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Significance

The recent Covid-19 pandemic 
highlighted that understanding 
the channels of disease 
transmission is crucially important 
for public health policies. 
However, measuring 
transmissions occurring through 
casual contact in the public space 
is highly challenging as 
researchers generally do not 
observe when infected individuals 
intersect casually with noninfected 
individuals. We overcome this 
methodological challenge in the 
context of the Covid-19 pandemic 
by combining card payment data, 
indicating exactly where and when 
individuals visited stores, with test 
data indicating when they were 
infected. We document that 
exposure to an infected individual 
in a store is associated with a 
significantly higher infection rate 
in the following week. Our 
estimates imply that 
transmissions between retail 
shoppers made a substantial 
contribution to the Covid-19 
pandemic.
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This paper presents quasiexperimental evidence of Covid-19 transmission through 
casual contact between customers in retail stores. For a large sample of individuals in 
Denmark, we match card payment data, indicating exactly where and when each individ-
ual made purchases, with Covid-19 test data, indicating when each individual was tested 
and whether the test was positive. The resulting dataset identifies more than 100,000 
instances where an infected individual made a purchase in a store and, in each instance, 
allows us to track the infection dynamics of other individuals who made purchases in 
the same store around the same time. We estimate transmissions by comparing the 
infection rate of exposed customers, who made a purchase within 5 min of an infected 
individual, and nonexposed customers, who made a purchase in the same store 16 to 
30 min before. We find that exposure to an infected individual in a store increases the 
infection rate by around 0.12 percentage points (P < 0.001) between day 3 and day 
7 after exposure. The estimates imply that transmissions in stores contributed around 
0.04 to the reproduction number for the average infected individual and significantly 
more in the period where Omicron was the dominant variant.

COVID-19 | reproduction number | disease transmission | transaction data

Understanding the transmission of infectious diseases is of fundamental importance for public 
health. It allows individuals to take adequate measures to protect themselves against infection 
and enables health authorities to design effective policies to mitigate spreading of the disease.

Most existing studies of disease transmission in real-world environments focus on social 
networks and report secondary attack rates or reproduction numbers within households 
(1–6), school classes (7–9), or work places (10–12). These studies have delivered important 
messages for public policy. For instance, low estimated secondary attack rates in classrooms 
constituted a strong argument for open schools in the recent Covid-19 pandemic (13).

By contrast, there is barely any evidence on transmissions outside of social networks, 
i.e., through casual contact in the public space. This is unfortunate as such transmissions 
may be particularly important for aggregate infection dynamics, by allowing the virus to 
jump from one social network to another. Credible estimates of the individual and aggre-
gate risks associated with casual contact in the public space are valuable in settings like 
the recent Covid-19 pandemic as they can guide policies that restrict personal mobility 
and impose social distancing in public places.

Here, we report the findings from a study of Covid-19 transmission through casual contact 
between unconnected customers in supermarkets and grocery stores. We develop a research 
design that harnesses large, naturally occurring datasets on card payments and Covid-19 
testing. Specifically, we match payment data, indicating exactly where and when each indi-
vidual in our sample made purchases, with Covid-19 test data, indicating when each indi-
vidual was tested and whether the test was positive. This allows us to identify instances where 
an infected individual made a purchase in a store and track the infection dynamics of other 
individuals who made purchases in the same store at around the same time.

Our quasiexperimental empirical design provides evidence on transmission in stores 
by comparing the infection rates for customers in the same store whose exposure to the 
infected individual differed due to the precise timing of their store visits. For example, 
if an infected individual made a purchase at 14.13, we compare individuals like Ms. 
Jones who made a purchase in the same store at 14.15 (“exposed”) to individuals like 
Ms. Jennings who made a purchase at 13.51 (“nonexposed”). Assuming that the exact 
timing of transactions within a short time span is quasi-random—i.e., that Ms. Jones 
and Ms. Jennings are not systematically different with respect to exposures outside the 
store—the probability of transmission in the store can be inferred from the difference 
in the infection rates of the two groups after the exposure.
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Our analysis documents substantial Covid-19 transmission 
between consumers in supermarkets and grocery stores. We find 
that making a purchase in a store within 5 min of an infected 
person raises the infection rate between day 3 and day 7 after the 
purchase by 0.12 %-points (P < 0.001). This estimate of in-store 
transmission compares to a baseline infection rate of 1.3% for the 
nonexposed, implying a relative risk ratio of 1.09. The estimated 
transmission rate in stores is considerably higher in the period 
where Omicron was dominant, which is consistent with other 
evidence of this variant’s exceptional transmissibility (14–16).

Our estimates have strikingly different implications for the 
individual and aggregate risks associated with casual contact in 
the public space. On the one hand, we find that the average store 
visit in the estimation period involved a very small probability of 
contracting Covid-19 of around 0.000025. This reflects that both 
the risk of exposure conditional on going to a store and the infec-
tion risk conditional on in-store exposure were relatively low. On 
the other hand, we find that each infected individual on average 
transmits the virus to around 0.04 others through casual contact 
in supermarkets and grocery stores, implying a substantial contri-
bution of shopping to aggregate reproduction of the virus in soci-
ety. These two seemingly contradictory implications are reconciled 
by the fact that grocery shopping is a frequent activity that involves 
casual contact with a large number of people.

It is illustrative to compare our results to existing evidence on 
Covid-19 transmission within households. Our estimated transmis-
sion rate of 0.12% for casual contacts in stores is two orders of 
magnitude smaller than the transmission rate of 20 to 30% typically 
found for household members (2, 3). Despite the low transmission 
rate in stores, the contribution to overall reproduction remains quan-
titatively relevant due to the high number of exposures. Specifically, 
for the average infected individual, the number of other customers 
making a transaction within 5 min is around 30, one order of mag-
nitude more than the number of household members (2, 3).

A key contribution of our study is to provide estimates of the 
epidemiological risks associated with retail shopping in the Covid-19 
pandemic. Most governments around the world imposed restrictions 
on consumer activity with the aim of reining in the pandemic at 
high costs for both households and businesses. One can interpret 
the estimated reproduction number in stores of around 0.04 as an 
upper bound on the reduction in infections that can be achieved 
through restrictions on stores. With an overall reproduction number 
hovering around one throughout most of the pandemic, this inter-
pretation suggests that such restrictions can have a limited, but 
meaningful dampening effect on the infection dynamics.

Our study also makes an important methodological contribu-
tion: we develop a unique quasiexperimental method for measur-
ing disease transmission through casual contact in the public 
space. Our method represents a major advance over existing ana-
lytical approaches, i.e., case studies of specific outbreaks (17–19) 
and case–control studies using surveys to investigate differences 
in potential community exposures across infected and noninfected 
individuals (20–22). Further, our method overcomes many of the 
limitations inherent to existing studies of transmission within 
social networks (cited above) by using an objective measure of 
physical proximity rather than self-reported close contact and by 
accounting rigorously for background infection risk.

Data and Research Design

To implement our research design, we first combine data from 
two sources. From Danske Bank, the largest bank in Denmark, 
we obtain card transaction data for around 630,000 customers 
(23). The transaction dataset includes unique store identifiers and 

indicates the exact time of each payment. Matching on unique 
personal identifiers, we link the transaction data to comprehensive 
administrative data on Covid-19 tests from the national health 
authorities (24) (SI Appendix, section 2.1). These two data sources 
are attractive in the Danish setting where card payments account 
for almost 90% of all payments in stores (25), where test frequen-
cies during the pandemic were among the highest in the world 
and up to 80% of all infections were detected (26, 27), and where 
the administrative test data comprises both molecular and antigen 
tests performed by public as well as private test providers.

In the resulting dataset, we identify around 126,000 instances 
where a transaction on day d was made by an individual with a 
positive Covid-19 test between day d − 4 and day d + 2. As indi-
viduals infected with Covid-19 are generally contagious from 
around 2 d before the onset of symptoms and at least until 5 d 
after, these individuals were potential infectors when making the 
purchase on day d. Our main estimation sample consists of indi-
viduals who made a purchase within 5 min of a potential infector 
on day d (around 328,000 exposed individuals) and individuals 
who made a purchase between 16 and 30 min before a potential 
infector (around 340,000 nonexposed individuals). We do not 
consider individuals who made purchases after a potential infector 
as nonexposed due to possible contamination of air and surfaces 
(28–31). Fig. 1 illustrates the selection of potential infectors as 
well as the groups of exposed and nonexposed individuals.

Importantly, individuals socially connected to the infector may 
confound the analysis if they are more likely to make purchases 
around the same time as the infector and additionally are more 
likely to interact with the infector outside of the store. If the reason 
Mrs. Jones made a purchase only 2 min after the potential infector 
is that they are work colleagues and went to the store together in 
the break, a higher infection rate for Mrs. Jones may reflect trans-
mission during working hours rather than transmission in the 
store. We augment the main dataset with information from 
administrative sources (32–34) with the aim of excluding indi-
viduals with social ties to the potential infector. Specifically, we 
exclude members of the same family or household as the potential 
infector (around 2,200 individuals); employees at the same firm 
(around 800 individuals); students at the same school (around 
1,300 individuals); as well as individuals with any mobile money 
transfers to or from the potential infector during the sample period 

�

��

Fig. 1.   Empirical design. The figure illustrates the empirical design. In the first 
step, we identify potential infectors who made a purchase on day d and tested 
positive between day d − 4 and day d + 2. In the second step, we identify 
exposed individuals who made a purchase within 5 min of a potential infector 
in the same store and a reference group of nonexposed individuals who made a 
purchase between 16 and 30 min before a potential infector in the same store.

http://www.pnas.org/lookup/doi/10.1073/pnas.2317589121#supplementary-materials
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(around 7,000 individuals) (SI Appendix, section 2.2). The poten-
tially confounding effects of social networks is an important moti-
vation for restricting the analysis to grocery shopping, which is 
presumably less social than other consumer activities such as eating 
out, going to shows, or shopping for clothes.

In the main analysis, the outcome is a variable indicating a positive 
Covid-19 test between day d + 3 and day d + 7, corresponding to the 
typical period where symptoms would emerge following infection on 
day d. We regress this outcome variable on an indicator for being 
exposed while including a separate intercept for each set of individ-
uals, exposed and nonexposed, linked to the same potential infector. 
With this specification, we capture the differential infection rate of 
exposed individuals relative to nonexposed individuals who made a 
purchase in the same store at almost the same time of the same day. 
This parameter reflects transmission in the store under the assumption 
that there are no confounding differences in exposures outside the 
store (SI Appendix, section 3). While we generally expect consumers 
to sort in ways that correlate strongly with other exposures—e.g., the 
elderly may shop in local stores during normal working hours whereas 
young families may prefer malls on weekends—our research design 
overcomes this challenge by making comparisons within stores and 
narrow time windows. Indeed, the differences between exposed and 
nonexposed individuals are generally immaterial across a range of 
observable characteristics such as age, gender, household size, income, 
and occupation (SI Appendix, section 4.1).

Results

Fig. 2 illustrates the first set of results. The main specification sug-
gests that in-store exposure increases the 5-d infection rate by around 
0.12%-points (P < 0.001). When we vary the time interval that 
defines exposure, we obtain results consistent with the notion that 
individuals who make transactions nearer to the potential infector 
are more likely to have close contact in the store and therefore more 
likely to be infected. Specifically, the estimated effect increases to 
around 0.18%-points (P = 0.002) when exposure is defined more 
narrowly as transactions within 1 min of the potential infector and 
decreases to around 0.08%-points (P = 0.002) when it is defined 

more broadly as transactions within 10 min. Moreover, individuals 
with transactions further away from the potential infector than 10 
min do not seem to be materially exposed. Specifically, the estimated 
effect drops to 0.01%-point (P = 0.773) when we estimate the 
model with a placebo measure of exposure covering transactions 
between 11 and 15 min before the potential infector.

These results are highly robust to nonparametric controls for 
observable characteristics as well as sample restrictions that further 
address the concern about social networks (SI Appendix, sec-
tion 4.2). Specifically, the estimates do not change materially when 
we absorb differences in observable characteristics that correlate 
strongly with infection risks (i.e., age, income, and municipality). 
The estimates are also robust to excluding individuals who have 
no observable social link to the potential infector in the data but 
are more likely to have an unobserved link because their age is 
close to the potential infector’s or because they have made in-store 
transactions close to the potential infector on other occasions.

Fig. 3 illustrates the differential infection dynamics of exposed 
relative to nonexposed individuals. By design, individuals in the 
estimation sample have no positive tests between day d − 4 and day 
d + 2—if they had, they would themselves be potential infectors. 
We therefore construct infection variables for 5-d periods postex-
posure, i.e., [d + 3, d + 7], [d + 8, d + 12], [d + 13, d + 17], etc., 
and preexposure, i.e., [d − 9, d − 5], [d − 14, d − 10], [d − 19, d − 
15], etc. When we use these infection variables as outcomes in a 
series of separate regressions, we find that exposed and nonexposed 
individuals generally followed a similar infection trajectory through-
out the time window, except in the first 5-d period after the in-store 
exposure. Thus, the main estimates do not reflect general differences 
in infection risk across the two groups (SI Appendix, section 4.3).

Fig. 4 shows how the baseline estimates of in-store transmission 
vary across four sample periods, defined by the Covid-19 variant 
with the highest prevalence among infected individuals in 
Denmark. Regardless of the specific definition of exposure, i.e., 
transactions within 1, 5, and 10 min of the potential infector, the 
qualitative pattern is the same: transmission in stores was relatively 
small when the Index, Alpha, and Delta variants were dominant 
and increased sharply when Omicron took over. The difference is 
robust to controlling for other factors that may affect transmission, 
such as seasonal variation and the age of potential infectors 
(SI Appendix, section 4.4). Analyzing heterogeneity by personal 

Fig. 2.   Main results. The first bar indicates the excess probability of testing 
positive between day d + 3 and day d + 7 for individuals making a purchase 
within 5 min of a potential infector on day d (exposed) relative to individuals 
making a purchase between 16 and 30 min before a potential infector on day 
d (nonexposed). The next two bars show analogous estimates for alternative 
definitions of exposure, i.e., purchases within 1 and 10 min of a potential 
infector. The final bar shows an analogous estimate for placebo exposure, i.e., 
purchases between 11 and 15 min before a potential infector. The estimated 
coefficients and SE are reported in SI Appendix, Table S4.
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Fig. 3.   Dynamic results. The bars indicate the excess probability of testing 
positive in different 5-d periods for individuals making a purchase within  
5 min of a potential infector on day d (exposed) relative to individuals making 
a purchase between 16 and 30 min before a potential infector on day d 
(nonexposed). There are seven 5-d periods before the purchase (blue bars) 
and seven 5-d periods after the purchase (red bars).
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characteristics, we find that the transmission rate decreases with 
the age of the exposed individual, i.e., decreasing susceptibility, 
and increases with the age of the potential infector, i.e., increasing 
onward transmissibility (SI Appendix, section 4.5).

Finally, to gauge how much transmission in supermarkets and 
grocery stores contributes to the pandemic, we compute the repro-
duction number implied by the estimated transmission rates 
(SI Appendix, section 5). For each infected individual in our sample, 
we use age-dependent sampling probabilities to scale up the number 
of exposed individuals in the sample to the expected number in the 
population. We then aggregate expected exposures and multiply by 
the estimated transmission rates to obtain the expected number of 
transmissions, and divide by the number of infections in the sample 
to arrive at the reproduction number. Fig. 5 illustrates the results: The 
total reproduction number for all infected individuals in our sample 
is just below 0.04, with a striking increase from around 0.02 to 0.06 
around the arrival of the Omicron variant. The analogous estimates 
for all infected individuals in the population are highly similar.

Our methodology for computing the reproduction number implic-
itly assumes that our gross sample of Danske Bank customers is repre-
sentative of the overall population conditional on age. Concretely, the 
risk of being exposed to a potential infector in a store as well as the risk 
of being infected given exposure should be the same for individuals 
who are in our gross sample and same-aged individuals who are not. 
Importantly, our methodology does not assume that the estimation 
sample of individuals who make transactions within 30 min of a poten-
tial infector is representative of the overall population.

Discussion

A key methodological concern is how imperfect detection of 
Covid-19 cases may affect the results. There are three separate mech-
anisms. First, there may have been potential infectors whom we do 
not classify as such because they did not test. This has no bearing 
on our estimates of in-store transmission, assuming that undetected 
potential infectors were equally likely to have contact with individ-
uals classified as exposed and nonexposed. Second, there may have 
been in-store transmission that was not detected because the 
exposed individuals did not test. This implies that the true trans-
mission rate in stores may be somewhat higher than our estimates. 
Third, differential testing across exposed and nonexposed, e.g., due 
to alerts from the health authorities’ contact tracing, could poten-
tially confound the estimates. However, we document that the two 
groups generally exhibit almost identical test behavior. We also 
show that the differential increase in infections after exposure is not 
accompanied by a differential increase in negative tests (SI Appendix, 
section 4.6), which seems inconsistent with a surge in testing 
among the exposed caused by contact tracing.

To the extent that individuals are exposed to multiple potential 
infectors in the same store, our estimates could, in principle, over-
state the transmission risk associated with a single exposure. 
However, we show that, in practice, the vast majority of exposed 
individuals only have one potential infector within 10 min of their 
transaction. Moreover, the estimated transmission rate barely 
changes when we restrict the estimation sample to this subsample 
of exposed individuals (SI Appendix, section 4.7).

Our analysis excludes individuals who are socially connected 
to the potential infector as they are likely to be exposed not just 
inside the store but also outside. Consistent with this notion, we 
find very large estimates when we apply the model to exposed 
individuals with social links to the potential infector (SI Appendix, 
section 4.8). Clearly, these results should not be interpreted as 
estimates of transmission inside the store.

Materials and Methods

Data. We combine microdata from three sources: Danske Bank (23), Statens 
Serum Institut in Denmark(24), and Statistics Denmark (32–36). We are able 
to match the three sources at the individual level as they use the same unique 
personal identifiers. For confidentiality and data protection, the data are stored 
in a secure environment, unique identifiers are pseudoanonymized and all iden-
tifying information removed by employees of Statistics Denmark.

From Danske Bank, we obtain comprehensive transaction data for each of the 
bank’s customers for the period between 1 January 2018 and 15 January 2022.

First, we use a unique store identifier to determine the place and a time stamp 
to determine the time for each in-store purchase. We limit the analysis to trans-
actions with MasterCard because transactions through other payment circuits 
do not provide accurate time stamps. Second, we use data on money transfers 
through a mobile app to identify individuals who have made transfers to one 
another and who are therefore likely to be socially connected. From Statens Serum 
Institut, we obtain administrative information about the Covid-19 tests performed 
by public and private test providers. We observe the date at which the test was 
performed, the type of test, and the test result. From Statistics Denmark, we obtain 
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The next two clusters illustrate the estimates for alternative definitions of 
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estimated coefficients and SE are reported in SI Appendix, Table S5.
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number in supermarkets and grocery stores for the infected individuals in our 
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administrative microdata from a range of government registers, which contribute 
further to the identification of social networks and provide detailed information 
about background characteristics. First, we draw on the registers for population, 
employment, and education to identify individuals who are socially connected 
through the extended family, household, workplace or educational institution. 
Second, we draw on the registers for population, employment, and income to 
obtain information about sociodemographic characteristics for each individual. 
We provide more details on the data in SI Appendix, section 2.

We create the estimation sample in three steps. First, we identify all the instances 
where a purchase in a supermarket or grocery store on day d was made by an indi-
vidual with a positive COVID-19 test between day d − 4 and day d + 2. These are 
potential infector transactions. Second, we identify a sample of exposed individuals, 
who made a purchase within 5 min of a potential infector transaction in the same 
store, and a group of nonexposed individuals, who made a transaction between 16 
and 30 min before a potential infector transaction in the same store. Third, we stack 
the exposed and nonexposed samples while excluding individuals with social con-
nections to the potential infector (i.e., individuals connected through the extended 
family, household, workplace, educational institution, or money transfers).

Estimation. Letting i denote an individual in our estimation sample and letting 
q denote the transaction of a potential infector that assigns individual i to the 
exposed or nonexposed sample, we estimate the following model:

infectedi,q = �q + �exposedi,q + �i,q,

where infectedi,q is an indicator that individual i tests positive for Covid-19 
between day 3 and day 7 after transaction q and αq represents a separate intercept 
for each potential infector transaction q. The variable of interest, exposedi, q, is an 
indicator for individual i being exposed at transaction q. Thus, the parameter β 
captures the differential infection rate for the exposed, measured relative to the 
nonexposed individuals associated with the same infector transaction q.

We interpret β as the probability of transmission from the potential infector 
to exposed individuals. This interpretation requires two assumptions. First, we 
need to assume that other infection risks are uncorrelated with exposure across 
individuals associated with the same infector transaction (Assumption #1). This 
implies that individuals transacting within 5 min of a potential infector are not 
systematically different from individuals transacting between 16 and 30 min 
before the same potential infector in dimensions that correlate with background 
risk. Second, we need to assume that there is no transmission from the potential 
infector to the nonexposed individuals (Assumption #2).

We perform a range of tests that allow us to assess the validity of these assump-
tions. First, we estimate the model with alternative dependent variables, e.g., age, 
gender, and household size as well as indicators of testing and infections prior 
to exposure. If exposed and nonexposed individuals are highly similar in terms 
of characteristics, behavior, and infection outcomes that are strong correlates of 
background risk, it is suggestive that they are also highly similar in terms of this 
background risk (Assumption #1). Second, we estimate the model with a placebo 
definition of exposure, i.e., an indicator for making a transaction between 11 and 
15 min before a potential infector. If this placebo exposure is not associated with 
a differential infection rate, it is suggestive that individuals transacting more than 
10 min before the potential infector are effectively not exposed and, hence, that 
the reference group whose transactions are even longer before the potential 
infector’s is not contaminated by exposure to the potential infector (Assumption 
#2). We provide more details on the empirical design in SI Appendix, section 3.

Risks. We use the estimated transmission rates to estimate the individual and 
aggregate risks associated with retail shopping. In either case, we start by com-
puting a sampling probability �i for each individual i in the sample of Danske 
Bank customers. Letting ni and Ni denote the number of individuals at the same 
age as i in the bank sample and in the population respectively, we define �i = 
ni/Ni. Note that ni weighs individuals by the share of MasterCard transactions in 
their overall transactions in grocery stores and supermarkets, e.g., an individual 
who uses a MasterCard for every second transaction contributes only 0.5 to ni.

We estimate the probability of getting infected for the average store visit in 
our sample as the expected aggregate number of in-store transmissions T divided 
by the aggregate number of store visits V, i.e., T/V, both measured in the sample 
of Danske Bank customers. In a first step, we estimate transmission rates while 

allowing β to vary with the age group of the potential infector (i.e., <25 y, 25 to 
45 y, and >45 y), with the age group of the exposed individual (i.e., same groups), 
and with the dominant variant on the day of the exposure (i.e., Omicron and 
other). While V is directly observable, we compute T by multiplying the inverse 
sampling probability of the potential infector and the relevant estimated transmis-
sion rate for each exposure and summing over all exposures. Letting i, j, v index 
the exposed individual, the potential infector, and the time variant, we obtain:

T =
∑

i

1

�j

�̂ ijv.

We estimate the number of in-store transmissions from the average infected 
person in our sample as the expected aggregate number of transmissions S 
from infected individuals divided by the aggregate number of infections F, i.e., 
S/F, both measured in the sample of Danske Bank customers. While F is directly 
observable, we compute S by multiplying the inverse sampling probability of 
the exposed individual and the relevant estimated transmission rate for each 
exposure and summing over all potential infectors:

S =
∑

j

1

�i

�̂ ijv.

The assumption that our gross sample is representative in terms of the risk of 
being infected given exposure is reflected in the fact that we apply β, the trans-
mission rate estimated in our sample, to exposed individuals outside our sample. 
As β is allowed to vary with age, we effectively assume that individuals in the 
gross sample are representative of same-aged individuals in the population in 
this dimension.

The assumption that our gross sample is representative in terms of the risk of 
being exposed is reflected in the fact that we scale up exposures in the sample 
with inverse sampling probabilities 1/�   . As �   varies with age in the baseline 
estimation, we effectively assume that individuals in the gross sample are rep-
resentative of same-aged individuals in the population in this dimension. In a 
robustness test described in SI Appendix, we allow � to vary with gender, income, 
region, and occupation in addition to age (SI Appendix, section 5).

Ethical Approval. As our study is based solely on administrative data processed 
at the servers of Statistics Denmark, this research did not require ethical approval 
according to the policy of the Research Ethics Committee at the Department of 
Economics of the University of Copenhagen. This is because Statistics Denmark 
ensures compliance with GDPR, which requires that the research is socially rele-
vant and has introduced strict need-to-know principles for data analysis, as well 
as anonymization rules securing the anonymity of individual citizens.

Data, Materials, and Software Availability. The dataset combines customer 
data from Danske Bank and administrative data from the government registers 
in Denmark. Statistics Denmark merged the two data sources using social security 
numbers. The data is stored at the secure facility of Statistics Denmark and may not 
be transferred outside of this facility for security reasons. Generally, researchers inter-
ested in obtaining access to Danish administrative microdata need to submit a writ-
ten application to Statistics Denmark. They can obtain access if they are themselves 
affiliated with a Danish research institution or if they collaborate with researchers 
affiliated with such an institution. Access is provided remotely through the internet. 
The procedure is described by Statistics Denmark at their website (37). To access 
the customer data from the bank, separate permissions from Danske Bank and 
the Ministry of Industry, Business and Financial Affairs are required. If a researcher 
wishes to analyze our data for replication purposes, we will assist in the process of 
acquiring access and provide all the programs necessary for replication. The use 
of the data is subject to the European Union’s General Data Protection Regulation 
(GDPR) per Danish regulations.
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