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Significance

The apolipoprotein B messenger 
RNA (mRNA) editing enzyme, 
catalytic polypeptide (APOBEC) 
family comprises cytidine 
deaminases with diverse roles in 
human immunity. These 
deaminases alter DNA or RNA 
nucleotides that affect human 
physiology, antibody 
diversification, and innate 
immunity. APOBEC2, however, 
had neither a defined role nor an 
established molecular function. 
We uncover a unique role for 
APOBEC2 in transcriptional 
regulation. We show that it binds 
specific motifs within gene 
promoters, and at the same time, 
it interacts with the histone 
deacetylase complex, which is 
involved in transcriptional 
repression through histone 
modification. Because the genes 
that are repressed are involved 
in the specification of non- muscle 
cell fates, our work suggests that 
APOBEC2 plays a role in cell fate 
specification.
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The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) 
family is composed of nucleic acid editors with roles ranging from antibody diversi-
fication to RNA editing. APOBEC2, a member of this family with an evolutionarily 
conserved nucleic acid–binding cytidine deaminase domain, has neither an established 
substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 
is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molec-
ular functions of the APOBEC family, such as RNA editing, DNA demethylation, and 
DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occu-
pied a specific motif within promoter regions; its removal from those regions resulted 
in transcriptional changes. Mechanistically, these changes reflect the direct interaction 
of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. 
We also found that APOBEC2 could bind DNA directly, in a sequence- specific fashion, 
suggesting that it functions as a recruiter of HDAC to specific genes whose promoters 
it occupies. These genes are normally suppressed during muscle cell differentiation, and 
their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our 
results reveal a unique role for APOBEC2 within the APOBEC family.

APOBEC family | transcriptional regulator | DNA binding | muscle differentiation | safeguard factor

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) 
proteins are zinc- dependent deaminases that catalyze the removal of the amino group 
from a cytidine base in the context of a polynucleotide chain, resulting in cytidine (C) to 
uridine (U) transition on DNA or RNA. Members of the APOBEC family are closely 
related to one another based on homology and conservation of the cytidine deaminase 
domain containing a zinc- dependent deaminase sequence motif (1). However, they differ 
by tissue- specific expression, substrates, and biological functions (reviewed in ref. 2). 
Physiologically this deaminase family alters the informational content encoded in the 
genome through a range of processes: editing messenger RNA (mRNA) to affect transla
tion, e.g., APOBEC1 (3, 4), mutating DNA to create novel gene variants, restrict viruses 
and retrotransposons, e.g., AICDA (AID) and APOBEC3 (reviewed in ref. 5) and, chang
ing DNA 5mC modification levels to modulate transcript abundance, e.g., AID (6, 7).

APOBEC2 is an evolutionarily conserved member of the APOBEC family. It retains 
the characteristic conserved cytidine deaminase domain and together with AID is under 
strong purifying selection (8, 9). Substantial evidence highlights the biological relevance 
of APOBEC2. In mice, APOBEC2 is highly expressed in cardiac and skeletal muscle 
where it affects muscle development (10, 11). Specifically, in the absence of APOBEC2, 
there is a shift from fast to slow muscle fiber formation, a reduction in muscle mass, and 
a mild myopathy with age (12). In zebrafish, APOBEC2 has also been implicated in 
skeletal muscle and cardiac muscle physiology (13) and in retina and optic axon regener
ation (14). In frogs, APOBEC2 is important in left–right axis specification during early 
embryogenesis (15). Mutations and gene expression changes of APOBEC2 have also been 
linked to cancer development (16–18).

Even though there is evidence for a biological role of APOBEC2, there are few insights 
to the molecular mechanism by which APOBEC2 accomplishes these. Moreover, there has 
been no definite demonstration of its activity as a cytidine deaminase. Based on its homology 
with the other APOBEC family members, it is hypothesized that APOBEC2 may be 
involved in RNA editing (11, 18) or DNA demethylation (14, 19, 20). Alternatively, 
APOBEC2 may have lost its deaminase activity altogether and may act biologically by a 
different mechanism (21). However, the direct molecular substrate, if it exists, for APOBEC2 
remains to be identified.
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To address this, here, we performed knockdown studies of 
APOBEC2 during the differentiation of the C2C12 murine skeletal 
myoblast cell line to systematically characterize the transcriptome 
and DNA methylation patterns of APOBEC2- deficient C2C12 
cells. Our results confirm the requirement of APOBEC2 for myo
blast to myotube differentiation. While our results neither supported 
APOBEC2 roles on RNA editing nor on DNA methylation, we 
found that APOBEC2 reduction led to substantial gene expression 
changes affecting programs associated with myogenesis. Moreover, 
genomic occupancy experiments demonstrated that APOBEC2 
interacts with chromatin at promoters of transcriptionally regulated 
genes during myoblast differentiation. Notably, these APOBEC2-  
occupied target genes were not directly involved in muscle differen
tiation but were rather mostly transcriptional regulators of nonskel
etal muscle fates, e.g., immune cell differentiation. Finally, our 
findings indicating the direct binding of DNA by APOBEC2 and 

its interaction with Histone Deacetylase 1 (HDAC1) corepressor 
complexes at specific promoter regions provide the underlying mech
anism of its function to safeguard muscle cell fate.

Results

APOBEC2 Is Required for Myoblast to Myotube Differentiation. 
The initial motivation for this work came from the observation 
of the cross- section of tibialis anterior (TA) muscles from 10- wk- 
old APOBEC2- deficient, Apobec2−/−, (A2KO) mice which had 
increased incidence of centrally nucleated myofibers (Fig.  1 
A and B). Centrally nucleated fibers arise from activation of 
peripheral muscle satellite cells usually in response to injury 
(22). This phenotype may indicate disrupted or stalled muscle 
differentiation of the muscle satellite cells as these mice have not 
been experimentally injured. A similar phenotype was observed 
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Fig. 1.   APOBEC2 loss affected muscle homeostasis in vivo and muscle differentiation in vitro. (A) Staining of TA muscle cross- sections of age- matched wild- type 
and APOBEC2 KO (A2 KO) mice. Sections were stained with wheat germ agglutinin for cell membranes (WGA, gray) and DAPI for nuclei (red). (Scale bar, 200 µm.) 
(B) Quantification of the percentage of centrally nucleated fibers in WT and A2 KO TA cross- sections. Bar plots represent the mean and SD measured from seven 
animals per condition; *P < 0.05. (C) Western blot of cell lysates from C2C12 cell lines, GFP shRNA and A2 shRNA, at different timepoints of myoblast differentiation 
(day 0 to day 4). C2C12 myoblasts were transduced either with shRNA against GFP (GFP shRNA) or shRNA against APOBEC2 (A2 shRNA). MyHC, and TroponinT were 
used as markers of late differentiation; αTubulin, as loading control. (D) Immunostaining of C2C12 cell lines, GFP shRNA and A2 shRNA, at different timepoints 
of myoblast differentiation (day 0 to day 5). Samples were stained using an antibody specific to MyHC (red) and DAPI (cyan). (Scale bar, 50 µm.) (E) Quantification 
of fusion indices of C2C12 cell lines, GFP shRNA and A2 shRNA, at different time points of myoblast differentiation (day 0 to day 5). Fusion index represents the 
ratio of multinucleated cells (≥2 nuclei). The line plot corresponds to the mean values of the fusion index at each time point from three replicates with six fields 
of view each; *P < 0.05. (F) C2C12 knockdown cell line (A2 shRNA) was transduced with retrovirus overexpressing APOBEC2 or empty vector control (+ empty: 
transduced with empty vector, +A2: with APOBEC2 vector, and +delA2 with truncated APOBEC2). Cells were collected 96 h posttransduction. Cell lysates were 
prepared and analyzed by western blot. Representative blot from three independent biological replicates. (G) Quantification of MyHC intensity from western 
blots. Corresponding points represent the ratio of MyHC to αTubulin mean intensity; each point was normalized to the corresponding empty control (+ empty) 
sample for each trial. Dot and whisker plots represent the mean (n = 3). Whiskers represent the SD; ns = P > 0.05; * = P < 0.05.
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in another APOBEC2 knockout mouse model; however, it was 
only evident in aged mice (12). We hypothesized that APOBEC2 
may have an undescribed molecular function in the maintenance 
of muscle homeostasis or muscle satellite cell quiescence.

To unravel this molecular function, we used the C2C12 myoblast 
cell line that was derived from mouse satellite cells (23, 24). These 
cells recapitulate the first steps of muscle differentiation in culture 
and upon differentiation induce APOBEC2 expression (15) (vali
dated in SI Appendix, Fig. S1 A and B). To explore the role of 
APOBEC2 during myogenesis, we reduced APOBEC2 protein 
levels with short hairpin RNA (shRNA) against APOBEC2 mRNA. 
APOBEC2 protein reduction coincided with decreased myoblast 
to myotube differentiation, evidenced by decreased protein levels 
of TroponinT and myosin heavy chain (MyHC) (Fig. 1C). At the 
cellular level, downregulation of APOBEC2 protein levels coincided 
with reduced myotube formation (Fig. 1 D and E). These observa
tions match those previously reported using mouse embryonic stem 
cell–derived myogenic precursors (25).

We then restored APOBEC2 protein in these knockdown cells 
through expression of a codon- switched shRNA- resistant version. 
APOBEC2 restoration led to an increase in MyHC protein levels 
(Fig. 1 F and G). This confirmed the essential and direct role of 
APOBEC2 in myoblast differentiation in vitro and provided a 
mechanism to the disrupted differentiation observed in the A2KO 
mouse models. Additionally, we produced truncated APOBEC2 
(residues 41 to 224 mouse APOBEC2), which lacks the amino-  
terminal (N- terminal) region of APOBEC2 (26), a flexible disor
dered region hypothesized to be involved in intermolecular inter
actions (27). Truncated APOBEC2 (delA2), was unable to restore 
MyHC protein levels (Fig. 1G). Interestingly, it localized exclusively 
in the cytoplasmic fraction of differentiated C2C12 myoblasts 
(SI Appendix, Fig. S1C), suggesting that nuclear localization of 
APOBEC2, mediated by its disordered N- terminal region, might 
be necessary for its role in muscle differentiation.

APOBEC2 Loss Led to Gene Expression Changes Related to Muscle 
Differentiation. To study how APOBEC2 loss leads to problems in 
C2C12 myoblast to myotube differentiation, we performed RNA 
sequencing (RNA- Seq) to compare the transcriptome dynamics of 
APOBEC2 knockdown and control cells during differentiation. 
We observed that reduced APOBEC2 levels led to substantial gene 
expression changes prior to differentiation (day 0) and early into 
myotube differentiation (days 1 and 2) (Fig. 2A and Dataset S1). 
Notably, genes with decreased expression across the timepoints were 
involved in muscle cell development and differentiation (Fig. 2B and 
Dataset S2). The genes with increased expression on the other hand 
were enriched for Gene Ontology (GO) terms related to nonskeletal 
muscle processes such as immune cell differentiation, myeloid and 
T cells, particularly at days 1 and 2 of differentiation (Fig. 2C and 
Dataset S2). The decreased expression of muscle differentiation–
related genes directly reflected the observed reduction in myoblast 
to myotube differentiation. However, the increase in nonmuscle 
genes was intriguing.

Though undetectable on an immunoblot (Fig. 1C), reduction 
of APOBEC2 mRNA levels prior to inducing differentiation, day 
0, affected the potential of C2C12 to differentiate into myotubes. 
Muscle- related genes were already at a lower mRNA level con
comitant with Apobec2 expression levels. Akap6 mRNA levels were 
already reduced at day 0 prior to reduction of genes involved in 
muscle differentiation, like Klf4, Sox11, Tnnt3, and Myh1 (Fig. 2 
A and D). Akap6 is directly involved in muscle homeostasis and 
differentiation (28, 29). Other such genes involved in muscle 
system processes were already decreased at day 0 (Dataset S2), 
potentially reflecting a perturbed myoblast cell fate.

At days 1 and 2, genes involved in nonskeletal muscle pathways 
showed increased expression (day 1 and 2, Fig. 2C). Among these 
genes are transcription factors, e.g., Gata3, Stat1, and Cebpa, that 
have roles in cell differentiation (Fig. 2 A and D) and genes like Id3 
which directly inhibits skeletal muscle differentiation and whose 
increased expression would explain decreased myotube formation 
(30). Additionally, genes involved in calcium homeostasis particu
larly in muscle, Pde1a and Akap6, also have disrupted mRNA levels 
(31, 32). The upregulation of spurious nonskeletal muscle programs 
at day 1 and day 2, and the reduction of muscle- related genes at day 
0 or steady- state could reflect a confused muscle cell identity (33).

We next wondered how reduction in APOBEC2 led to gene 
expression changes. Due to the conserved cytidine deaminase 
domain within the APOBEC family, APOBEC2 is posited to be 
an RNA editor (18) and has also been proposed to function as a 
DNA demethylase (20). Upon comparing the transcriptomes of 
the APOBEC2 knockdown and control C2C12 cells for instances 
of C- to- U RNA editing, using a previously validated pipeline (34), 
we could not identify C- to- U (or A- to- I) RNA editing events that 
were APOBEC2 dependent (SI Appendix, Fig. S2A). Similarly, 
using bisulfite sequencing, we were unable to observe significant 
methylation differences between the APOBEC2 knockdown and 
control C2C12 cells that could account for the gene expression 
changes (SI Appendix, Fig. S2 B and C). Altogether, these results 
strongly indicate that APOBEC2 is neither involved in RNA 
deamination nor DNA demethylation in differentiating muscle.

APOBEC2 Occupies Promoter Regions during Myoblast Differen
tiation. Cytidine deaminases of the APOBEC family can bind and 
mutate DNA either at gene bodies, e.g., exons of the immuno
globulin locus, as catalyzed by AID, reviewed in ref. 35 or at promoter 
regions, e.g., local hypermutations as catalyzed by APOBEC3 family 
members (reviewed in ref. 36). To assess whether APOBEC2 could 
also bind genomic DNA and affect transcription, we first determined 
the subcellular localization of APOBEC2 in muscle cells. APOBEC2 
was present in both the cytoplasm and nucleus of differentiated 
C2C12 myotubes (Fig. 3A and SI Appendix, Fig. S1C). Although 
a weak nuclear localization signal (NLS) was predicted by cNLS 
Mapper (37) (APOBEC2 residues 26 to 57, with a score of 3.7), 
APOBEC2 does not show NLS activity but is homogeneously 
distributed throughout the cell (38).

To then assess whether nuclear APOBEC2 could bind chroma
tin, we utilized sequential salt extraction based on the principle 
that loosely bound proteins would dissociate from chromatin at 
low salt concentration, while tightly bound ones would not (39). 
Using this technique, we found that a fraction of APOBEC2 
within differentiating C2C12 cells was bound to chromatin and 
washed off at higher salt concentrations (Fig. 3B). Interestingly, 
histone H4, a component of the nucleosome, dissociates com
pletely from DNA at 0.75 M NaCl, while APOBEC2 together 
with nuclear lamin B and beta- actin, components of the nuclear 
cytoskeleton, remained associated to the chromatin in up to 1.5 M 
NaCl. These data suggest a strong association of nuclear APOBEC2 
with chromatin and the nuclear cytoskeleton, with potential roles 
in transcriptional regulation (40).

To determine the location of bound APOBEC2 within chroma
tin, we performed chromatin immunoprecipitation- sequencing 
(ChIP- Seq) experiments, and calculated enrichment of APOBEC2 
at specific loci over input using MACS2 (41, 42). We performed 
each experiment in triplicate, and only peaks that were called in at 
least 2 out of three replicates were analyzed. Importantly, we queried 
APOBEC2 occupancy at two different time points, 14 and 34 h 
postdifferentiation, that precede the RNA- Seq time points, where 
we observed changes in gene expression and represent time points 
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blue for negative fold change; gray points fall above of P- adjusted cutoff. Broken lines represent the log2 FoldChange cutoff at ±0.6. (B and C) Gene ontology 
analysis (biological process) of genes with (B) increased expression, UP genes, or (C) decreased expression, DOWN genes due to Apobec2 knockdown prior to 
differentiation induction (day 0) and postdifferentiation induction (day 1 and day 2). The gene list was filtered, P- adjusted < 0.05 and absolute log2 fold change > 0.6,  
from the list of differentially expressed genes at each time point. Color gradient represents decreasing P- adjusted values; dot size represents increasing Gene 
Ratio. Analysis and plots were done using compareCluster function of clusterProfiler package. (D) Plots of normalized read counts (DESeq2) across timepoints 
(day 0, day 1, and day 2) of Apobec2 and selected differentially expressed genes. Individual points represent replicates, n = 3.
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of low and higher APOBEC2 protein abundance. Overall, the signal 
around peak summits of APOBEC2 was higher at 34 h vs. 14 h, 
reflecting an increase of APOBEC2 in chromatin and correlating 
to the increase in APOBEC2 expression levels (Fig. 3C). We then 
defined a list of APOBEC2 target sites by using the DiffBind R 
package (43), which compares the signal (ChIP- Seq read counts) at 
the called peaks between the time points. Of the 969 sites that had 
differential APOBEC2 occupancy (fdr ≤ 0.05), 964 had increasing 
signal at the 34 h time points (Fig. 3C and Dataset S3). The mean 
fold change increase across these sites was 1.5 (Fig. 3 D and E). 
Moreover, upon knockdown of APOBEC2, there was a decrease in 
signal at these sites with a mean fold change decrease of 0.39 
(Fig. 3E). The partial abolishment of APOBEC2 binding at these 
sites was due to the incomplete removal of APOBEC2 protein in 
the mRNA knockdown cells. We focused on these sites where signal 
increased as APOBEC2 protein levels increased with differentiation; 
suggesting that these sites were biologically relevant.

Annotating the APOBEC2 sites by genomic feature showed that 
for both time points most of the sites fall within promoters, defined 
as regions −5 kilobases (kb) to +2 kb around the TSS (Fig. 3F). This 

suggested that APOBEC2 might play a role in the transcriptional 
regulation of the genes linked to these promoters. Additionally, we 
did not observe APOBEC2- related DNA mutation at the occupied 
peaks, indicating that APOBEC2 was not a DNA mutator like 
other APOBEC family members (SI Appendix, Fig. S3).

Promoter- Bound APOBEC2 Affected Expression of Nonskeletal 
Muscle Genes. We next annotated the APOBEC2 sites to the 
nearest genes on the mouse genome (mm10 UCSC) transcript 
database to uncover which genes were potentially regulated by 
APOBEC2 during myoblast to myotube differentiation. Using 
gene ontology analysis, the APOBEC2 target genes were enriched 
for genes involved in muscle cell differentiation and, unexpectedly, 
hemopoiesis and myeloid cell differentiation (Fig.  4A and 
Dataset S4). Next, we determined whether APOBEC2 occupancy 
affected the expression of these specific cell differentiation target 
genes (Fig. 4B). Several APOBEC2 target muscle differentiation 
genes were differentially expressed when APOBEC2 was 
knocked down. Among them was Akap6, described earlier as a 
kinase involved in cytoskeletal rearrangements during muscle 
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differentiation with decreased expression in the steady- state (day 
0) APOBEC2 knockdown cells. This suggested that APOBEC2 
binding at Akap6 was consequential to its gene expression even 
though APOBEC2 occupancy was not at its promoter region. 
Interestingly, APOBEC2- occupied transcription factors involved 
in both muscle and nonmuscle cell fates. Several nonmuscle 
transcription factors showed increased expression with APOBEC2 
knockdown (e.g., Id3, Zc3h12a, Gli3, Meis2, and Sox4, genes 
involved in blood cell fates) suggesting a perturbed myogenic 

cell fate in the knockdown C2C12 cells. Notably, we found that 
APOBEC2- occupied promoter regions of the Sox4 and Id3 genes 
(known inhibitors of muscle differentiation) (44) suggesting a 
direct role for APOBEC2 in the transcriptional regulation of 
these genes (Fig. 4 B and C) as well as a potential mechanism for 
the upregulation of non- skeletal- muscle- related genetic pathways 
observed in the APOBEC2 knockdown C2C12 cells. We conclude 
that APOBEC2 acts as a transcriptional repressor to direct C2C12 
differentiation into the muscle lineage by repressing these specious 
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was taken from the APOBEC2 target sites, FDR < 0.05, annotated to the nearest gene (mm10 UCSC). Color gradient represents decreasing P- adjusted values; dot 
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and introns are annotated with lines and bars according to the mm10 genome assembly.
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gene networks related to other lineages—counteracting the known 
promiscuity of muscle identity transcription factor, Myod1 (45).

APOBEC2 Binds Directly to Single- Stranded DNA in a Sequence- 
Specific Manner. Thus far, the results suggest that APOBEC2 has 
a molecular role unique to the APOBEC family. While it does 
not have the capacity to modify nucleic acids (RNA or DNA) 
through deamination, we have shown that it was capable of 
binding chromatin to regulate transcription. This implies either 
that APOBEC2 interacts directly with DNA at promoter regions, 
or that it interacts with transcription regulators that do so, or both.

The members of the APOBEC family that bind to DNA have 
some local sequence preference with regard to sites they mutate but 
do not display rigorous sequence specificity akin to TF- binding 
sites (46). We used STREME motif enrichment analysis to deter
mine motifs enriched at the APOBEC2- binding sites at the target 
gene promoter regions (47). The top enriched motif found at 82% 
of the sites was a GC- rich motif (Fig. 5A), potentially recognized 
by the SP Specificity protein 1- like factors (SP)/Krüppel- like factor 
(KLF) transcription factor family (48). To assess whether APOBEC2 
is capable of binding DNA directly at those sites, we generated 
recombinant mouse APOBEC2 and asked whether it could bind 
this GC- rich SP/KLF motif in vitro (using an A- tract motif as a 
potential negative control). To measure binding we used microscale 
thermophoresis (MST), an in vitro method that measures the affin
ity of two potentially interacting molecules from changes in their 
movement, tracked through fluorescence shifts, in solution when 
heat is applied (49). As an additional control we used a variant of 
APOBEC2 with a point mutation on the catalytic pocket, E100A; 
the homologous mutation in AID (E58A) disrupts catalytic activity 
and binding (50). We labeled recombinant APOBEC2 with a flu
orescent tag, Cy5, and first measured shifts in fluorescence, 
ΔFnorm, for the wild- type protein in the presence of both motifs 
(SP/KLF and poly- A. While wild- type protein bound directly to 
both motifs (Fig. 5 B and C), APOBEC2 E100A showed no char
acteristic curve in the fluorescent shift, which indicated that the 
mutation abrogated the binding to either motif (Fig. 5 B and C). 
APOBEC2 bound the SP/KLF motif with 20- fold stronger affinity 
than the control poly- A motif, 926.48 ± 243.48 nM vs. 20,213 ± 
6,575.4 nM (Fig. 5D), suggesting that SP/KLF was indeed pre
ferred. The measured affinity, 0.9 µM, was within the range of 
estimated affinities for other APOBEC members for their known 
cognate ligands, e.g., 0.6 µM for APOBEC1 (51). These data 
demonstrate that APOBEC2 can bind DNA in a sequence- specific 
manner, in vitro and in vivo (ChIP- Seq), at promoter regions–a 
key characteristic of transcriptional regulators.

APOBEC2 Interacted with Corepressor Complexes In  Vivo. 
Binding of recombinant APOBEC2 to DNA suggested that it 
can bind directly to chromatin at promoter regions—but how 
would it repress transcription? We wondered whether, in  vivo, 
APOBEC2 recruited cofactors to promoter regions that would 
enforce transcriptional repression. To query such cofactors we used 
proximity- dependent protein biotinylation (BioID). After statistical 
curation we identified 124 proteins that were significantly more 
tagged by APOBEC2- BirA and/or BirA- APOBEC2 than GFP- 
BirA controls in C2C12 cells (Dataset S5). Functional annotation 
showed that many APOBEC2 neighboring proteins are related to 
cell membrane and cytoskeleton organization processes, in line 
with its high cytoplasmic abundance (Fig. 3A), but terms related 
to chromatin modification and histone deacetylation were also 
enriched (SI Appendix, Fig. S4A and Dataset S5). Of particular 
significance was the identification the HDAC1 and Chromodomain- 
helicase- DNA- binding protein 4 (CHD4), key components of 

Fig. 5.   APOBEC2 peaks at promoter regions were enriched for an SP/KLF 
motif. (A) APOBEC2 peaks found on promoters of target genes centered at the 
summit, ±200 bp, were used for motif discovery analysis, STREME (47). The 
identified GC- rich motif was matched to several SP/KLF transcription factor 
motifs, using the Tomtom motif comparison tool with HOCOMOCO v11 full 
database. Peaks were centrally enriched as plotted by Centrimo, line plot 
below motif logo. (B and C) Fluorescence shift plot from MST experiments 
measuring purified APOBEC2 binding to single- stranded DNA with an (B) SP/
KLF motif or (C) poly- A motif. Cy5- labeled APOBEC2 (blue) or APOBEC2 E100A 
mutant (E100A, red) was kept constant (50 nM) while the concentration of 
nonlabeled SP/KLF motif was titrated between 10 and 20,000 nM. Points 
and error bars represent the mean normalized fluorescence shift (ΔFNorm) 
and SD from three replicates. Curve fitting was done using the Kd model of 
the MO.Affinity Analysis v2.1 software. (D) Fraction- bound plot derived from 
fluorescence shift plots for APOBEC2 on the SP/KLF motif (blue) and poly- A 
motif (light blue) with calculated Kd values. The Kd was calculated using the 
MO.Affinity Analysis v2.1 software.

http://www.pnas.org/lookup/doi/10.1073/pnas.2312330121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2312330121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2312330121#supplementary-materials
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the nucleosome remodeling and histone deacetylation (NuRD) 
transcriptional corepressor complex 32, (Fig. 6A and SI Appendix, 
Fig. S4B). Using coimmunoprecipitation (co- IP), we validated that 
APOBEC2 interacts with HDAC1 and CHD4 in differentiated 
C2C12 myoblasts (Fig. 6B). Together with the observation that 
APOBEC2 interacts directly with chromatin, this suggests that 
APOBEC2 plays a role in gene regulation through epigenetic 
nucleosome modification with these transcriptional corepressor 
complexes.

Loss of APOBEC2 Led to Increased Histone Acetylation at the 
Promoter of Id3. Among the differentially expressed APOBEC2 
target genes, we decided to investigate the role of APOBEC2 
in Id3 regulation as it inhibits muscle differentiation and is 
involved in the differentiation of other cell fates. Moreover, the 
APOBEC2 binds the Id3 promoter and contains an SP/KLF- 
motif, suggesting that the DNA binding we measured in vitro is 
of biological relevance. To assess APOBEC2 occupancy on the 
Id3 promoter we expressed FLAG- tagged APOBEC2 in C2C12 
myoblasts and performed ChIP (using a ChIP- grade anti- FLAG 
antibody). Knowing that most APOBEC2 is cytoplasmic, and to 
increase the ChIP signal, we attached a NLS to APOBEC2 for 
comparison. We also included its E100A variant as a negative 
control. Using ChIP- qPCR we confirmed that APOBEC2 binds 
to the Id3 promoter containing the SP/KLF motif (Fig.  7B). 
Moreover, APOBEC2 binding to the Id3 promoter was increased 
with NLS- APOBEC2 as would be expected from a protein that 
interacts with chromatin at promoters. And finally, the non- 
DNA- binding E100A had a lower signal, which validated what 
we observed in  vitro through MST. These observations were 

similar at other SP/KLF containing APOBEC2 target genes (e.g., 
Id2 and Stat1).

Finally, we directly assessed the biological relevance of the inter
action between APOBEC2 and the HDAC corepressor complex 
through measuring histone 3 lysine 27 acetylation (H3K27ac) 
levels at APOBEC2 target genes. Using qPCR, we measured an 
increase in H3K27ac signal at sites flanking the APOBEC2- binding 
site on the Id3 gene (Fig. 7C). This provided direct evidence that 
APOBEC2 binding leads to transcriptional regulation of Id3 
through histone deacetylation. H3K27ac levels were also moder
ately affected at other APOBEC2 target sites on Id2 and Stat1. 
Our results suggest a direct role for APOBEC2 in transcriptional 
regulation, mediated by the NuRD corepressor complex during 
C2C12 myoblast differentiation (SI Appendix, Fig. S5).

Discussion

There have been many hypothesized roles for the cytidine deaminase 
APOBEC2. Here, we show that the expression of APOBEC2 during 
myoblast differentiation has consequences on myotube formation 
owing to at least one unexpected molecular function: transcriptional 
control. We found that APOBEC2 loss leads to disrupted myoblast 
differentiation and concomitant gene expression changes. We show 
that these gene expression changes may come about through direct 
chromatin interaction of APOBEC2 at promoters—with no 
observed APOBEC2- related changes in RNA editing, DNA meth
ylation, or DNA mutation. We found instead that APOBEC2 is 
capable of directly binding DNA within specific motifs, and directly 
interacting with corepressor complexes. Together, these interactions 
provide a mechanistic view on how APOBEC2 can act as a tran
scriptional regulator of muscle differentiation.

The deaminase domain of APOBEC2 appears to have lost cat
alytic activity (55, 56). However, we show that it has retained its 
ability to bind nucleic acids similar to how other APOBEC pro
teins bind their nucleic acid substrates (57). Demonstrating that 
APOBEC2 interacts with chromatin through DNA binding is 
unreported for other members of the APOBEC family. Prior work 
has linked APOBEC2 overexpression to RNA editing of specific 
transcripts as observed in the healthy livers of transgenic mice 
which develop hepatocellular carcinoma (18). Notably, RNA edit
ing was only detectable in the liver at specific transcripts of the 
mice. However, based on our transcriptome analysis, we were 
unable to find evidence of such RNA editing in myoblast differ
entiation. Prior work has also reported mild effects of APOBEC2 
on DNA methylation specifically at the Myog promoter (25); yet 
from our ChIP- Seq data, we do not find promoter occupancy of 
the Myog gene. Furthermore, there are conflicting data on the role 
of the APOBEC family in active DNA demethylation, and 
APOBEC2- dependent demethylation has not been found in other 
cellular contexts (58, 59). A role in transcriptional regulation, such 
as we propose, would explain these prior findings as indirect effects 
of disrupted cell differentiation and identity due to dysregulated 
transcriptional programs.

Previous studies suggested that recombinant APOBEC2 is inca
pable of binding DNA (55, 56). Our experiments using recombi
nant protein produced in eukaryotic cells show that APOBEC2 was 
capable of binding DNA with comparable affinity to other APOBEC 
members. Interestingly, zebrafish homologs of APOBEC2, Apobec2a 
and 2b, have been shown to increase binding of the transcription 
factor POU6F2 to an OCT1 motif, although APOBEC2 itself was 
not shown to bind to the motif (21). Together, our findings suggest 
that APOBEC2 might play both a direct and indirect role in tran
scriptional regulation through directly binding DNA or altering 
transcriptional regulator affinity for cognate motifs.
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Fig. 6.   APOBEC2 recruits the HDAC1 cotranscriptional repressor complex. 
(A) Selected protein complex identified by APOBEC2 proximity- dependent 
protein biotinylation (BioID). Each red node corresponds to a protein that 
was identified by BioID mass spectrometry to interact with APOBEC2. CHD4 
was also identified in BioID data comparing APOBEC2 and AID in mouse B cells 
(52). The edges denote the known interactions of these proteins with each 
other (see SI Appendix, Fig. S4B for other complexes). (B) Co- IP of APOBEC2 
with HDAC1 and CHD4 in C2C12 myoblasts to myotubes, differentiation for  
4 d. Nuclear protein lysates (Input) treated with nuclease were incubated with 
beads conjugated to either APOBEC2 antibody (A2 IP) or IgG isotype control 
antibody (Ctrl IP). Ctrl and A2 flowthrough (FT) were also blotted. Proteins were 
then eluted, ran on an SDS- PAGE gel, and blotted with APOBEC2, HDAC1, or 
CHD4 antibodies.
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Uniquely among APOBEC family members, the aminoterminus 
of APOBEC2 contains a region that is glutamate- rich and intrin
sically disordered (27). We showed that deletion of this unstruc
tured domain resulted in the inability of the protein to rescue the 

knockdown phenotype likely through the loss of its nuclear reten
tion. Given the structural similarity of the cytidine deaminase 
domain of APOBEC2 to other single- domain APOBEC family 
members, detrimental changes to the folding of the deaminase 
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Fig. 7.   Histone H3 lysine 27 acetylation at sites proximal to APOBEC2 target sites was decreased with APOBEC2 knockdown. (A) APOBEC2 ChIP- Seq tracks at 
specified genes from early differentiating C2C12 myoblasts, 14 h and 34 h, and the APOBEC2 knockdown C2C12 myoblast (snap from Integrative Genomics Viewer, 
IGV). ChIP tracks are represented as line plots of normalized read counts of triplicates, range: 0 to 2. H3K27ac ChIP tracks were taken from an experiment with 
C2C12 myoblasts (GEO: GSE76010) (53) accessed using ChIP- Atlas: SRX1482272 (54). DiffBind and representative peak calls are marked by bars. Gene exons and 
introns are annotated with lines and bars according to the mm10 genome assembly. (B) Stable C212 cell lines were generated using viral transduction introducing 
distinct variants of APOBEC2 with N- terminal FLAG tags. The variants included FLAG.A2, representing wild- type mouse APOBEC2; FLAG.NLS.A2, featuring an 
additional N- terminal NLS (SV40 large T antigen); and FLAG.E100A, a mutant APOBEC2 variant characterized by compromised DNA- binding affinity. An empty, 
vector only, was used as a negative control. The bar plots are from a ChIP qPCR that represent the enrichment of APOBEC2 binding on the sequences of genes 
previously identified as APOBEC2 target sites with the anti- APOBEC2 ChIP. ChIP was done with anti- FLAG antibody on C2C12 cells differentiated for 34 h (n = 3  
independent replicates). An anti- rabbit isotype antibody was used as a negative control. Data were normalized to a genomic region outside the target site. 
Significance, denoted by asterisks (*), reflects adjusted P- values below 0.05, as determined through a two- way ANOVA with corrections for multiple comparisons 
using Tukey's method, ns, not significant. The data passed the normality distribution test, specifically the Shapiro–Wilks test. (C) Barplots represent the enrichment 
of H3K27ac from a ChIP experiment, measured by qPCR. ChIP was performed on the APOBEC2 knockdown (shA2) and control (shGFP) C2C12 cell lines (n = 3  
independent replicates). The primers for the qPCR were designed to amplify proximal H3K27ac (shown in Fig. 3A). A negative control region outside of the APOBEC2 
target site and without H3K27ac was the negative control. Significance, denoted by asterisks (*), corresponds to adjusted P- values below 0.05, determined 
through a two- way ANOVA with corrections for multiple comparisons utilizing Tukey's method. The data passed a normality distribution test (Shapiro–Wilks).
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domain by deletion of this disordered accessory domain would be 
unlikely. Moreover, similarly truncated APOBEC2 shows proper 
folding in a crystal structure (26). It is likely that the deletion led 
to disruption of APOBEC2 intramolecular interactions as previ
ously hypothesized (27). Proteins with similar disordered domains 
form liquid phase separated membrane- less compartments though 
inter-  and intramolecular interactions mediated by this accessory 
domain (60). Interestingly, such disordered domains are also found 
in transcriptional regulators (61). It is interesting to speculate that 
the disordered domain of APOBEC2 also mediates its role in tran
scriptional regulation through intramolecular interactions in 
phase- separated transcriptional compartments.

Moreover, our protein interaction experiments revealed that 
APOBEC2 protein directly interacts with the HDAC1 and 
CHD4 containing NuRD corepressor complex. This provides a 
direct epigenetic mechanism through deacetylation for the regu
lation of APOBEC2- occupied genes. Interestingly, the NuRD 
corepressor complex is involved in fate determination between 
skeletal or cardiac muscle (62). Moreover, CHD4 has a direct role 
in cell fate maintenance during skeletal muscle regeneration, 
which links epigenetic regulation to the disrupted muscle pheno
type observed in the APOBEC2 knockout mice (63). Our data 
showed that APOBEC2 occupies genes related to nonskeletal 
muscle though APOBEC2 reduction did not significantly alter 
their expression. Perhaps in a less skeletal muscle committed cell, 
one might observe strong upregulation of these genes with 
APOBEC2 reduction. This implies that APOBEC2 might serve 
a role in the differentiation of other cellular fates (e.g., T cells, 
where it is also highly expressed).

Broadly speaking, given the specificity of APOBEC2 expression 
in muscle cells, both skeletal and cardiac, and the evidence for its 
role as a transcriptional regulator, we hypothesize that APOBEC2 
acts as a modulator of muscle differentiation through repression 
of nonmuscle programs. We showed that APOBEC2 in differen
tiating skeletal myoblasts occupies non- skeletal- muscle- related 
genes. The occupied genes were involved in myocardial or immune 
cell differentiation, which are different fates of the mesodermal 
germ layer. Interestingly, the muscle- specific pioneer transcription 
factor MYOD1 has been shown to bind and activate lineage pro
grams outside the muscle lineage; however, this is mitigated by 
corepressors (45). Perhaps APOBEC2 plays a role in the modu
lation of the promiscuous binding of MYOD1 during skeletal 
muscle differentiation through recruitment of NuRD corepressor 
complexes at nonskeletal muscle targets. A similar role has been 
defined for MYT1L in neuronal differentiation, where MYT1L 
acts as a safeguard of the neuronal fate through repression of 
non- neuronal cell fates (64).

The finding that APOBEC2 has a direct role in transcriptional 
control impacts how we interpret the phenotypes that have been 
attributed to it in the mouse knockout models and other bio
logical systems, well beyond muscle differentiation—for exam
ple, zebrafish retina and optic nerve regeneration, Xenopus 
embryo development, and cancer development (14, 15, 18). In 
the zebrafish models, APOBEC2 loss leads to similar defective 
muscle phenotypes, but it is deemed essential in the retinal 
regeneration model—where cellular reprogramming is a key step 
(14). Perhaps our observation of increased centrally nucleated 
fibers in the uninjured APOBEC2 knockout mice was indicative 
of premature activation of muscle satellite cells, which was also 
a proposed mechanism for the accelerated but faulty differenti
ation of mouse primary myoblasts (65). Directly or indirectly, 
these prior observations likely relate to aberrant transcriptional 
programs, normally regulated in the context of tissue develop
ment or cell differentiation by APOBEC2 transcriptional 

control. Taken together, our data demonstrate that APOBEC2 
functions as a transcriptional repressor that modulates specific 
transcriptional programs during cell differentiation.

In the context of the APOBEC family of deaminases and their 
molecular evolution, ancient APOBEC2 branches out from AID 
and the rest of the bona fide deaminases (8). APOBEC2 may 
have lost its ability to deaminate a nucleic acid substrate to pre
serve genetic stability due to its co- opted role as a transcriptional 
regulator. Its characteristic N- terminal flexible region may be a 
structural signpost to its role in transcriptional regulation. 
APOBEC2 is an APOBEC member without the ability to change 
genetic information, but it plays a role in the epigenetic regula
tion of cell fate.

Materials and Methods

Datasets. High- throughput sequencing datasets are all found in GSE117732 
and more specifically RNA- Seq (GSE117730); ChIP- Seq (GSE117729); and 
ERRBS (GSE117731). Mass spectrometry data for BioID performed in Flp- In 
293 T- REx cells have been deposited in MassIVE under ID (to be submitted by 
the JMDN group).

RNA Expression Analysis. Library preparation and sequencing were done 
by Rockefeller University Genomics Resource Center (https://www.rockefeller.
edu/genomics/) using the TruSeq Stranded mRNA Sample Prep kit as per the 
manufacturer’s instruction. Libraries were sequenced with 50 bp paired- read 
sequencing on the HiSeq2500 (Illumina). Paired- end read alignments and 
gene expression analysis were performed with the Bioinformatics Resource 
Center at Rockefeller University. Paired- end reads were aligned to mm10 
genome using the subjunc function in the Bioconductor Rsubread package 
(66). For analysis of differential expression, transcript quantifications were 
performed using Salmon (67). Gene expression changes were identified at a 
cutoff of padj < 0.05 in DESeq2 (68). Annotation files used were BSgenome.
Mmusculus.UCSC.mm10 (v1.4.0); org.Mm.db (v3.5.0); and TxDb.Mmusculus.
UCSC.mm10.knownGene.gtf.gz (v3.4.0). ClusterProfiler/enrichGO (v4.0.5) 
(69) was used for gene ontology overrepresentation analysis, GO biological 
processes.

APOBEC2- Deficient Mice. APOBEC2- deficient (Apobec2−/−, APOBEC2 KO) 
mice were provided by Lawrence Chan (Baylor College of Medicine, Houston, 
TX). The strain carries a null mutation of Apobec2 due to a neo cassette insertion 
into exon 2. The strain of origin was 129P2/OlaHsd and fully backcrossed into 
C57BL/6. All mice were bred and maintained at the Rockefeller University Animal 
Care Facility and in accordance with the Rockefeller University Animal Care and 
Use Committee.

Muscle Tissue Cryosection, Staining, and Image Analysis. Frozen and opti-
mal cutting temperature compound (OCT)- embedded TA muscles from 10- wk- old 
mice were cut to 10 µm thick cross- sections, air- dried, and stained with Wheat 
Germ Agglutinin, Alexa Fluor 488 Conjugate (1 μg/mL), and DAPI (1 μg/mL). For 
each TA muscle cross- section, three nonoverlapping sections (close to the muscle 
center) were acquired and quantified with ImageJ macros.

Detailed methods on all other molecular and cellular experiments reported 
herein are available in SI Appendix, Materials and Methods section.

Data, Materials, and Software Availability. High throughput sequencing 
datasets, RNA- Seq, ChIP- Seq, ERRBS, and Mass spectrometry data have been 
deposited in GEO (GSE117732 (70), GSE117730 (71), GSE117729 (72), and 
GSE117731 (73) and MassIVE (MSV000094388, https://doi.org/10.25345/
C58K75735) (74)). All other data are included in the manuscript and/or  
supporting information.
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