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Abstract
Background  The Corona Virus Disease 2019 (COVID-19) pandemic has struck globally. Whether the related proteins 
of retinoic acid (RA) signaling pathway are causally associated with the risk of COVID-19 remains unestablished. We 
conducted a two-sample Mendelian randomization (MR) study to assess the associations of retinol, retinol binding 
protein 4 (RBP4), retinol dehydrogenase 16 (RDH16) and cellular retinoic acid binding protein 1 (CRABP1) with COVID-
19 in European population.

Methods  The outcome utilized the summary statistics of COVID-19 from the COVID-19 Host Genetics Initiative. The 
exposure data were obtained from public genome wide association study (GWAS) database. We extracted SNPs from 
exposure data and outcome data. The inverse variance weighted (IVW), MR-Egger and Wald ratio methods were 
employed to assess the causal relationship between exposure and outcome. Sensitivity analyses were performed to 
ensure the validity of the results.

Results  The MR estimates showed that retinol was associated with lower COVID-19 susceptibility using IVW (OR: 
0.69, 95% CI: 0.53–0.90, P: 0.0065), whereas the associations between retinol and COVID-19 hospitalization or severity 
were not significant. RBP4 was associated with lower COVID-19 susceptibility using the Wald ratio (OR: 0.83, 95% CI: 
0.72–0.95, P: 0.0072). IVW analysis showed RDH16 was associated with increased COVID-19 hospitalization (OR: 1.10, 
95% CI: 1.01–1.18, P: 0.0199). CRABP1 was association with lower COVID-19 susceptibility (OR: 0.95, 95% CI: 0.91–0.99, 
P: 0.0290) using the IVW.

Conclusions  We found evidence of possible causal association of retinol, RBP4, RDH16 and CRABP1 with the 
susceptibility, hospitalization and severity of COVID-19. Our study defines that retinol is significantly associated 
with lower COVID-19 susceptibility, which provides a reference for the prevention of COVID-19 with vitamin A 
supplementation.
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Background
The coronavirus disease 2019 (COVID-19) pandemic 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV2) has struck globally and led to substantial 
morbidity and mortality [1]. The most common symp-
tom of COVID-19 is pneumonia. Respiratory droplet 
is considered the primary way of transmission [2]. The 
pathogenesis of the disease is currently being extensively 
investigated, along with potential treatments. The main 
treatments are antiviral agents, anticoagulant treatments, 
steroids and immunomodulatory agents. However, the 
efficacy of many treatments is limited and controversial 
[1].

Approximately 90 years ago, vitamin A (VA) was known 
as “the anti-infective” vitamin [3]. VA deficiency reduces 
the host’s ability to fight infections, especially pneumonia 
[4]. In vivo, VA is converted to retinol and stored in the 
hepatic stellate cells [5]. Retinol is not biologically active. 
In the bloodstream, retinol is released and binds to ret-
inol-binding protein 4 (RBP4). After entering the target 
cell, free retinol undergoes oxidation to give retinal, in 
the presence of retinol dehydrogenase (RDH) and sub-
sequent oxidation by retinaldehyde dehydrogenases to 
retinoic acid (RA) [6]. The RA binding with cellular RA 
binding protein (CRABP) can not only allow it to enter 
the nucleus and induce genomic and non-genomic effects 
[7], but also inhibit or activate cytosolic kinase signal-
ing [8]. However, RA will be rapidly metabolized by the 
cytochrome P450 enzymes, and its half-life is around one 
hour [9]. RA signaling pathway controls a wide range of 
physiological processes in numerous organs and is cru-
cial for intact immune function. Disregulated retinoid 
signaling can cause serious illness, including embryonic 
developmental defects, diabetes, metabolic syndrome 
and acute promyelocytic leukemia [7].

An observational study examined that, compared 
to nonpatients, hospitalized COVID-19 patients had 
reduced VA plasma levels regardless of disease sever-
ity, and critically ill COVID-19 patients had reduced 
RBP4 plasma levels during their acute phase of illness 
[10]. Depletion of retinol due to the large amount of viral 
RNA and consequent overwhelming immune stimulation 
occurred during COVID-19 infection. Many researches 
proposed that retinol depletion and subsequent retinol 
signaling impairment played a crucial role in the patho-
genesis of COVID-19 and its associated broad systemic 
effects [11–13].

However, these observational studies are prone to con-
founders. The impacts of retinol and RA signaling path-
way on host susceptibility to COVID-19 and disease 
severity remains uncertain. We conducted a Mendelian 
Randomization (MR) to assess their potential impact 
on COVID-19. MR is a method that uses genetic varia-
tion to strengthen causal inference regarding modifiable 

exposures influencing risk of outcomes [14]. Here, we 
assessed the association between the development and 
severity of COVID-19, and retinol and RA signaling 
pathway, by MR, utilizing alleles as proxies for the geneti-
cally predicted circulating status of retinol, RBP4, RDH16 
and CRABP1.

Methods
Study design and data sources
The overall design of this study is shown in Fig.  1. We 
adopted the two-sample MR method to evaluate pos-
sible causal relationships between COVID-19 (outcome) 
and retinol, RBP4, RDH16 and CRABP1 (exposure). MR 
rests on three main assumptions: (1) the genetic variants 
selected as the instrumental variables (IVs) are robustly 
associated with the exposure; (2) the genetic variants are 
not associated with confounders that may affect the rela-
tionship between exposure and outcome; (3) genetic vari-
ants affect the outcome only through the exposure, not 
other pathways.

Single nucleotide polymorphisms (SNPs) for retinol in 
the European population were selected as IVs from IEU 
analysis of UK Biobank phenotypes. The summary-level 
data of RBP4, RDH16 and CRABP1 in the European 
population were extracted from the complete GWAS 
summary data on protein levels as described by Sun et 
al. 2018 [15]. Three outcomes related to COVID-19 were 
assessed in the study, including COVID-19 susceptibility, 
hospitalization and severity. The European-specific sum-
mary statistics were obtained from the COVID-19 host 
genetics initiative (https://www.covid19hg.org/results/) 
GWAS (Release 5) [16, 17], which provided genetic con-
nections with COVID-19 phenotypes. These GWAS 
summary statistics are available at https://gwas.mrcieu.
ac.uk/. The study design of the sample collection, qual-
ity control procedures, the phenotypes of GWAS and 
imputation methods have been described in the original 
publications. Further details regarding these summary 
statistics are provided in supplementary documents 1. 
The original GWAS had been approved by corresponding 
ethics committee.

Selection of instrumental variables
SNPs associated with retinol and other associated 
proteins were identified at the genome-wide signifi-
cance threshold (P < 5 × 10− 8), and independent SNPs 
without linkage disequilibrium (r2 < 0.001 and clump 
window > 10,000  kb) were used as IVs (supplemen-
tary documents 1). Due to the limited number of SNPs 
extracted for genome-wide significant variants, we also 
performed MR analysis with a more liberal cut-off of 
genetic predictors (P < 5 × 10− 6). Phenoscanner web-
site [18] was used to examine the pleiotropic effects 
of selected IVs. Moreover, we evaluated the strength of 

https://www.covid19hg.org/results/
https://gwas.mrcieu.ac.uk/
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each SNP using the F statistic [19] (F = beta2/se2), and 
excluded SNPs with F < 10, because F > 10 suggested suf-
ficient strength to ensure the validity of the SNPs. The 
summary characteristics of the selected SNPs in the 
study were shown in the supplementary documents 1. 

The allelic effects of certain SNPs diverged from those 
documented on the Phenoscanner website, potentially 
attributable to variations in population sources across 
distinct databases. We selected the SNPs characteristics 
from the original GWAS data.

Fig. 1  The diagram of the study design. GWAS, genome-wide association studies; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and 
Outlier; MR, mendelian randomization. R2, A measure of the linkage disequilibrium between two genetic loci to quantify their correlation (value of 1 
denotes perfect correlation). SNP, single nucleotide polymorphism; Window size, the length of the region of linkage disequilibrium
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Statistical analysis
In this study, as the flow chart shown in Fig.  1, we 
extracted SNPs from exposure data and outcome data. 
The inverse variance weighted (IVW) [20], the MR-Egger 
[21], Wald ratio, weighted median, weighted mode and 
simple mode methods were employed to assess the causal 
relationship between exposure and outcome. In addition, 
Phenoscanner website could examine the pleiotropic 
effects of IVs, which is helping to remove confounding 
factors. We conducted Mendelian Randomization Plei-
otropy Residual Sum and Outlier (MR-PRESSO) [22] test 
to identify the potential horizontal pleiotropic effects 
of the SNPs. P value of MR-PRESSO > 0.05 means the 
absence of horizontal pleiotropic effects. Heterogene-
ity test was performed using Cochran’s Q-test to iden-
tify whether the MR results were biased by the potential 
heterogenic factors. A leave-one-out permutation test 
was performed to assess whether the MR analysis results 
was biased by the influence of particular SNPs. And 
IVW was used for leave-one-out permutation test. All 
the analyses with P < 0.05 were considered statistically 
significant. All statistical analyses were performed using 
the R Studio (R version 4.2.3) software and the R package 
“TwoSampleMR”.

Results
The MR analyses using different methods including IVW, 
MR-PRESSO and Wald ratio, to estimate the causal infer-
ence of retinol, RBP4, RDH16 and CRABP1 on COVID-
19 susceptibility and severity were presented in Fig.  2 
and Table ​1. The MR results and leave-one-out analy-
sis can be found in supplementary documents 2. In MR 
analysis between RBP4 and COVID-19 hospitalization, 
rs112357560 was deleted due to horizontal pleiotropy 
in MR-PRESSO. Horizontal pleiotropy in MR-PRESSO 
showed IVs could not influence outcomes directly 
through exposure factors, which violated the assump-
tions of MR. The F statistics which evaluated the strength 
of each SNP ranged from 20.80 to 87.83 for all the instru-
ment SNPs, indicating an absence of weak instruments 
[23]. P < 0.05 were considered statistically significant.

Retinol reported a negative association with COVID-
19 susceptibility (OR: 0.69, 95% CI: 0.53–0.90, P: 0.0065) 
using IVW, whereas the associations with the COVID-19 
hospitalization or severity were insignificant. RBP4 was 
associated with COVID-19 susceptibility using the Wald 
ratio (OR: 0.83, 95% CI: 0.72–0.95, P: 0.0072) at a signifi-
cance threshold (P < 5 × 10− 8), but the association was not 
significant (OR: 0.96, 95% CI: 0.91–1.02, P: 0.2693) at a 
liberal significance threshold (P < 5 × 10− 6). The asso-
ciations between RBP4 with COVID-19 hospitalization 
(OR: 0.76, 95% CI: 0.58-1.00, P: 0.0505) and severity 
(OR: 0.86, 95% CI: 0.73–1.02, P: 0.0788) were not signifi-
cant. IVW analysis showed a positive causal association 

between RDH16 and COVID-19 hospitalization (OR: 
1.10, 95% CI: 1.01–1.18, P: 0.0199) using a liberal selec-
tion of genetic variants (P < 5 × 10− 6). However, no causal 
effect of RDH16 on COVID-19 severity (OR: 1.12, 95% 
CI: 0.99–1.26, P: 0.0562) was detected. CRABP1 was 
association with COVID-19 susceptibility (OR: 0.95, 95% 
CI: 0.91–0.99, P: 0.0290) using the IVW with a signifi-
cance threshold (P < 5 × 10− 6). Other four MR methods 
also reported similar results. MR-PRESSO global test 
and the MR-Egger intercept test did not detect horizontal 
pleiotropy and Cochran Q tests showed no evidence for 
heterogeneity (Table 1).

Discussion
Previous studies had shown that VA plasma levels were 
reduced in COVID-19 patients with acute inflammation 
and severely reduced VA plasma levels were significantly 
associated with acute respiratory distress syndrome and 
mortality [24]. In the present study, based on the available 
GWAS, we investigate the causal effect of COVID-19 and 
retinol, RBP4, RDH16 and CRABP1 through two-sample 
MR approach. These results suggest causal associations 
between retinol and COVID-19 susceptibility, RBP4 and 
COVID-19 susceptibility, RDH16 and COVID-19 hospi-
talization, and CRABP1 and COVID-19 susceptibility.

SARS-CoV2 binding to angiotensin-converting enzyme 
2 (ACE2) mediates cell entry. Then it triggers antiviral 
innate immune responses first. Viral RNA in the cyto-
plasm is recognized by RA-inducible gene-I (RIG-I) like 
receptor family proteins. RIG-I plays a major role in this 
progress and is responsible for type I interferon synthesis 
[25]. The expression and activity of RIG-I are enhanced 
by RA binding to the DNA [26]. With prolonged COVID-
19 stimulation, retinol resources are used up [27]. The 
RIG-I pathway is deactivated after RA is depleted [28]. In 
addition, based on the fact that vitamin-like A enhances 
IFN-I and antiviral effects by activating RIG-I, RA has 
been proposed for inclusion in COVID-19 treatment reg-
imens, especially in combination with type 1 interferon 
[29]. It has been suggested that VA binding to fatty acid 
binding sites in SARS-CoV-2 spike proteins as ligand may 
stabilize the blocked spike conformation and inhibit viral 
entry particularly early in the infection process [30]. This 
MR study also found that retinol is negatively associated 
with COVID-19 susceptibility, which is helpful in the 
research of COVID-19 prevention.

As previously mentioned, the production of multiple 
VA species such as all-trans RA requires RBP4 and vari-
ous other proteins. RBP4 and VA levels were significantly 
decreased in patients hospitalized with COVID-19 dur-
ing the acute phase of infection compared to patients 
recovering after a mild course of the disease. The reduced 
levels of RBP4 and VA possessed a significant correla-
tion [10]. RBP4, the major transport protein of retinol 
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in circulation, delivers retinol to tissues via binding to 
specific membrane receptors [31]. The release of reti-
nol bound to RBP4 is under homeostatic control. Dur-
ing inflammation, the acute protein response boosts 
the production of hepatic inflammatory cytokines while 
simultaneously decreasing RBP4 release. Circulating VA 
decreases as a result of the subsequent reduction in holo-
RBP4 (retinol bound to apo-RBP4) [32]. This MR study 
also found that the inverse correlation of RBP4 with 

COVID-19 susceptibility, which may indirectly support a 
causal link between VA and COVID-19.

A positive association is observed between RDH16 
and COVID-19 hospitalization. This is contradictory to 
the role of RDH16 in RA signaling pathways. However, 
a study concluded that androgen dihydrotestosterone 
(DHT) increased endothelial injury mediated by SARS-
CoV-2 spike protein [33]. Besides, RDH16 can oxidize 
the 3α-hydroxysteroids androstane-diol to DHT [34]. In 
our MR study, the positive association between RDH16 

Fig. 2  The forest plot for the causal effect of retinol and associated proteins on COVID-19 by MR analytical methods
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with COVID-19 hospitalization were also found, which 
requires further confirmation by future research.

In the genomic RA signaling pathway, RA leads to the 
transcription of various target genes. In non-genomic 
mechanisms, retinol binds to STRA6 and CRABP-1, acti-
vating cytokine signaling, such as Jak/STAT pathway, that 
influences the expression and signaling of cytokines and 
interferons [28]. Our study identified suggestive inverse 
associations for CRABP1 with COVID-19 susceptibility.

There remain limitations in our study. First of all, we 
used summary-level data, however, summarized data do 
not allow stratification by factors such as sex, age, adi-
posity, diet, and co-morbidities. Secondly, the number 
of SNPs was limited at the genome-wide significance 
threshold. Third, the GWAS data of RBP4, RDH16 and 

CRABP1 used to generate instruments were relatively 
small compared to retinol. Fourth, the exposure and out-
come population of this study are European. The findings 
from the MR study based on European ancestry may not 
be applicable to other ethnic groups. Finally, leave-one-
out analysis detected potential influential SNP for the 
above MR analyses, such as retinol on COVID-19 suscep-
tibility, RDH16 on COVID-19 hospitalization, CRABP1 
on COVID-19 susceptibility. We acknowledge the possi-
bility that statistical assumptions may not have been met, 
thus additional tests or replication is needed.

Table 1  Mendelian randomization estimates for genetically predicted retinol and related proteins on different severities of COVID-19 
using different methods with liberal instrument selection
Exposure Outcome P for sig-

nificance 
threshold

MR 
methods

No. of 
SNPs

OR (95% CI) MR P 
value

P-het P-intercept P for 
MR-
PRESSO

Retinol COVID-19 susceptibility 5 × 10− 6 IVW 8 0.69 (0.53–0.90) 0.0065 0.87 0.86 0.864
COVID-19 susceptibility 5 × 10− 6 MR-Egger 8 0.65 (0.33–1.29) 0.2670
COVID-19 hospitalization 5 × 10− 6 IVW 8 0.76 (0.46–1.25) 0.2769 0.73 0.88 0.728
COVID-19 hospitalization 5 × 10− 6 MR-Egger 8 0.83 (0.24–2.89) 0.7825
COVID-19 severity 5 × 10− 6 IVW 8 0.65 (0.30–1.40) 0.2743 0.68 0.69 0.674
COVID-19 severity 5 × 10− 6 MR-Egger 8 0.94 (0.14–6.11) 0.9487

RBP4 COVID-19 susceptibility 5 × 10− 8 Wald ratio 1 0.83 (0.72–0.95) 0.0072 NA NA NA
COVID-19 susceptibility 5 × 10− 6 IVW 11 0.96 (0.91–1.02) 0.2693 0.11 0.76 0.096
COVID-19 susceptibility 5 × 10− 6 MR-Egger 11 1.00 (0.79–1.27) 0.9927
COVID-19 hospitalization 5 × 10− 8 Wald ratio 1 0.76 (0.58-1.00) 0.0505 NA NA NA
COVID-19 hospitalization 5 × 10− 6 IVW 11 0.97 (0.85–1.10) 0.6101 0.06 0.41 0.062
COVID-19 hospitalization 5 × 10− 6 MR-Egger 11 1.13 (0.77–1.65) 0.5391
COVID-19 severity 5 × 10− 8 Wald ratio 1 0.70 (0.45–1.09) 0.1128 NA NA NA
COVID-19 severity 5 × 10− 6 IVW 13 0.86 (0.73–1.02) 0.0788 0.13 0.62 0.147
COVID-19 severity 5 × 10− 6 MR-Egger 13 0.99 (0.56–1.74) 0.9671

RDH16 COVID-19 susceptibility 5 × 10− 6 IVW 12 1.02 (0.97–1.07) 0.4260 0.84 0.68 0.843
COVID-19 susceptibility 5 × 10− 6 MR-Egger 12 0.99 (0.86–1.14) 0.8950
COVID-19 hospitalization 5 × 10− 8 Wald ratio 1 0.95 (0.75–1.19) 0.6600 NA NA NA
COVID-19 hospitalization 5 × 10− 6 IVW 16 1.10 (1.01–1.18) 0.0199 0.59 0.69 0.637
COVID-19 hospitalization 5 × 10− 6 MR-Egger 16 1.13 (0.95–1.34) 0.1765
COVID-19 severity 5 × 10− 8 Wald ratio 1 1.00 (0.73–1.37) 0.9941 NA NA NA
COVID-19 severity 5 × 10− 6 IVW 17 1.12 (0.99–1.26) 0.0562 0.73 0.68 0.209
COVID-19 severity 5 × 10− 6 MR-Egger 17 1.07 (0.83–1.37) 0.6064

CRABP1 COVID-19 susceptibility 5 × 10− 8 Wald ratio 1 0.92 (0.83–1.01) 0.0881 NA NA NA
COVID-19 susceptibility 5 × 10− 6 IVW 13 0.95 (0.91–0.99) 0.0290 0.71 0.60 0.341
COVID-19 susceptibility 5 × 10− 6 MR-Egger 13 0.93 (0.84–1.03) 0.1938
COVID-19 hospitalization 5 × 10− 8 Wald ratio 1 1.04 (0.85–1.26) 0.7144 NA NA NA
COVID-19 hospitalization 5 × 10− 6 IVW 15 0.99 (0.92–1.08) 0.9114 0.62 0.87 0.657
COVID-19 hospitalization 5 × 10− 6 MR-Egger 15 1.01 (0.84–1.21) 0.9215
COVID-19 severity 5 × 10− 8 Wald ratio 1 1.27 (0.91–1.76) 0.1626 NA NA NA
COVID-19 severity 5 × 10− 6 IVW 15 1.01 (0.88–1.17) 0.8388 0.20 0.63 0.263
COVID-19 severity 5 × 10− 6 MR-Egger 15 0.94 (0.67–1.32) 0.7286

Abbreviations: CI, confidence interval; CRABP1, Cellular retinoic acid-binding protein 1; IVW, inverse variance weighted; MR-PRESSO, Mendelian randomization-
pleiotropy residual sum outlier; NA, not available; No. of SNPs, number of single nucleotide polymorphisms; OR, odds ratio; P-het, p-value for heterogeneity using 
Cochran Q test; P-intercept, p-value for MR-Egger intercept; RBP4, Retinol-binding protein 4; RDH16, Retinol dehydrogenase 16.
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Conclusion
In conclusion, using large-scale genetic summary data, 
our study strengthens the evidence for a causal rela-
tionship between COVID-19 and RA signaling pathway 
related proteins. Our study defines that retinol is signifi-
cantly associated with lower COVID-19 susceptibility, 
which provides a reference for the prevention of COVID-
19 with vitamin A supplementation.
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