, the capture resin
was subjected to SDS-PAGE and analyzed via western
blotting.
In vitro ubiquitination assay

In vitro ubiquitination reaction was performed using 0.5 μM
E1, 4 μM UbcH5b, 2 μM CHIP, 1 μMHsp70, 10 μM ubiquitin,
and 1 μM recombinant GST-WT/2CS TEAD4 for 60 min at
37 �C in 20 mM Tris8.0, 100 mM NaCl, 5 mM ATP, 2.5 mM
MgCl2, and 1 mM DTT. Ubiquitination reactions were
stopped using 2 × SDS sample buffer, followed by detection via
western blotting with the GST antibody (ABclonal, AE001,
1:1000).

Real-time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen),
and reverse transcription (RT) was performed using the iScript
Reverse Transcription Supermix (Bio-Rad). RT‒PCR analysis
was performed using SYBR Green Realtime PCR Master Mix
(Toyobo) with the Applied Biosystems Step Two Real-Time
PCR System (Applied Biosystems). GAPDH was used as a
control. The standard comparative CT quantification method
was used to analyze the RT‒PCR results.

The primers used:
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BiFC assay

N-terminal YFP (1–238) was divided into two insertions:
nYFP (1–154) and cYFP (155–238). The pcDNA3.1-NF2/
TEAD4/LATS vectors were receptions for C-terminal n/c-YFP
fragments with the HindIII and BamHI sites. HEK-293T cells
were plated in a 6-well plate for 24 h and transfected with
800 ng nYFP- and 800 ng cYFP-tagged constructs. The cells
were treated at low temperature (30 �C) for 6 h for fluorophore
maturation, and after 48 h, fluorescence was determined via
flow cytometry using a BD FACS Calibur (BD Biosciences) or
observed under a confocal laser scanning microscope
(Olympus FV1200).

Stable cell line generation

Lentiviral infection was used to generate cells stably
expressing NF2. NF2 WT/mutants were cloned into the
pLVX-puro-GFP vector. Then, the viral vectors and packing
plasmids were co-transfected into HEK293T cells. 72 h after
transfection, the viral supernatants were collected by a
0.45 μM filter, and the NF2 KO 293A and HeLa cells were
infected with polybrene. 48 h after infection, cells were
selected by 2 μg/ml puromycin in a culture medium. Cells
stably expressing NF2 were validated by western blotting and
immunofluorescence.

Immunostaining

Cells at high density on coverslips were fixed in 4% para-
formaldehyde (Aladin) for 30 min and then permeabilized with
0.1% Triton X-100 (Aladin) for 30 min. The cells were blocked
in 3% BSA for 1 h and incubated overnight at 4 �C with
TEAD4 antibody (Abcam, ab58310, 1:500) diluted in 3% BSA.
The secondary antibody Alexa Fluor 647 (Jackson Immu-
noResearch, 141562, 1:1000) was diluted in 3% BSA and
incubated for 1 h. Then, the cells were stained with DAPI
(Beyotime).

BrdU incorporation assay

Cells on coverslips were incubated with 10 μM BrdU
(Beyotime) for 8 h at 37 �C, fixed with 4% paraformaldehyde
for 30 min, and washed with PBS containing 1% Triton X-100
for 30 min. Then, the cells were incubated with 2 N HCl for
30 min at room temperature. After washing with PBS, the cells
were blocked with PBS containing 1% Triton X-100 and 3%
BSA. The cells were incubated with primary antibodies against
BrdU (Abcam, ab6326, 1:50) overnight at 4 �C. Cells were
further incubated with Alexa Fluor 647 (Jackson ImmunoR-
esearch, 141562, 1:1000) for 1 h in the dark and then stained
with DAPI (Beyotime). Each experiment was performed at
least three times independently.

Cell counting Kit-8 (CCK-8) assay

Cells were seeded into 96-well plates. After 48 h, the cell
counting kit-8 (Biosharp) was used to evaluate cell viability.
The cells in each well were incubated with 10 μl CCK-8
reagent and 90 μl DMEM solution at 37 �C for 1 h. The
absorbance at 450 nm was detected using a plate reader.
Each experiment was performed at least three times
independently.

Statistical analysis

All the data were analyzed with an unpaired two-tailed t test
or one-way ANOVA with multiple comparisons in GraphPad
Prism 6.0. *p <0.05 indicates a significant difference. *p <0.05,
**p <0.01, ***p <0.001, ****p <0.0001. Quantitative data are
presented as the mean ± sd. For quantification, fluorescence
and WB intensities were measured using ImageJ (NIH).

Data availability

The original data presented in the study may be found in the
article/Supporting information section. Further inquiries can
be directed to the corresponding author.
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