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Significance

A mutation in the catalytic action 
of Sac1 domain in Synaptojanin-1 
(SJ1) causes early-onset 
Parkinsonism. Here, we show 
that this mutation affects the 
characteristics of cilia of induced 
pluripotent stem cell (iPSC)-
derived dopaminergic neurons. 
Cilia are longer and show an 
accumulation of calcium 
channels and ubiquitinated 
proteins relative to control 
neurons, suggesting an effect of 
SJ1 on protein turnover in these 
organelles. These findings have 
implications for a link between 
cilia-mediated signaling to 
Parkinson’s Disease.
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Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase 
implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) 
that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and 
neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an 
abnormal assembly state of endocytic factors at synapses, the presence of dystrophic 
nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, sug-
gesting a special lability of DA neurons to the impairment of SJ1 function. Here we have 
further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and 
SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced 
clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neu-
ronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed 
abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting 
a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal con-
centration of SJ1 was observed. We suggest that SJ1 may contribute to the control of 
ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.

primary cilia | Parkinson’s disease | calcium channel | centriole | phosphoinositides

While the cause of most Parkinson’s disease (PD) is not known, mutations in a selected 
list of genes are responsible for the development of familial forms of the disease, often 
Early-Onset Parkinsonism (EOP) (1). One such gene is SYNJ1, which encodes the protein 
Synaptojanin-1 (SJ1), a polyphosphoinositide phosphatase highly expressed in neurons 
and enriched at synapses (2–4). SJ1 dephophorylates PI(4, 5)P2 via the sequential action 
of two tandemly arranged inositol phosphatase modules: a central 5-phosphatase domain 
and an N-terminal Sac1 domain which functions primarily as a 4-phosphatase (2, 5, 6). 
These catalytic modules are followed by a proline-rich region which is responsible for its 
subcellular targeting and undergoes alternative splicing to generate a shorter (145 kD, the 
predominant neuronal form) and a longer (170 kD) isoform (2, 7, 8). One of the main 
known roles of SJ1 is to participate in the shedding from endocytic vesicles of clathrin 
coats and other endocytic factors, including actin regulatory proteins, which bind 
PI(4, 5)P2 at the plasma membrane to initiate the endocytic reaction (9, 10). While the 
absence of SJ1 leads to early postnatal lethality in mice (9) and humans (11, 12), a patient 
R258Q missense mutation (SJ1RQ) (accession number: NM_003895) also known as 
R219Q (accession number: NM_001160302) is responsible for EOP with epilepsy. This 
mutation selectively abolishes the catalytic action of its Sac1 domain (SJ1RQ) (3). We 
previously showed that knock-in mice with this mutation (SJ1RQKI) display neurologic 
manifestations reminiscent of those of human patients (13). These manifestations are 
accompanied at the cellular level not only by endocytic defects and an accumulation of 
clathrin-coated vesicles at synapses but also by degenerative changes selectively of a subset 
of dopaminergic nerve terminals in the dorsal striatum (13, 14).

One cell compartment which is regulated by PI4P and PI(4, 5)P2 dynamics is the 
primary cilium (15–18). PI(4, 5)P2 in the plasma membrane of the ciliary pocket at the 
base of the cilium, which is a site of intense exo-endocytosis, helps regulate the turnover 
of cilia-related signaling proteins (15, 17, 19). Moreover, PI(4, 5)P2 is the precursor of 
the pool of PI4P generated in the ciliary shaft through dephosphorylation of PI(4, 5)P2 
by INPP5E, a polyphosphoinositide 5-phosphatase concentrated in the shaft of primary 
cilia. This PI4P pool has a critical role in cilia biology (17, 18, 20–23). Primary cilia are 
key players in the hedgehog signaling pathway which has a crucial importance in the 
nigrostriatal system (24–27). The importance of hedgehog signaling in the development 
of DA neurons is proven by the essential requirement of Sonic Hedgehog (Shh) for the 
differentiation of iPSCs into DA neurons (28, 29). Primary cilia of neurons are increasingly 
recognized as major signaling hub with a major impact on neuronal function. Interestingly, 
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disease-causing mutations in another PD gene, LRRK2 (PARK8) 
(30–34) interfere with ciliogenesis (26, 32, 35), suggesting a 
potential contribution of ciliary-related defects to PD pathology. 
While one effect of PD LRRK2 mutations is to impact DA neu-
rons indirectly, via an impairment of cilia-dependent hedgehog 
signaling in striatal cholinergic neurons (26, 35), additional direct 
effects of these mutations via an impairment of cilia in DA neurons 
cannot be excluded. These considerations raise the question of 
whether phenotypic manifestations of SJ1 impairment may 
include perturbations of ciliary functions and whether such per-
turbations may occur in DA neurons.

Here, we have used iPSC-derived DA neurons as a model system 
to address this question. We report that DA neurons with impaired 
SJ1 function have abnormally long cilia which display an ectopic 
accumulation of ubiquitinated proteins within them. The Cav1.3, 
a voltage-gated calcium channel, which is important for the rhyth-
mic pacemaking activity of DA neurons (36–39), is also abnor-
mally accumulated within them. Together, our results demonstrate 
a role of SJ1 in the dynamics of cilia of DA neurons and implicates 
this protein in the control of their signaling properties.

Results

Generation of WT and SJ1 Mutant iPSC-Derived DA Neurons. 
Human iPSCs (WTC11 line) were gene edited in house by 
CRISPR/Cas9 to delete expression of SJ1 (SJ1 KO). Correct editing 
was validated by PCR and the absence of SJ1 in KO cells was 
confirmed by western blotting (SI Appendix, Fig. S1 A and B). iPSCs 
(KOLF2.1 line) harboring the EOP RQ mutation at position 258 
(accession number: NM_003895) were obtained from the iPSC 
Neurodegeneration Initiative (iNDI) (40) and validated by PCR. 
SJ1 KO and SJ1RQKI iPSCs as well as their corresponding isogenic 
controls were differentiated either into cortical-like i3neurons or 
into DA neurons (SI Appendix, Fig. S1 C–G). To generate cortical-
like i3Neurons, we used the doxycycline-inducible neurogenin-2 
(NGN2)-driven differentiation protocol (41) as described in 
Fernandopulle et al. (42) which results in mature neuronal cultures 
within 15 to 19 d. For the generation of DA neurons, we used the 
procedure described by Kriks et  al. (28) and Bressan, Dhingra, 
Donato, and Heutink (43). This differentiation process is slower 
than the NGN2-driven neuronal differentiation (42–44). However, 
30 d from the beginning of differentiation, cells had acquired 
neuronal morphology with the formation of a complex network 
of processes (SI Appendix, Fig. S1 C and D). Moreover, western 
blotting and immunofluorescence of these cultures showed the 
expression of two key markers of DA neurons, tyrosine hydroxylase, 
and the dopamine transporter, in both the control and the two 
SJ1RQKI mutant lines (SI Appendix, Fig. S1 E–I).

iPSC-Derived SJ1 Mutant DA Neurons Display Abnormal 
Accumulation of Endocytic Factors in Nerve Terminals. A key 
and defining phenotype of SJ1 KO and SJ1RQKI neurons in situ and 
in primary cultures is a very robust and exaggerated accumulation 
in their nerve terminals of endocytic membrane intermediates and 
endocytic factors, including clathrin coat components and their 
accessory factors, with amphiphysin-2 being the most strikingly 
accumulated protein (13). To validate the use of iPSC-derived DA 
neurons as model systems to assess the impact of SJ1 mutations, we 
examined whether this phenotype was recapitulated in these cells.

At days 50 to 55 from the beginning of differentiation, SJ1 KO 
neurons, SJ1RQKI DA neurons, and their corresponding control 
neurons showed a similar and prominent punctate pattern of immu-
noreactivity for the synaptic vesicle marker synaptophysin, revealing 
abundant formation of synapses in all four conditions. However, a 

very strong and robust accumulation of puncta of amphiphysin-2 
immunoreactivity, which overlapped with synaptophysin immuno-
reactivity (Fig. 1 A–F), was observed in SJ1 KO and SJ1RQKI DA 
neurons, but not in control neurons, demonstrating that the accu-
mulation of endocytic factors typical of SJ1 KO neurons (13) is 
replicated in these iPSC-derived neurons. These accumulations were 
also seen when SJ1RQKI DA neurons were cocultured for 7 d with 
iPSC-derived medium spiny neurons (MSNs) from BrainXell (Fig. 1 
G–J) using a microfluidic compartmentalization device (eNuvio). In 
this device, DA neurons and MSNs are seeded in two distinct cham-
bers connected by narrow channels through which axons can grow. 
Large abnormal puncta of amphiphysin-2 immunoreactivity, which 
overlapped with puncta positive for synapsin, a marker of presynaptic 
nerve terminals (45), were observed in both chambers, with the 
puncta found in the MSN-containing chamber likely reflecting pri-
marily DA synapses on MSNs. We conclude that iPSC-derived DA 
neurons are good models to study SJ1 mutant phenotypes.

Presence of Primary Cilia in iPSC-Derived DA Neurons and 
Abnormal Ciliary Length in SJ1 KO and SJ1RQKI DA Neurons. Cilia 
brightly positive for the primary cilia marker Arl13b (46) were 
clearly visible in undifferentiated iPSCs, but no longer detectable 
after differentiation to cortical-like i3Neurons (Fig. 2 A and B). 
This is in agreement with the decrease of the levels of mRNAs 
encoding cilia-related proteins as detected by RNAseq during iPSC-
differentiation in i3Neurons (47). In contrast, the great majority 
of iPSC-derived DA neurons retained Arl13b-positive cilia (89.45 
± 1.68%; mean ± SEM), which were also positive for acetylated 
tubulin (a general cilia marker) and for adenylate cyclase type III 
(AC3), a marker specific of neuronal cilia (48, 49) (Fig. 2 C–E).

Cilia, as assessed by Arl13b, acetylated microtubules and AC3 
immunolabeling, were almost twofold longer in SJ1 KO neurons 
when compared to control neurons, while the percentage of 
cilia-forming cells was the same in both conditions (Fig. 3 A–F). 
Furthermore, abnormally shaped Arl13b-positive cilia were 
observed in SJ1 KO DA neurons with the presence of misshaped 
or branched cilia in a small proportion of SJ1 KO DA neurons, 
but not in their controls (SI Appendix, Fig. S2 A and B). 
Interestingly, such morphological defects were not observed in 
control and SJ1 KO iPSCs (SI Appendix, Fig. S3 A–C), suggesting 
specific roles for SJ1 in neurons.

We next analyzed presence of cilia in two different iPSC-derived 
clones of SJ1RQKI DA neurons (Fig. 4). While again there was no 
difference in the percentage of cilia-forming DA neurons relative 
to controls, the length of cilia was significantly longer in both clones 
in comparison to control (Fig. 4 A–E). We conclude that lack of a 
functional SJ1 affects some properties of cilia in DA neurons.

Accumulation of Cav1.3 in Cilia of SJ1RQKI DA Neurons. A special 
property of DA neurons is an intrinsic pacemaker function, whose 
activity is highly dependent on the L-type Cav1.2 and Cav1.3 voltage-
gated calcium channels (36–39). Interestingly, these channels, which 
are broadly localized throughout the surface of the cell bodies and 
dendrites of neurons (39) are also present in cilia or cilia-derived 
structures in several cell types, including cells of the retina and 
kidney (50–54). Prompted by this reported localization, we explored 
whether cilia of iPSC-derived DA neurons were labeled by anti-
Cav1.3 antibodies that had been validated in Cav1.3 knockout cells 
(55). While we did not detect Cav1.3 immunoreactivity in the ciliary 
shaft of control iPSC-derived DA neurons, we found that Cav1.3 
immunoreactivity displayed, as previously reported (50, 53), an 
accumulation at the base of their cilia, whose position was marked 
by γ-tubulin (Fig. 5 A and B). Strikingly, in SJ1RQKI DA neurons 
bright Cav1.3 fluorescence intensity was observed throughout the 
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Fig. 1.   SJ1 KO and SJ1RQKI iPSC-derived DA neurons show presynaptic clustering of amphiphysin-2. (A–D) Fluorescence images of control (A and C), SJ1 KO (B), 
and SJ1RQKI (D) DA neurons (days 50 to 55) immunolabeled with antibodies directed against amphiphysin-2 (green) and synaptophysin, a presynaptic marker, 
(magenta). SJ1 KO neurons and the corresponding controls are derived WTC11 iPSCs, while SJ1RQKI neurons and corresponding controls are derived from KOLF2.1 
iPSCs (Scale bar, 10 µm). High magnifications of boxed areas are shown below each panel (Scale bar, 5 µm). Note the striking enhancement of amphiphysin-2 
immunoreactivity that overlaps with synaptophysin-positive structures in SJ1 KO and SJ1RQKI DA neurons, relative to controls. (E and F) Quantification of 
amphiphysin-2 clustering intensities shown in (A–D), represented as mean ± SD, pooled from at least two independent experiments (n ≥ 10 cells per experiment). 
(G) Diagram showing a schematic view of iPSC-derived DA (day 55) and iPSC-derived MSNs (from Brainxell cells, day 7 post-thaw) cocultured in the microfluidic 
device. (H and I) Immunofluorescence images of amphiphysin-2 (green) and synapsin (magenta) immunoreactivities in the MSN containing chamber of neuronal 
cocultures generated with control (H) or SJ1RQKI DA neurons (I) (Scale bar, 10 µm). (J) Quantification of fluorescence intensity of amphiphysin-2 puncta in the MSN 
containing chamber (mean ± SD from two independent experiments; n ≥ 20 regions per experiment).
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Arl13b-positive ciliary shaft (Fig. 5 C–E). It seems plausible that 
Cav1.3 may be present also in cilia, but not at a level detectable by 
immunofluorescence, and that the partial defect of SJ1 function due 
to the PD mutation results in its impaired clearance from cilia. These 
findings suggest that in iPSC-derived SJRQKI DA neurons, cilia are 
not only abnormal in length but also in some functional properties. 
Assessment of calcium signaling properties using the Fluo-4 dye 
showed reduced spontaneous activity in SJ1RQKI DA neurons when 
compared to control DA neurons (Fig. 5 F–H, Control: Movie S1; 
SJ1RQKI: Movie S2).

Accumulation of Ubiquitinated Proteins in SJ1RQKI DA Neurons. 
A major mechanism underlying turnover of membrane protein 
in cilia is their ubiquitination, primarily via lysine 63–linked Ub 
(UbK63) linkage, as this process controls their exit from cilia to 
allow their endocytosis and targeting for degradation (16, 56, 
57). Thus, we investigated whether the presence of ubiquitin 
conjugates is higher in cilia using the well-characterized FK2 and 
FK1 monoclonal antibodies that label ubiquitin conjugates but 
not free ubiquitin (58) (Fig. 6). While no detectable FK2 and 
FK1 signal was observed in the cilia of control cells, a strong 
signal was present in cilia of SJ1RQKI DA neurons (Fig. 6 A–F 
and SI Appendix, Fig. S4A). This result reveals a link between SJ1 
function and the clearance of proteins from cilia in DA neurons. 
Explanations for the clearing defect may include an impairment of 
the ciliary exit pathway or of endocytic traffic at the base of cilia.

Concentration of SJ1 at the Base of Primary Cilia. The impact 
of SJ1 mutations on primary cilia could be explained by the 
indirect effect of an endocytic impairment throughout the 
neuronal surface or to the loss of a specific function in proximity 
of cilia. To gain insight into this question, we assessed the 
localization of SJ1 by immunofluorescence in iPSCs before 
and after differentiation into DA neurons. We found that one 
or two closely apposed bright spots of SJ1 immunoreactivity 
colocalized with γ-tubulin, a marker of centrioles, were present 
in undifferentiated iPSCs and control DA neurons (Fig. 7 A and 
B). This staining at the base of cilia, was lost in SJ1 KO iPSCs 
and SJ1 KO DA neurons (Fig. 7 C and D). The localization of 
SJ1 at centrioles supports a role of SJ1 in cilia as it could serve 
as a mechanism to generate a focal high concentration of the 
protein in their proximity.

A frequently used model for the analysis of cilia is the RPE1 
cell line, in which serum starvation for 48 h robustly induces 
ciliogenesis (Fig. 8A) (59, 60). Upon expression of either 
mCherry-SJ1-145 or GFP-tagged SJ1-170 (the short and long 
forms of SJ1, respectively, Fig. 8 B and C) in these cells, bright 
spots of mCherry and GFP fluorescence were observed at the base 
of primary cilia. Coexpression in these cells of mCherry-SJ1-145 
with another phosphoinositide phosphatases, the 5-phosphatase 
INPP5E (GFP-INPP5E), a known component of the cilia shaft 
(20, 21) confirmed the specific and selective localization of SJ1 at 
the cilia base (Fig. 8B).
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Fig. 2.   iPSC-derived DA neurons have primary cilia. (A–C) Fluorescence images of undifferentiated iPSCs (A), i3Neurons (day 19, B), and iPSC-derived DA neurons 
(day 30, D) (all from KOLF2.1 iPSCs) immunolabeled with antibodies directed against acetylated α-tubulin (green) and Arl13b (magenta) (Scale bar, 10 μm). High-
magnification images of the boxed areas in (A–C) are shown on the Right (Scale bar, 2 µm). iPSCs have primary cilia but cilia are no longer present in i3Neurons, 
while they are still present in DA neurons. (D) Fluorescence images of DA neurons immunolabeled with antibodies against γ-tubulin (green) and the neuronal-
specific primary cilia marker, adenylate cyclase type III (AC3, magenta), confirming the neuronal properties of these neurons. (E) Percentage of cells with cilia 
(mean ± SEM) from three independent experiments; n ≥ 20 cells per experiment).
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Discussion

Our study shows that impairment of SJ1 function in human iPSC-
derived DA neurons has an impact on the properties of their 
primary cilia, in addition to the well-established disrupting effect 
on presynaptic vesicle traffic. Both the lack of SJ1 and the selective 
loss of its 4-phosphatase activity due to the EOP patient mutation 
(SJ1RQ) lead to increased cilia length in these cells. Further analysis 
of cilia in SJ1RQKI iPSC-derived DA neurons revealed abnormal 
protein localization in them, as exemplified by the accumulation 
of the Cav1.3 channel and of ubiquitin chains throughout the 
ciliary shaft. Given the increasingly appreciated importance of 
primary cilia in neuronal signaling, it is plausible that a defect in 

ciliary function may contribute to the pathological manifestations 
resulting from the EOP SJ1 mutation.

Traffic of plasma membrane proteins and lipids in and out of cilia 
is controlled by a diffusion barrier in which PI4P (which is the pre-
dominant phosphoinositide in the ciliary shaft) and PI(4, 5)P2 (which 
is the predominant phosphoinositide in the ciliary pocket) play an 
important role (16–18, 61). Impairment of SJ1 function may disrupt 
the function of the diffusion barrier between the two compartments 
by perturbing the physiological concentration and relative ratio of 
PI4P and PI(4, 5)P2. Alternatively, or in addition, SJ1 may help con-
trol membrane protein clearing from cilia indirectly via its function 
in the endocytic pathway (9) after the exit of these proteins from cilia 
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Fig. 3.   Abnormal ciliary length in SJ1 KO iPSC-derived DA neurons relative to control iPSC-derived DA neurons. (A–D) Fluorescence images of control (A and B) 
and SJ1 KO (C and D) DA neurons (day 30) immunolabeled with antibodies against acetylated α-tubulin (green), Arl13b (magenta) or γ-tubulin (green) and the 
neuronal-specific primary cilia marker, AC3 (magenta) (Scale bar, 10 µm). High magnification of the boxed areas in (A–D) are shown on the Right of each panel 
(Scale bar, 2 µm). (E and F) Percentage of ciliated cells (E) and cilia length (F) of control and SJ1 KO DA neurons represented as mean ± SD (data pooled from three 
independent experiments; n ≥ 10 cells per experiment).
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(62, 63). While SJ1 appears to have a primary role in the shedding 
of endocytic factors after endocytosis (61), its loss-of-function, as 
shown by studies of nerve terminals, has shown to result in a backup 
of endocytic traffic with a partial stranding in the plasma membrane 
of proteins and membrane that needs to be internalized. As we have 
now shown that a pool of SJ1 is concentrated at the ciliary base, a 

special function of this protein in the overall ciliary membrane turn-
over due to endocytosis is still plausible.

Protein ubiquitination plays an important role in controlling 
protein turn-over in cilia, as a key regulatory mechanism for the 
exit of proteins from cilia is their ubiquitination (19, 56, 64). 
Thus, increased cilia length and abnormal accumulation of 
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Fig. 4.   Abnormal ciliary length also in iPSC-derived SJ1RQKI iPSC-derived DA neurons. (A–D) Fluorescence images of control (A) and SJ1RQKI (B and C) DA neurons 
(day 30) derived from two KOLF2.1 iPSC clones immunolabeled with antibodies directed against acetylated α-tubulin (green) and Arl13b (magenta) (Scale bar, 
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and SJ1RQKI DA neurons represented as mean ± SEM (from three independent experiments in which control neurons were grown in parallel with either mutant 
clone or both clones) (n ≥ 10 cells per experiment). (E) Ciliary length of the same control and SJ1RQKI DA neurons used for panel D represented (mean ± SD)  
n ≥ 10 cells per experiment.
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ubiquitinated proteins in cilia may be related and due to defective 
protein clearance from these cellular protrusions. The BBSome, a 
protein complex localized at cilia (65), is implicated in this clear-
ance, and mutations in BBSome components perturb ciliary 
length (66–69). Interestingly, the BBSome components BBS7 and 
BBS9, as well as other proteins involved in centrosome/ciliary 
function, were hits in a proximity-labeling screen for SJ1 neigh-
bors (70) suggesting a potential functional interplay between the 
BBsome and SJ1 in such clearing.

How SJ1 becomes concentrated at the base of cilia remain 
unclear. This localization is unlikely to be explained by its con-
centration on endocytic membranes in the ciliary pocket, since 
the localization of SJ1 closely overlaps with the localization of 
γ-tubulin even when the two centrioles are clearly physically sep-
arated, pointing to a concentration around the two centrioles 
rather than on endocytic vesicles. As the pericentriolar material is 
enriched in actin and actin regulatory proteins (62, 71–73), SJ1 
may be recruited to these sites by interactions of its C-terminal 
proline-rich domain with actin-regulatory proteins (7). We suggest 

that low affinity binding to proteins that surround the centrioles 
may serve to create a high local concentration of SJ1, thus facili-
tating its action at endocytic events that takes place at these sites. 
We note that another inositol 5-phosphatase implicated in endo-
cytic traffic was shown to be concentrated on centrioles at the base 
of cilia and impact cilia length, although with conflicting results 
about cilia length (74–76), with longer cilia in Rbaibi et al. (75).

A role in primary cilia dynamics in PD pathogenesis has 
been previously suggested (24, 26, 77). In particular, at least 
some effects of the PD gene LRRK2 have been attributed to a 
role of this protein in cilia, based on studies in cell lines and 
mouse brain tissue (26, 32, 35). PD mutations in LRRK2 
resulted in shorter rather than longer cilia as we have shown 
here for SJ1 mutations. However, it remains possible that some 
shared aspects of ciliary function may be disrupted by both PD 
LRRK2 mutations and the EOP SJ1 mutation, in spite of the 
different effect on cilia morphology. Moreover, studies of 
LRRK2 and cilia have focused on striatal cells, i.e., targets of 
dopaminergic innervation, while here we have focused on DA 
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neurons. An additional role of LRRK2 mutations on cilia of 
DA neurons cannot be excluded.

Whether and how the abnormal features of cilia of SJ1 mutant 
DA neurons impact their function will require further investigations. 
Ca2+ oscillations in primary cilia independent of somatic Ca2+ levels 
have been detected in several cell types and attributed to ciliary cal-
cium channel activation, suggesting that cilia could function as an 
autonomous Ca2+ signaling hub in response to external stimuli (54, 
78–80). In this context, the striking accumulation of Cav1.3 proteins 
in the cilia of SJ1RQKI DA neurons is of special interest as it raises 
the possibility that Ca2+ signaling in these cilia may be altered, with 
repercussion on cell physiology.

SJ1 KO mice, which die perinatally, do not display obvious 
brain developmental defects at birth. Likewise, developmental 
defects are not observed in mice and humans with the EOP muta-
tion. Thus, the impact of SJ1 on cilia function must be more subtle 
than the one of other proteins whose mutations results in major 
such defects, collectively referred to as ciliopathies (81). Similar 
considerations were made for LRRK2 mutations (26) and OCRL 
mutation (75).

In conclusion, our study reveals a role of SJ1 in primary cilia 
of DA neurons and raises the possibility that perturbation of such 
a role by the EOP mutation may contribute to the pathological 
manifestations produced by this mutation.
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Materials and Method

Antibodies and Plasmids. mCherry-synaptojanin-145 (neuronal isoform, 
UniProt entry: O43426-2), GFP-synaptojanin-1-170 (non-neuronal isoform, 
UniProt entry: O43426), and GFP-INPP5E were previously generated in the De 
Camilli lab. Each construct was validated by DNA sequencing. All antibodies used 
in this study are listed in SI Appendix, Table S1.

Human iPSC Culture, i3Neuron, and DA Differentiation. The fol-
lowing iPSC lines were obtained from the iNDI consortium and genome-edited 
by Jackson Laboratories (JAX): KOLF2.1, KOLF2.1 (with the NGN2 cassette at 
the AAVS locus; RRID:CVCL_D1KS), used for the i3Neurons experiments) and 
KOLF2.1 SJ1RQKI (R219Q): clones A09 and B02. The WTC11 (with the NGN2 
cassette at the AAVS locus) iPSC line, kind gift of M. Ward (NIH, Bethesda, MD) 
was used to generate SJ1 KO cells. For the maintenance of iPSCs in culture, iPSCs 
were cultured on Geltrex (Life Technologies) coated dishes and maintained in 
Essential 8 Flex media (Thermo Fisher Scientific). The Rho-kinase (ROCK) inhib-
itor Y-27632 (EMD Millipore, 10 μM) was added to Essential 8 Flex media on 

the first day of plating and replaced with fresh media without ROCK inhibitor 
on the following day.

For i3neuronal differentiation, iPSCs were differentiated into cortical-like 
i3Neurons according to a previously described protocol based on the doxycycline 
inducible expression of Ngn2 (42). Briefly, iPSCs were dissociated with Accutase 
(Thermo Fisher Scientific) and replated at a density between 1.5 and 3 × 105 cells 
on geltrex-coated dishes in induction medium [(KnockOut DMEM/F-12 (Thermo 
Fisher Scientific) containing 1% N2-supplement (Thermo Fisher Scientific), 1% 
MEM nonessential amino acids (Thermo Fisher Scientific), 1% GlutaMAX (Thermo 
Fisher Scientific), and 4 μg/mL doxycycline (Sigma-Aldrich)]. After 3 d, prediffer-
entiated i3Neurons were dispersed using Accutase and plated on 0.1 mg/mL 
poly-L-ornithine (Sigma-Aldrich) in borate buffer and 10 μg/mL laminin (Thermo 
Fisher Scientific) coated 35 mm glass-bottom dishes (MatTek) or 6-well plates 
(Corning) for imaging and immunoblotting, respectively. These i3Neurons were 
cultured and maintained in cortical medium (induction medium supplemented 
with 2% B27 (Thermo Fisher Scientific), 10 ng/mL BDNF (PeproTech), 10 ng/mL 
NT-3 (PeproTech), and 10 μg/mL laminin). Fresh cortical media were added to 
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Fig.  7.   Presence of a pool of SJ1 at the 
ciliary base of iPSCs and iPSC-derived DA 
neurons. (A and B) Fluorescence images of 
control (A) iPSCs and (B) iPSC-derived DA 
neurons immunolabeled with antibodies 
directed against γ-tubulin (green) and SJ1 
(magenta) showing overlap of spots of SJ1 
immunoreactivity in control but not in SJ1 KO 
cells. (C and D) Fluorescence image of SJ1 KO 
iPSCs and iPSC-derived SJ1 KO DA neurons 
(day 30) immunolabeled with antibodies 
against Arl13b (green) and SJ1 (magenta) 
showing lack of SJ1 staining at the base of 
cilia. High magnifications of boxed areas in 
(A–D) are shown at Right. (Scale bar, 10 µm; 
cropped areas: 2 µm).
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the existing media every 5 d. The iPSCs and i3Neurons were kept at 37 °C with 
5% CO2 in an enclosed incubator. A detailed protocol can be found at h​​​​ttp​s:/​/ww​
w.p​rot​oco​ls.​io/​vie​w/c​ult​uri​ng-i3n​eur​ons​-ba​sic​-pr​oto​col​​-6-​n92​ld3​kbn​g5b​/v1.

For the differentiation of iPSCs to DA neurons, we used the following proto-
cols described in Kriks et al. (28) and Bressan, Dhingra, Donato, and Heutink 
(43). Briefly, iPSCs were dissociated with Accutase (Thermo Fisher Scientific) and 
replated at a density of 8 × 105 cells per well (of a 6-well plate) on geltrex-
coated dishes in Essential 8 Flex media with Rock inhibitor. On the next day 
(Day 0 of differentiation), the media was replaced with knockout serum replace-
ment (KSR) media containing 500 nM LDN193189 (STEMCELL Technologies) 
and 10 μM SB431542 (STEMCELL Technologies). KSR medium is composed 
of Knockout DMEM/F12 medium, 15% Knockout serum replacement (Thermo 
Fisher Scientific), 1% MEM NEAA, 1% glutaMAX, 0.1% 2-mercaptopethanol 
(Thermo Fisher Scientific) and 0.2% penicillin-streptomycin (Thermo Fisher 
Scientific). Starting the following day (day 1) 75% of the differentiation medium 
was replaced with a new medium each day from day 1 to day 15, then every 2 d  
until day 20. For days 1 to 4, KSR medium containing 500 nM LDN193189, 
10 μM SB431542, 200 ng/mL SHH C25II (R&D Systems), 2 μM Purmorphamine 
(Cayman Chemical Company), and 100 ng/mL FGF-8b (PeproTech) was added 
daily, supplemented by the addition of 4 μM CHIR99021 on days 3 and 4. For 
days 5 and 6, a mixture of 75% KSR + 25% N2 medium also containing 500 nM 
LDN193189, 10 μM SB431542, 200 ng/mL SHH C25II (R&D Systems), 2 μM 
Purmorphamine (Cayman Chemical Company), 100 ng/mL FGF-8b (PeproTech), 
and 4 μM CHIR99021 (Tocris) was added to the cells followed by equal amounts of 
KSR and N2 media on days 7 to 8, and 25% KSR + 75% N2 media on days 9 to 10 
also containing 500 nM LDN193189, 10 μM SB431542, 200 ng/mL SHH C25II, 
and 4 μM CHIR99021. The N2 medium is composed of Neurobasal Plus media 
(Thermo Fisher Scientific), 2% B27 supplement without vitamin A (Thermo Fisher 

Scientific), 1% N2 supplement, 1% glutaMAX, and 0.2% penicillin-streptomycin. 
For days 11 to 20, complete NB/B27 medium was added to cells, with the addi-
tion of 4 μM CHIR99021 on days 11 and 12 only. Complete NB/B27 medium 
is composed of N2 medium (without the N2 supplement) and the following 
components: 20 ng/mL BDNF (PeproTech), 0.2 mM ascorbic acid (Sigma-Aldrich), 
20 ng/mL GDNF (PeproTech), 0.5 mM db-cAMP (Sigma-Aldrich), 1 ng/mL TGFβ3 
(R&D Systems), and 10 μM DAPT (Cayman Chemical Company). After 20 d of 
culture, DA progenitors cells were frozen in Synth-a-freeze cryopreservation media 
(Thermo Fisher Scientific) and stored at −80 °C or liquid nitrogen.

For long-term culture of DA neurons, cells were replated on 0.1 mg/mL 
poly-L-ornithine in PBS (Sigma-Aldrich) and 10 μg/mL laminin (Thermo Fisher 
Scientific) coated 35 mm glass-bottom dishes (MatTek) or 6-well plates (Corning) 
for imaging and immunoblotting, respectively. These neurons were cultured 
and maintained in complete NB/B27 medium followed by the addition of 0.1% 
antimitotic inhibitor (Supplement K, Brainxell) at day 25 to terminate division 
of non-neuronal cells. Fresh NB/B27 medium was added to the existing plates 
or dishes every 7 d and kept at 37 °C with 5% CO2 in an enclosed incubator. A 
detailed protocol can be found at 10.17504/protocols.io.dm6gp39m8vzp/v1.

CRISPR–Cas9 Mediated Generation of SJ1 KO iPSCs. A CRISPR-based 
homologous recombination strategy was used to generate the SJ1 KO iPSC line. 
Briefly, 1 × 105 WTC11-NGN2 iPSCs were plated on Geltrex-coated 6-well plate 
and transfected the following day using the Lipofectamine Stem transfection rea-
gent (Invitrogen) and 3 µg of px458 plasmid (RRID:Addgene_ 48138) containing 
a small guide RNA with the following sense (5′C CACCGTGGTTATTACGTCTTATGTG3′) 
and antisense (5′AAACCACATAAGACGTAATAACCAC3′) sequences that was designed 
to selectively target the Exon 5 of SJ1. Pooled (GFP-positive) cells were enriched 
by fluorescence activated cell sorting (FACS) 2 d later. Sorted cells were expanded 
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Fig. 8.   Exogenously expressed tagged-SJ1 labels the base of cilia. (A) Fluorescence image of RPE1 serum-starved for 48 h and immunolabeled with antibodies 
against γ-tubulin (green) and Arl13b (magenta) show primary cilia assemblies. (B) Live fluorescence image of serum-starved RPE1 cell expressing mCherry-
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with antibodies against γ-tubulin (green) showing overlap of the two proteins on a single perinuclear spot (boxed area 1). Boxed area 2 shows that while puncta 
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and then serially diluted to yield small clonal populations, screened using 
PCR amplification of genomic DNA flanking the sgRNA target site followed by 
sequencing of the amplicons using the following forward and reverse sequencing 
primers: 5′TCTCGTTTTATAGCCCTATCTTCTGATCC3′, 5′AAGGCCCATAAGTAACCAAGAA 
CAATC3′, respectively. A detailed protocol can be found at 10.17504/protocols.
io.36wgqnr33gk5/v1.

Cell Culture and Transfections. hTERT-RPE1 cells (RRID: CVCL_4388) 
were grown in DMEM/F12 (Thermo Fisher Scientific) supplemented with 10% FBS 
(Thermo Fisher Scientific), 1% glutaMAX and 1% penicillin-streptomycin. Cells were 
kept at 37 °C with 5% CO2 in an enclosed incubator. Cells were transfected with 
the relevant plasmids using 4 μL of Lipofectamine™ 2000 Transfection Reagent 
(Invitrogen). Four to six hours post-transfection the medium was changed to 
DMEM/F12 medium without FBS to induce ciliogenesis and examined at the micro-
scope 48 h later. For both i3Neuron and DA neuron transfections, plasmids were 
transfected with 4 μL of Lipofectamine™ Stem Transfection Reagent (Invitrogen) 
and visualized at least 48 h later. A detailed protocol can be found at 10.17504/
protocols.io.5qpvokx3bl4o/v1.

Immunofluorescence, Live Imaging, and Fluorescent Microscopy. 
Cells were seeded on glass-bottom mat-tek dishes (MATtek corporation). For 
immunofluorescence, cells were fixed with 4% (v/v) paraformaldehyde (Electron 
Microscopy Sciences) in 1x phosphate-buffered saline (PBS) for 20 min followed 
by three washes in PBS. Cells were permeabilized with 0.25 to 0.5% (v/v) Triton 
X-100 in PBS for 5 min followed by three washes in PBS. Cells were then incu-
bated with fresh 1 mg/mL sodium borohydride (Sigma-Aldrich) in PBS for 7 min to 
reduce autofluorescence and then washed thrice in PBS. They were further blocked 
for 30 min in 5% bovine serum albumin (BSA, Sigma-Aldrich) in PBS and then 
incubated overnight at 4 °C with the primary antibodies listed in SI Appendix, 
Table  S1. Subsequently, cells were washed with PBS thrice the following day 
and incubated with Alexa Fluor-conjugated secondary antibodies (Thermo Fisher 
Scientific) for 1 h at room temperature, followed by three washes in PBS. DAPI 
(Thermo Fisher Scientific) was used for nuclear staining.

For calcium imaging, cells were incubated with FLUO-4 (Thermo Fisher 
Scientific) at a final concentration of 1 μM for 15 min followed by 2 washes in 
neuronal media.

Transfections were carried out as described above. For live imaging, cells were 
maintained in Live Cell Imaging buffer (Life Technologies) for COS7 cells, while 
both i3Neurons and DA neurons were maintained in CM and NB/B27 media, 
respectively, in a caged incubator with humidified atmosphere (5% CO2) at 
37 °C. The Yokogawa spinning disk field scanning confocal system with micro-
lensing (CSU-W1 SoRa, Nikon) controlled by NIS elements (Nikon) software 
(RRID:SCR_014329) was used for neuronal imaging. Excitation wavelengths 
between 405 and 640 nm, CFI SR Plan ApoIR 60XC WI objective lens, and SoRa 
lens-switched light path at 1×, 2.8×, or 4× were used. SoRa images were decon-
volved using the Batch Deconvolution (Nikon) software. A detailed protocol can 
be found at 10.17504/protocols.io.5qpvokx3bl4o/v1.

Neuronal Coculture Device. Control or SJ1RQKI DA neurons (day 30) were 
replated on one side of the two-chamber microfluidic compartmentalization 
device (OMEGA4, eNuvio), where only axonal processes can migrate through the 
microfluidic channels connected to the adjacent chamber. After an additional 25 d 
in the coculture device, frozen iPSC-derived MSNs from Brainxell were plated on 
the other half of the device (where only the axons of DA neurons are present). 
The DA-MSN cocultures were then fixed 7 to 10 d later for immunofluorescence. 
A detailed protocol can be found at 10.17504/protocols.io.dm6gpze38lzp/v1.

Immunoblotting. i3Neurons, DA neurons, and MSNs were grown on six-well 
plates (3 to 5 × 105 cells/well). After differentiation in their respective maturation 
media, neurons were washed with ice-cold PBS and then lysed in 1xRIPA lysis buffer 
(10× RIPA lysis buffer, Sigma-Aldrich) supplemented with cOmplete™ EDTA-free 
protease inhibitor cocktail (Roche) and PhosSTOP phosphatase inhibitor cocktail 
(Roche), followed by centrifugation at 13,000 × g for 6 min. The supernatant was 
collected and incubated at 95 °C for 5 min in SDS sample buffer containing 1% 
2-mercaptoethanol (Sigma). The extracted proteins were separated by SDS-PAGE 
in Mini-PROTEAN TGX precast polyacrylamide gels (Bio-Rad) and transferred to 
nitrocellulose membranes (Bio-Rad) at 100 V for 1 h or 75 V for 2 h (for high molec-
ular weight proteins: >150 kDa). Subsequently, the nitrocellulose membranes 
were blocked for 1 h with 5% nonfat milk (AmericanBIO) in TBST (tris-buffered 
saline [TBS] + 0.1% tween 20), then incubated overnight at 4 °C with primary anti-
bodies and then incubated with IRDye 680RD or 800CW (LI-COR) secondary anti-
bodies (1:8,000) (RRID:AB_2716687; RRID:AB_2651128; RRID:AB_2814912; 
RRID:AB_10953628; RRID:AB_10956166; RRID:AB_10956590) for 1 h at room 
temperature in TBST. Finally, blots were imaged using the Gel Doc imaging system 
(Bio-Rad) using the manufacturer’s protocols. A detailed protocol can be found 
at 10.17504/protocols.io.3byl49eqjgo5/v1.

Statistical Analysis. Quantification of ciliary ubiquitination and Cav1.3 levels 
were carried out according to Shinde, Nager, and Nachury (56). Briefly, total fluo-
rescence intensity of ubiquitin or Cav1.3 levels at individual Arl13b-positive cil-
ium were subtracted from background ubiquitin or Cav1.3 fluorescence measured 
in the adjacent area. The methods for statistical analysis and sizes of the samples 
(n) are specified in the results section or figure legends for all quantitative data. 
Student’s t test or Mann–Whitney test was used when comparing two datasets. 
Differences were accepted as significant for P < 0.05. Prism version 9 (GraphPad 
Software) (RRID:SCR_002798) was used to plot, analyze, and represent the data.

Data, Materials, and Software Availability. Files for quantification and data 
analysis are available at DOI: https://doi.org/10.5281/zenodo.10797935 (82). 
All other data are included in the manuscript and/or supporting information.
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