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ABSTRACT
Globally, phytonematodes cause significant crop losses. Understanding the functions
played by the plant rhizosphere soil microbiome during phytonematodes infection is
crucial. This study examined the distribution of phytonematodes in the paddy fields
of five provinces in Thailand, as well as determining the keystone microbial taxa in
response to environmental factors that could be considered in the development of
efficient biocontrol tactics in agriculture. The results demonstrated that Meloidogyne
graminicola and Hirschmanniella spp. were the major and dominant phytonematodes
distributed across the paddy fields of Thailand. Soil parameters (total P, Cu, Mg,
and Zn) were the important factors affecting the abundance of both nematodes.
Illumina next-generation sequencing demonstrated that the levels of bacterial diversity
among all locations were not significantly different. TheAcidobacteriota, Proteobacteria,
Firmicutes, Actinobacteriota,Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota,
Gemmatimonadota, and Desulfobacterota were the most abundant bacterial phyla
observed at all sites. The number of classes of the Acidobacteriae, Clostridia, Bacilli,
and Bacteroidia influenced the proportions of Hirschmanniella spp., Tylenchorhynchus
spp., and free-living nematodes in the sampling dirt, whereas the number of classes
of the Polyangia and Actinobacteria affected the amounts of Pratylenchus spp. in both
roots and soils. Soil organicmatter, N, andMnwere themain factors that influenced the
structure of the bacterial community. Correlations among rhizosphere microbiota, soil
nematodes, and soil properties will be informative data in considering phytonematode
management in a rice production system.

Subjects Agricultural Science, Biodiversity, Environmental Sciences, Microbiology, Plant Science
Keywords Plant-parasitic nematode, Oryza sativa L., Metagenome, Bacteriome

INTRODUCTION
Presently, a major challenge for agro-industrial operations is identifying the way to secure
food for the world’s citizens, which at its current rate of increase is estimated to reach nearly

How to cite this article Nimnoi P, Pirankham P, Srimuang K, Ruanpanun P. 2024. Insights into soil nematode diversity and bacterial
community of Thai jasmine rice rhizosphere from different paddy fields in Thailand. PeerJ 12:e17289 http://doi.org/10.7717/peerj.17289

https://peerj.com
mailto:pornthip.r@ku.th
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17289
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.17289


10 billion. While global food demand is expected to double by 2050, as the availability
and quality of natural resources that support agricultural practices continue to diminish,
their scarcity and degradation will become more pronounced (United Nations, 2022). Rice,
as a staple nourishment, holds significant importance as a global food for humankind
and is extensively traded and captivated in over 110 countries globally (Corrêa et al.,
2007; Gnamkoulamba et al., 2018; Musarrat et al., 2016). In recent years, the virulence of
phytonematodes has increased due to the changing climate. This has caused worsening
losses in rice production (Mantelin, Bellafiore & Kyndt, 2017). Parasitic nematodes of rice
can adapt well and survive in flooded and irrigated conditions (Fernandez, Cabasan &
De Waele, 2014; Win et al., 2013). Among the nematodes known as pathogens of rice,
only 29 species have caused considerable yield losses (Bridge, Plowright & Peng, 2005).
Criconema spp., Dolichodorus spp., Helicotylenchus spp., Heterodera spp., Hirschmanniella
spp., Meloidogyne spp., Pratylenchus spp., Scutellonema spp., Tylenchorhynchus spp.,
and Xiphinema spp. have been predominantly found in the rice rhizosphere and roots
(Gnamkoulamba et al., 2018; Musarrat et al., 2016; Shahabi et al., 2016). Damage levels in
both direct and indirect ways in rice caused by phytonematodes result in deferred plant
growth and maturation, stunting, yellowing, and grain yield loss that subsequently reduce
the income (Onkendi et al., 2014; Sharma Poudyal et al., 2005;Win, Kyi & De Waele, 2011).
Phytonematode infestations around the world create an estimated annual yield loss up to
USD 150 billion (Singh, Singh & Singh, 2015).

To cope with this problem, the relationship among phytonematodes, the microbial
community, and physiochemical soil characteristics is one promising and important way
to provide useful information for the implementation of an appropriate soil management
program to limit harmful nematodes to crops. Previous research demonstrated that
many physiochemical soil traits, such as pH, soil texture, soil elements, and organic
matter (OM), are correlated with the existence and density of nematodes, as well as with
bacterial diversity and bacterial community levels (Huang et al., 2020; Renčo, Gömöryová &
Čerevková, 2020; Zhou et al., 2019). Bacterial communities have been revealed to suppress
nematode infection with mechanisms that regulate nematode population densities (Zhou
et al., 2019). Although the impact of soil-borne nematodes on plant-associated microbial
communities has been theorized to play significant roles in plant development and yield
(Markalanda et al., 2022; Pieterse, De Jonge & Berendsen, 2016; Zhou et al., 2019), less is
understood about the specific relationships between phytonematodes and the microbiome
in root and of rice. Recently, in Vietnam, Masson et al. (2020) studied the microbiome of
infected and uninfected rice roots forMeloidogyne graminicola (rice root-knot nematode).
They revealed that M. graminicola infection results in the huge restructuring of bacterial
communities by influencing species richness and taxa abundance.

To our knowledge, no research has looked at the association between the phytonematode
population density and the rice root-associated bacteriome from the same rice cultivar
under different natural environmental conditions, especially in Thailand. Hence, this
study’s goals were to investigate the bacterial diversities and communities of the
rhizosphere soil from Thai Hom Mali rice (Oryza sativa L.) cv. Khao Dawk Mali 105
(KDML105) from five natural paddy fields in Thailand and to elucidate the relationships
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between phytonematode populations, root-associated bacterial communities, and soil
physicochemical factors. The massive data generation and the derived comprehensive
versatile knowledge may aid soil management as well as resource conservation in
agroecosystems of economic importance.

MATERIALS & METHODS
Soil sample collection
During September 2022, surveillance was conducted of the phytonematode distribution
in five notable paddy fields of KDML105 in tillering stage (45 to 55-day plant)
in Chachoengsao, CCS (13◦36′46.1′′N 101◦16′54.3′′E); Nakhon Nayok, NYK
(14◦16′25.4′′N101◦08′37.0′′E); Prachin Buri, PAR (14◦10′01.3′′N101◦35′23.1′′E); Pathum
Thani, PTT (14◦09′32.7′′N 100◦43′55.4′′E); and Phra Nakhon Si Ayutthaya, AYY
(14◦26′43.6′′N 100◦45′52.5′′E). In each field, three sampling areas were fixed randomly
to collect soil samples, depending on the field size. The sampling area measuring 20 ×
20 m was methodically subdivided into a grid pattern of 5 × 5 m mesh lines to facilitate
sample collection. In total, 16 subsamples of rice roots and their rhizosphere soils depth of
15 cm were collected from 16 points of the grid area, and then the soils were meticulously
combined to create a composite sampleweighing 10 kg, which aimed to represent the overall
soil composition throughout the study spot (Win, Kyi & De Waele, 2011). The samples were
carefully enclosed in individual plastic pouches, securely sealed, and promptly delivered
to the Agricultural Nematology and Microbiology Laboratory for investigation. The soil
samples were partitioned into three parts: 3 kg for nematode extraction, 5 kg were air-dried
for physical and chemical property analysis, and the last 2 kg were kept at 4 ◦C for assessing
the bacteriome.

Isolation and identification of nematodes
The bulk was extracted from rice root following the method described by Barillot et
al. (2013). A modified Baermann tray technique was used for extracting nematodes
from the bulk (Schindler, 1961). The rice roots were washed carefully under running
water to eliminate all traces of dirt particles, meticulously chopped into small pieces
(1–2 cm), and then blended in 0.8% NaOCl for 30 s. For 10 min, the mixes were left at
room temperature before applying a modified Baermann funnel method (Hooper, 1986).
Nematode suspensions derived from soil and root samples were obtained following a 48-h
incubation period and subsequently subjected to inspection using a stereomicroscope.
(Olympus SZ51; Tokyo, Japan). The nematodes without any stylets were identified as
free-living nematodes. The identification of phytonematodes was conducted at the genus
level through the analysis of morphological traits (Tarjan, Esser & Chang, 1977). The
body size, stylet length, and vulva position were measured using the CellSens imaging
software (V1.6) with an Olympus DP26 camera (Tokyo, Japan). Meloiodogyne species
were identified using the perineal pattern of adult females (Hunt & Handoo, 2009) and
species-specific primers (Mg-F3 5′-TTATCGCATCATTTTATTTG-3′ and Mg-R2 5′-
CGCTTTGTTAGAAAATGACCCT-3′) as described by Htay et al. (2016).
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Soil physical and chemical property analysis
Dried soil samples were passed through a sieve (2 mm and 10 mesh size). The pH and
electrical conductivity (Ec) were examined (Slavich & Petterson, 1993). Using a pipette-
based technique, the sample’s particle-size distribution was evaluated (Gee & Bauder,
1986). The amount of OM in the soil was measured (Walkley & Black, 1934). The analysis
of the available N was conducted (Guebel, Nudel & Giulietti, 1991). The quantity of total
P was analyzed (Bray & Kurtz, 1945). The amounts of Ca, K, and Mg were estimated
(Del Castilho & Rix, 1993). Elements including, Cu, Fe, Mn, and Zn were also quantified
(Lindsay & Norvell, 1978).

DNA isolation and next generation sequencing
The rhizosphere soils were extracted using the standardized protocol as described byBarillot
et al. (2013). Total DNA extraction was performed on three duplicates of rhizosphere soils
from each location by aDNA soil extraction kit ofNucleoSpin (Macherey-Nagel, Germany).
The amplification of 16S rDNA was performed as follows Apprill et al. (2015) and Parada,
Needham & Fuhrman (2016). The PCR results were cleaned up by Vivantis gel extraction
kit (Vivantis, Malaysia). The amplified DNA libraries were created and determined using
Illumina-HiSeq2500 (Illumina, San Diego, CA, USA). Through parallel amplification and
sequencing, negative controls (reactions with sterile water) were performed.

Bioinformatics analyses
The FLASH program was employed to combine raw reads (Magoč & Salzberg, 2011). The
raw reads were screened by the QIIME program for high-quality sequences (Caporaso et al.,
2010). The UCHIME programwas employed for determination and elimination of chimera
(Haas et al., 2011). The Uparse program was applied to perform the clustering and species
annotation of operational taxonomic unit (OTU) (Edgar, 2013). The Mothur program was
performed to annotate bacterial species (Quast et al., 2013; Schloss et al., 2009). All OTUs
obtained from representative reads were analyzed phylogenetically using the MUSCLE tool
(Edgar, 2004).

Statistical determination
The beta and alpha diversity parameters as well as sequencing depth were computed with
theQIIMEprogram (Caporaso et al., 2010). The R programwas used to display the analyzed
data (R Core Team, 2013). For determination and reducing dimensionalities of data, the
PCoA and NMDS were used. The QIIME program was used to determine the similarity
between samples by the UPGMA method (Caporaso et al., 2010). The LEfSe analysis was
computed by the LEfSe program to discover high-dimensional biomarkers between samples
(Segata et al., 2011). The AMOVA and ANOSIM were computed to disclose the significant
differences between bacterial communities. The PAST programwas employed for canonical
correlation analysis (CCA) (Hammer, Harper & Ryan, 2001). TheANOVAwith Tukey’s test
was employed to signify the alpha diversity indices, phytonematodes, free-living nematodes,
and soil physicochemical parameters. Based on Spearman’s correlation, the relationships
between soil physicochemical factors and phytonematodes, free-living nematodes, and
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bacterial populations were clarified. The Spearman’s between-group analysis as well as
ANOVA were computed by the SPSS program (IBM, Armonk, NY, USA).

RESULTS
Diversity of soil nematodes associated with Oryza sativa L.
The diversity of phytonematodes and free-living nematodes was determined within the
rhizosphere soils and roots of the rice collected from five paddy fields of notable provinces
in Thailand (Table S1). Based on the morphological characteristics of extracted nematodes,
free-living nematodes, and phytonematodes comprised of Meloidogyne, Hirschmanniella,
Pratylenchus, Helicotylenchus, Tylenchorhynchus were found (Fig. 1). Identification of
Meloidogyne species, we found the perineal pattern of adult females was rounded, with
smooth striae and no lateral field. These perineal features were like the pattern described
by M. graminicola. Molecular method confirmation by using species-specific primer, the
expected size (∼369 bp) of the PCR product for M. graminicola was detected (Fig. S1).
Among all the rhizosphere soils, site PTT had the highest number of M. graminicola
(141.66 ± 38.10 nematodes/500 g soil), which was significantly different compared to
the other sites, followed by sites CCS, PAR, AYY, and NYK, respectively (Table 1). Site
PTT also had the highest number of Hirschmanniella spp. (22.00 ± 4.58 nematodes/500
g soil), which was significantly different compared to the other sites. Pratylenchus spp.
were found only at sites PAR (11.00 ± 3.60 nematodes/500 g soil) and NYK (4.66 ± 0.57
nematodes/500 g soil). Helicotylenchus spp. were found only at sites PTT and CCS, with
site PTT having a significantly higher number compared to site CCS. Sites CCS and NYK
were the only ones where Tylenchorhynchus spp. were identified; however, their numbers
did not differ from each other. The number of free-living nematodes was highest at site
AYY (117.66 ± 29.36 nematodes/500 g soil), which was a significant difference compared
to the other sites.

Besides the phytonematodes and free-living nematodes in the rhizosphere soils, we
also examined their presence within roots. The findings demonstrated that site CCS had
the most M. graminicola (3,280.00 ± 603.98 nematodes/3 g root), which was noticeably
different from the other sites, followed by sites AYY, PTT, PAR, and NYK, in that order,
respectively (Table 2). The number of Hirschmanniella spp. was highest at site AYY and
was not significantly different compared to the other sites. Pratylenchus spp. were found
at sites PAR (9.33 ± 2.51 nematodes/3 g root) and NYK (6.33 ± 3.05 nematodes/3 g
root). Helicotylenchus spp. and Tylenchorhynchus spp. were detected at the PTT and CCS
sites, respectively. The PAR site had the greatest density of free-living nematodes. This
study demonstrated that the rhizosphere of rice at PTT province was confronted with
severe epiphytotic levels ofM. graminicola, Hirschmanniella spp., and Helicotylenchus spp.,
whereas the greatest concern in regarding the distribution of free-living nematodes in the
rhizosphere soil was at AYY.

Soil parameters
The soil physicochemical parameters of each sampling site were characterized. All
observed locations, pH, and Ec values were in the ranges of 4.77–7.81 and 0.37–10.52
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Figure 1 Identification of nematodes obtained from roots and rhizosphere soils ofOryza sativa L. cv.
Khao DawkMali 105 based onmorphology. Second-stage juveniles ofM. graminicola (A), adult females
of Hirschmanniella (B), Pratylenchus (C), Helicotylenchus (D), Tylenchorhynchus (E), free-living nematodes
(F–G) and perineal pattern ofM. graminicola (I).

Full-size DOI: 10.7717/peerj.17289/fig-1

Table 1 Soil nematodes from rhizosphere collected from rice fields.

Sampling
site

No. of plant-parasitic nematode/500 g soil* No. of free-living
nematode/ 500 g soil*

M. graminicola Hirschmanniella
spp.

Pratylenchus
spp.

Helicotylenchus
spp.

Tylenchorhynchus
spp.

CCS 39.33± 15.04a** 7.33± 7.50a 0.00 9.66± 9.86a 5.00± 1.73a 39.66± 34.15a
NYK 18.00± 5.00a 4.33± 2.30a 4.66± 0.57a 0.00 4.66± 2.08a 26.33± 3.05a
PTT 141.66± 38.10b 22.00± 4.58b 0.00 46.33± 16.25b 0.00 51.33± 20.55a
AYY 34.00± 9.84a 9.00± 3.60a 0.00 0.00 0.00 117.66± 29.36b
PAR 36.00± 10.00a 9.33± 4.16ab 11.00± 3.60b 0.00 0.00 48.00± 9.00a

Notes.
*All values are represented as (mean±SD) based on triplicate samples.
**Values with the same letters in the column are not significantly different (P>0.05) according to Tukey’s test.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra
Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.
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Table 2 Soil nematodes in roots collected from rice fields.

Sampling site No. of plant-parasitic nematode/3g root* No. of free- living
nematode /3 g root*

M. graminicola Hirschmanniella
spp.

Pratylenchus
spp.

Helicotylenchus
spp.

Tylenchorhynchus
spp.

CCS 3,280.00± 603.98c** 6.00± 4.35a 0.00 0.00 10.00± 8.18a 0.00
NYK 38.66± 8.14a 13.00± 4.58a 6.33± 3.05a 0.00 0.00 3.33± 1.52a
PTT 307.66± 76.10a 10.00± 8.18a 0.00 6.66± 3.78a 0.00 4.00± 2.00a
AYY 1,846.00± 406.73b 14.33± 3.51a 0.00 0.00 0.00 0.00
PAR 116.00± 24.43a 11.66± 3.51a 9.33± 2.51a 0.00 0.00 16.66± 5.68b

Notes.
*All values are represented as (mean± SD) based on triplicate samples.
**Values with the same letters in the column are not significantly different (P > 0.05) according to Tukey’s test.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra
Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

ds/m, respectively (Table 3). Site AYY had the highest soil pH, whereas site PAR had
the lowest soil pH. The Ec value for site CCS was the highest, while the lowest was at
site NYK. Site AYY had the highest amounts of OM (4.41 ± 0.35%) and available N
(0.21 ± 0.01%), which were significantly different compared to the other sites, followed
by sites PTT, NYK, PAR, and CCS, respectively. The amounts of total P at each sampling
site differed significantly from each other. Site CCS had the highest concentration of total
K (235.93 ± 2.37 mg/kg), with both being significantly different compared to the other
sites. Total Ca (5301.19 ± 99.21 mg/kg) was significantly the highest at site AYY, whereas
it was significantly the lowest at site PAR (381.06± 27.27 mg/kg). Site PTT had the highest
amount of total Mg (674.91 ± 3.19 mg/kg), which was significantly different compared to
the other sites. Total Fe (379.33± 4.86 mg/kg) was significantly the highest at site PAR. The
amounts of total Mn at each sampling site differed significantly from each other. Site AYY
had the greatest amount of total Mn (61.78 ± 0.32 mg/kg), followed by sites PTT, PAR,
NYK, and CCS. Site PTT had the highest amounts of total Cu (46.12 ± 0.70 mg/kg) and
Zn (15.51 ± 0.86 mg/kg), which differed significantly from the other sites. The pH value
and amounts of OM, available N, total Ca, and Mn at site AYY were the greatest. While
concentrations of total P, Mg, Cu, and Zn at site PTT were highest. Site CCS presented the
highest Ec value and amount of total K. The amount of total Fe was significantly highest at
site PAR.

Sequence analysis, bacterial diversity, and richness indices
The bacterial diversity and richness of all sampling sites were determined. In total, 1,955,800
raw sequences were acquired from fifteen DNA samples (three replicates/field). Tag merge
and sequence quality control were performed to retrieve a total of 1,936,693 qualified tags
(99.20% of the raw reads). In total, 1,263,601 taxon tags were obtained after removing
the potential chimera tags. The tags with ≥97% resemblance were assigned to the same
OTU. In total, 16,338 OTUs were obtained from all sampling sites with 98.79 ± 0.00%
of Good’s coverage. Figure 2A displays the total tags, taxon tags, unclassified tags, unique
tags, and OTU numbers for each replicate. A Venn diagram (Fig. 2B) was used to present
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Table 3 Soil physicochemical properties from each sampling site.

Parameter Sampling site

CCS NYK PTT AYY PAR

pH 5.94 5.21 6.53 7.18 4.77
Electrical conductivity (ds m−1 ) 10.52 0.37 0.84 0.79 0.42
Sand (%) 59.20 47.17 6.00 11.10 35.61
Silt (%) 32.19 40.49 34.18 34.04 52.9
Clay (%) 8.61 12.34 59.82 54.87 11.48
Soil texture Sandy Loam Loam Clay Clay Silt Loam
Organic matter (%)* 0.51± 0.01a** 1.81± 0.26c 2.44± 0.49d 4.41± 0.35e 1.18± 0.25b
Available N (%)* 0.02± 0.00a 0.09± 0.00c 0.11± 0.00d 0.21± 0.01e 0.07± 0.00b
Total P (mg kg−1 )* 18.57± 0.23b 8.49± 0.43a 48.48± 0.41e 26.23± 0.27c 29.64± 0.15d
Total K (mg kg−1 )* 235.93± 2.37e 11.98± 0.69b 228.05± 2.35d 185.51± 0.34c 15.23± 0.11a
Total Ca (mg kg−1 )* 3,044.04± 64.14c 518.55± 33.28b 3,138.17± 31.85c 5,301.19± 99.21d 381.06± 27.27a
Total Mg (mg kg−1 )* 633.41± 28.11d 7.11± 0.12a 674.91± 3.19e 397.76± 3.35c 29.38± 0.60b
Total Fe (mg kg−1 )* 116.76± 0.30a 230.37± 27.88c 177.65± 0.57b 238.90± 4.18c 379.33± 4.86d
Total Mn (mg kg−1 )* 2.29± 0.07a 8.25± 0.33b 59.99± 1.18d 61.78± 0.32e 16.08± 0.38c
Total Cu (mg kg−1 )* 1.69± 0.01b 0.45± 0.01a 46.12± 0.70d 7.26± 0.08c 0.93± 0.04ab
Total Zn (mg kg−1 )* 0.81± 0.02a 0.70± 0.00a 15.51± 0.86c 2.07± 0.05b 0.72± 0.02a

Notes.
*All values are represented as (mean±SD) based on triplicate samples.
**Values with the same letters in the column are not significantly different (P > 0.05) according to Tukey’s test.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra
Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

the numbers of unique, common, and overlapping OTUs between sampling sites. This
diagram showed 1,659 OTUs presented across all sampling sites. The greatest number of
unique OTUs was found at site CCS (2,560), followed by sites PAR, AYY, PTT, and NYK,
in that order. Additional analysis investigated the number of observed species, diversity as
indicated by the Shannon-Weaver and Simpson indices, and richness as indicated using
Chao1 and ACE for each sampling site (Table 4). The results demonstrated that site CCS
presented the greatest number of observed species (5,260.00 ± 291.82), followed by sites
PAR, PTT, NYK, and AYY, respectively. The higher values for the Shannon-Weaver indice
implied greater bacterial diversity at site CCS, followed by sites PTT, AYY, PAR, and NYK,
respectively, though the values did not differ significantly between all sites. Furthermore,
the Chao1 and ACE values indicating bacterial richness illustrated that site CCS had the
highest amount of bacterial richness, followed by sites PAR, PTT, and NYK, respectively,
whereas site AYY had the lowest amount of bacterial richness. We found that site CCS had
the highest numbers of unique OTUs and observed species, and the greatest diversity and
richness of bacteria, whereas site NYK showed the lowest number of unique OTUs and the
least bacterial diversity. The least number of detected bacterial species and richness were
found at site AYY.

NGS and bacterial communities
In all sampling sites, the phylum Acidobacteriota was most abundant (10.18–36.26%),
followed by Proteobacteria (12.80–30.24%), Firmicutes (5.25–10.40%), Actinobacteriota
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Figure 2 Tags and OTU numbers of each sampling location (A) and Venn diagram presenting the
numbers of unique, common, and overlapping OTUs between each sampling site (B). CCS, sampling
from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from
Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from
Prachin Buri province.

Full-size DOI: 10.7717/peerj.17289/fig-2

(3.08–9.11%), Chloroflexi (4.27–9.01%), Myxococcota (2.12–8.84%), Verrucomicrobiota
(3.36–7.33%), Bacteroidota (1.64–5.63%), Gemmatimonadota (1.43–5.33%), and
Desulfobacterota (0.66–4.23%). Based on the biomarker analysis, the LDA score illustrated
statistically unique communities at each sampling site. As depicted in Fig. S2A, there were
differences in the bacterial community composition at each sampling site. The relative
abundance of the phyla Chloroflexi, Gemmatimonadota, and Bacteroidota exhibited a
statistically significantly increase at site PTT. The phyla Actinobacteriota and Cyanobacteria
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Table 4 Indices of bacterial richness and diversity of soil from each location.

Sampling site Observed species* Diversity indices* Richness indices*

Shanon-Weaver Simpson Chao1 ACE

CCS 5,260.00± 291.82b** 10.20± 0.32a 0.99± 0.00a 5,613.21± 414.84b 5,715.23± 408.28c
NYK 4,023.66± 411.68ba 9.68± 0.24a 0.99± 0.00a 4,378.77± 484.18ab 4,424.89± 466.56ab
PTT 4,205.66± 774.84ab 9.99± 0.54a 0.99± 0.00a 4,886.85± 569.25ab 5,024.60± 510.50abc
AYY 3,644.00± 472.95a 9.87± 0.31a 0.99± 0.00a 3,963.25± 516.43a 4,094.70± 493.20a
PAR 4,752.66± 260.34ab 9.82± 0.08a 0.99± 0.00a 5,318.71± 313.10b 5,438.49± 355.40bc

Notes.
*All values are represented as (mean± SD) based on triplicate samples.
**Values with the different letters in the column are significantly different (P ≤ 0.05) according to Tukey’s test.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra
Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

weremore abundant at site PAR,whereas theVerrucomicrobiotawere significantly abundant
at site NYK, and similarly, the Nitrospirota at site CCS and both the Myxococcota and
Desulfobacterotawere the significantly predominant phyla at site AYY. However, there were
also statistically distinguishable variations in the phyla among the samples. For example,
the variability of the phylum Edwardsbacteriawas shown to be statistically significant across
the sites PTT, AYY, and PAR. Similarly, the phylum Latescibacterota exhibited considerable
variability across the sites CCS, NYK, and PTT. The phylum Nitrospirota was variable
among all sites significantly (Fig. S2B). Moreover, evaluating the top-10 predominant
bacterial classes distributed in the soil at each sampling site (Table 5), site NYK had the
highest numbers of Acidobacteriae and Verrucomicrobiae, which differed significantly from
the other sites. The numbers of alpha-proteobacteria and Anaerolineae were highest at
sites CCS and PTT, respectively. The diversity of Bacilli and Bacteroidia was highest at site
PTT. Site AYY had the highest number of gamma-proteobacteria. Site PAR had the highest
numbers of Clostridia and Actinobacteria. Sites AYY and PTT had the highest numbers of
Polyangia, which differed significantly from other sites.

Heat map analysis was employed to determine more clearly the distribution at the
genus level, which contributed to the structure of the community at each sampling site
(Fig. 3). At site NYK, the more predominant genera were the Bryobacter, ADurb.Bin063-
1 (Verrucomicrobia bacterium), Candidatus_Soilbacter, Candidatus_Koribacter, and
Candidatus_Udaeobacter. The Bifidobacterium, WPS-2 (Eremiobacterota), WD2101
soil group (Planctomycetes), Acidibacter, Pseudomonas, Burkholderia, Caballeronia,
Paraburkholderia, Pantoea, Faecalibacterium, and Bacteroides were the predominant
genera at site PAR. The most abundant genera at site PTT were the Gemmatimoonas,
Sphingomonas, and Latescibacterota. Thioalkalispira-Sulfurivermis, Sporacetigenium,
Ellin6067 (beta-proteobacteria), Anaeromyxobacter, Mycoplasma, MND1, and Thiobacillus
were the common genera at site AYY. The A21b (uncultured bacterium), Subgroup_13
(Acidobacteria), Subgroup_2 (Acidobacteria), RCP2-54 (uncultured bacterium), and
Bacteriap25 (uncultured bacterium) were more abundant than other genus at site CCS.

The AMOVA results showed major variations in the structure of the community among
the sites (Fs = 14.22; P < 0.001). In addition, the inter- and inner-site variations in the
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Table 5 Top 10most abundance of bacterial classes presents in each observed location.

Sampling site Class*

Acidobacteriae gamma-proteobacteria alpha-proteobacteria Clostridia Verrucomicrobiae Bacilli Bacteroidia Anaerolineae Polyangia Actinobacteria

CCS 17.35± 1.42c 18.68± 2.84b 8.11± 0.42c 3.25± 0.64a 2.57± 0.24a 1.49± 0.16a 3.39± 0.71b 2.39± 0.57a 1.43± 0.15a 1.49± 0.38a

NYK 33.24± 4.00d 6.64± 0.39a 6.15± 0.03ab 4.71± 1.22a 7.19± 1.22c 3.35± 0.19a 1.47± 0.98a 1.31± 0.91a 1.41± 0.10a 2.96± 0.12ab

PTT 5.82± 0.42a 15.99± 3.58ab 7.09± 1.11bc 5.41± 0.48a 4.74± 0.24b 4.74± 0.81a 5.30± 0.71c 5.64± 0.49b 4.53± 0.58b 2.82± 0.96ab

AYY 4.76± 0.87a 24.30± 6.56b 4.50± 0.40a 5.66± 3.11a 4.83± 1.12b 4.63± 2.68a 4.64± 0.22bc 2.74± 0.94a 4.53± 0.85b 1.44± 0.73a

PAR 11.85± 0.88b 19.03± 4.05b 11.19± 0.84d 5.70± 1.24a 3.80± 0.45ab 3.50± 0.51a 4.03± 0.50bc 1.47± 0.12a 0.95±.011a 4.14± 0.90b

Notes.
*All values are represented as (mean± SD) based on triplicate samples.
**Values with the different letters in the column are significantly different (P ≤ 0.05) according to Tukey’s test.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province;
PAR, sampling from Prachin Buri province.
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Figure 3 Heat map analysis of distribution of genus in each sampling location. CCS, sampling from
Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum
Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin
Buri province.

Full-size DOI: 10.7717/peerj.17289/fig-3

bacterial community composition were measured using ANOSIM. The results showed that
the inter-site variations in the bacterial community composition were greater than the
inner-site variations (R= 1). The PCoA and NMDS analyses provided convincing evidence
of variations in the bacterial community composition across the different sampling sites
(Fig. 4). The bacterial community structures of sites PTT and AYY were closer to each
other. Furthermore, the beta diversity heat map representing an explicit comparison of
bacterial communities based on their composition confirmed that the bacterial community
composition of site PTT was most closely related to AYY at 0.183 (Fig. 5), whereas the
bacterial community composition of site AYY was the most dissimilar to site NYK (0.341),
followed by site PAR (0.338). These results were supported by the UPGMA dendrogram
(Fig. 6) that showed the relationships for the relative abundance of each sampling site at
the phylum level. The created dendrogram consisted of two main clusters. The first cluster
formed of sites PTT, AYY, and CCS, with sites PTT and AYY closer to each other but linked
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together with site CCS. The second cluster was composed of site NYK together with site
PAR.

Effect of environmental constituents on soil bacterial community and
nematode distribution
Regarding the influences of the soil physicochemical parameters on the soil bacterial
communities, the analysis presented that the soil pH was the most positively correlated
with the members of the Polyangia and most negatively correlated with the members of the
Acidobacteriae (Table S2). The Ec and total K content were the most positively correlated
with members of the Anaerolineae and the most negatively correlated with members of
the Verrucomicrobiae. The OM was the most positively correlated with members of the
Polyangia as well as the bacterial community and the most negatively correlated with
members of the alpha-proteobacteria. The available N was the most positively correlated
with the bacterial community and most negatively correlated with members of the alpha-
proteobacteria. Total P and Mn were the most positively correlated with members of the
Bacteroidia and the most negatively correlated with members of the Acidobacteriae. Total
Ca was the most positively correlated with members of Polyangia and the most negatively
correlated with members of the alpha-proteobacteria and Acidobacteriae. Total Mg was
the most positively correlated with members of the Anaerolineae and the most negatively
correlated with members of the Verrucomicrobiae. Total Fe was the most negatively
correlated with members of the Anaerolineae. Total Cu and Zn were the most positively
correlated with members of the Anaerolineae and the most negatively correlated with
members of the Acidobacteriae.

In addition, after evaluating the effect of the soil physicochemical parameters on
phytonematodes and free-living nematodes in the rhizosphere soils, soil pH was the most
positively correlated with free-living nematodes and the most negatively correlated with
Pratylenchus spp. (Table S2). The Ec was the most positively correlated withHelicotylenchus
spp. and the most negatively correlated with Pratylenchus spp. The OM and available N
were the most negatively correlated with Tylenchorhynchus spp. The total P was the
most positively correlated with Hirschmanniella spp. and the most negatively correlated
with Tylenchorhynchus spp. Total K and Mg were the most positively correlated with
Helicotylenchus spp. and the most negatively correlated with Pratylenchus spp. In contrast,
the total Fe was the most positively correlated with Pratylenchus spp. and the most
negatively correlated with Helicotylenchus spp., whereas total Ca was negatively correlated
with Pratylenchus spp. Total Mn was the most positively correlated with free-living
nematodes and the most negatively correlated with Tylenchorhynchus spp. Total Cu and Zn
were the most positively correlated withM. graminicola and the most negatively correlated
with Pratylenchus spp. The correlations between soil nematodes and the bacteriome were
investigated (Table S3). The results showed that Hirschmanniella spp. were the most
positively correlated with members of the Bacteroidia. Pratylenchus spp. were the most
positively correlated with members of the Actinobacteria and the most negatively correlated
with members of the Polyangia. Tylenchorhynchus spp. were the most negatively correlated
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Figure 4 PCoA (A) and NMDS (B) analyses bacterial composition similarity among sampling sites.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sam-
pling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sam-
pling from Prachin Buri province.

Full-size DOI: 10.7717/peerj.17289/fig-4
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Figure 5 Beta diversity heat map of the dissimilarity coefficient between each sample. CCS, sampling
from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from
Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from
Prachin Buri province.

Full-size DOI: 10.7717/peerj.17289/fig-5

Figure 6 The UPGMA dendrogram of relative abundance at phylum level from each sampling site.
CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sam-
pling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sam-
pling from Prachin Buri province.

Full-size DOI: 10.7717/peerj.17289/fig-6
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with members of the Clostridia and Bacilli. Free-living nematodes in soils were the most
negatively correlated with members of the Acidobacteriae.

The influences of the soil physicochemical parameters on phytonematodes and free-
living nematodes within roots were evaluated. The results showed that soil pH and
Ec were the most positively correlated with M. graminicola and the most negatively
correlated with Pratylenchus spp. The OM and total Mn were the most negatively
correlated with Tylenchorhynchus spp., whereas total P was the most positively correlated
with Helicotylenchus spp. The total contents of K, Ca, and Mg were the most positively
correlated with M. graminicola and the most negatively correlated with Pratylenchus spp.
Fe concentration was the most positively correlated with Pratylenchus spp. and the most
negatively correlated with Tylenchorhynchus spp. Total Cu and Zn were the most positively
correlated with Helicotylenchus spp. and the most negatively correlated with Pratylenchus
spp. The results of the correlations between nematodes within roots and the bacteriome are
provided in Table S3.M. graminicola was the most negatively correlated with the members
of the Actinobacteria. Pratylenchus spp. were the most positively correlated with members
of the Actinobacteria and the most negatively correlated with members of the Polyangia. In
addition, the CCS analysis showed that soil pH, Ec, total Ca, K, Mg, and Fe were factors
that affected the bacterial community composition and diversity of phytonematodes and
free-living nematodes in the rhizosphere and roots of rice (Fig. S3).

DISCUSSION
Rice is a globally significant agricultural crop cultivated on a massive scale (Gnamkoulamba
et al., 2018). Phytonematodes are one of the barriers to improved rice production. Even
though over 4,100 species of phytonematodes have been reported, including endo-
and ecto-parasites (Decraemer & Hunt, 2006), a mere 29 species have been identified
as having a direct correlation with yield reductions in rice production (Bridge, Plowright
& Peng, 2005). The occurrence of nematode attacks has the potential to facilitate the
infection process of other pathogens (De Waele & Elsen, 2007). Herein, we surveyed and
collected rice-associated nematodes from notable paddy fields. Our results demonstrated
that the most prevalent genera of phytonematodes associated with rice agriculture in
various agroecological zones of Thailand included M. graminicola, Hirschmanniella spp.,
Pratylenchus spp.,Helicotylenchus spp., and Tylenchorhynchus spp. Notably,M. graminicola
and Hirschmanniella spp. had their highest density in soil collected from site PTT. In
addition, they were both predominant within roots collected from sites CCS and AYY,
while the amounts of free-living nematodes in the soil and roots were highest at sites
AYY and PAR. Pascual et al. (2014) investigated the widespread presence of nematodes in
rice fields in Luzon, the Philippines. They reported that Helicotylenchus, Hirschmanniella,
Meloidogyne, Criconema, Xiphinema, Pratylenchus, and Tylenchorhynchus were the more
prevalent and abundant genera. The main phytonematodes found in Togo’s rice fields were
found in the generaMeloidogyne, Suctellonema, Heterodera, Hirschmanniella, Pratylenchus,
and Helicotylenchus (Coyne et al., 2000). Gnamkoulamba et al. (2018) recorded the genera
Helicotylenchus, Hirschmanniella, Meloidogyne, and Suctellonema were in both soil and
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root samples of rice in different agroecosystems in Togo. According to our findings, M.
graminicola and Hirschmanniella spp. were reported as the dominant group of nematodes
more frequently found within the soils and roots of rice (Bridge, Plowright & Peng, 2005;
Eche et al., 2013), with M. graminicola being documented as being highly adapted to
flooded environments, leading to better survival in soil environments (Bridge, Plowright
& Peng, 2005). Musarrat et al. (2016) found these nematodes in a rice-growing area in
Pakistan. The present study detected free-living nematodes in rice roots. This was not
surprising, as nematode-fungal pathogen disease complexes have been reported in general
with nematode infection. Some species of free-living nematodes are fungivores, which
have feeding dispositions on fungi, including fugal plant pathogens, so they can invade
plant roots to obtain food (Zhang et al., 2020). Different factors affect the distribution of
nematodes, such as the production system, rice variety, intercropping with other crops,
and rainfall (Gnamkoulamba et al., 2018). However, the high levels of nematode density
and diversity observed in the present study suggest that rice cultivation in Thailand is
being confronted with severe endo- and epi-phytotic nematodes. These results could be
attributed to the escalating intensification of rice cultivation in Thailand.

The activity of soil-dwelling organisms is influenced by physicochemical soil qualities,
whereas the establishment of a nematode population in the soil is influenced by a range
of abiotic and biotic factors (Al-Ghamdi, 2021). De Oliveira Cardoso et al. (2012) reported
that the physicochemical properties of soil had an impact on the density and structural
diversity of nematode communities. Our findings demonstrated that the soil at site PTT
had the highest numbers ofM. graminicola,Hirschmanniella spp., andHelicotylenchus spp.,
contained the significantly highest concentrations of total P, Mg, Cu, and Zn. The rice
roots at site AYY had the highest number of Hirschmanniella spp. and had the significantly
highest levels of soil OM, available N, total Ca, Mn, and pH. Rice roots at site CCS had
the significantly highest number of M. graminicola also had the highest soil Ec value
and total K content. These results suggested that the establishment of infection by M.
graminicola could be significantly associated with soil parameters, including Ec and the
levels of total K, P, Mg, Cu, and Zn. Many soil factors (including the quantity of OM,
levels of available N, total Ca and Mn, and pH) could support infection by Helicotylenchus
spp. These findings appeared to be consistent with other reports that demonstrated the
contents of soil elements, such as OM, P, Ca, Mg, and K, supported the establishment of
phytonematodes in the soil (Al-Ghamdi, 2021; Dias-Arieira et al., 2021; Leiva et al., 2020).
Furthermore, our results showed that a higher soil pH and level of OM supported higher
populations of phytonematodes and free-living nematodes. This finding was consistent
with Castro et al. (1990) and Al-Ghamdi (2021) who reported that pH and OM played
important roles in the proportion of soil nematodes. The distribution of soil nematodes
was negatively correlated with the pH; soil acidity affected nematode populations, such as
M. incognita and Radopholus similis, that were presented at reduced levels in acidic soils
(Davide, 1980; Gade & Hiware, 2017). The soil OM content positively supported the high
proportions of free-living nematodes by promoting bacteria and fungi growth, which were
essential foods for the nematodes (Cadet & Spaull, 2003).
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Understanding the role that the plant rhizosphere soil microbiome plays during PPN
infection is considerable and should be investigated. Previous research documented the
significance of microbial communities presented in soil in the control of phytonematodes
(Silva et al., 2022; Zhou et al., 2019). Thus, the current study conducted an extensive
evaluation of bacterial diversity and community composition in soils infested with
nematodes, with a focus on the influence of environmental conditions. The findings
showed there were no significant differences in bacterial diversity across the sampled
locations. Nevertheless, site CCS exhibited the greatest number of detected species and
bacterial richness. Our results may indicate an effect of nematode density and diversity
on the observed species and bacterial richness. Nematodes have been reported to graze
on bacteria, which may affect the bacterial community by accelerating bacterial turnover
(Cheng et al., 2016; Djigal et al., 2004). Silva et al. (2022) concluded that bacterial richness
in a community was reduced as a response to the numbers of nematodes in infested
soil. Furthermore, the present study found that the phyla Acidobacteriota, Proteobacteria,
Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota,
Gemmatimonadota, and Desulfobacterota were the top-10 regarding bacterial abundance
in all the sampled soils. This data was according to the results from other studies. For
example, Vinothini et al. (2024) reported that Proteobacteria, Firmicutes, and Actinobacteria
were the dominant bacterial taxa, whileAscomycota, Basidiomycota, andMucoromycotawere
prevalent among the fungal taxa in the tomato rhizosphere. Silva et al. (2022) reported that
Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, and Gemmatimonadota were
the most common bacterial groups in soil samples in Brazil. Masson et al. (2020) found
that the Acidobacteriota, Proteobacteria, Actinobacteriota, Verrucomicrobia, Nitrospirae,
and Fibrobacteres were the predominant phyla of highly M. graminicola-infested fields
in Vietnam. The bacterial phyla Acidobacteriota, Proteobacteria, Actinobacteriota, and
Gemmatimonadotawere the most abundant in phytonematode-suppressive soils (Harkes et
al., 2020). Members of the Acidobacteriota, Proteobacteria, Firmicutes, and Actinobacteriota
exhibited broad metabolic diversity and possess the ability to colonize various ecosystems.
These bacterial groups possess a multitude of genes associated with stress resistance,
carbon degradation, phosphate solubilization, and antibiotic production. These genetic
traits contribute to their adaptive capabilities and enable their successful survival in soil,
thereby establishing them as dominant microbial groups (Pongsilp & Nimnoi, 2022). In
addition, our results demonstrated that the soil pH, OM, Ec, and total Ca, K, Mg, and Fe
were factors that might be affecting bacterial diversity. Our result is compatible with prior
research that has noted the influence of many soil variables, including pH, OM, N, K, Mg,
and Zn concentrations, as well as nutrient availability and hydrocarbon bioavailability,
on the variability of bacterial communities and their diverse composition (Achife, Bala
& Oyeleke, 2021; Nimnoi & Pongsilp, 2022; Pongsilp & Nimnoi, 2020). By changing the
amount of nutrients available in the environment, the relationship between soil minerals
and bacteria can influence biogeochemical cycling (Pongsilp & Nimnoi, 2020; Vu et al.,
2022). Correlations between the bacterial microbiome and phytonematodes were found,
which were greater than in the roots. The numbers of Acidobacteriae, Clostridia, Bacilli,
Bacteroidia, Polyangia, and Actinobacteria influenced the proportions of Hirschmanniella
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spp., Pratylenchus spp., Tylenchorhynchus spp., and free-living nematodes in the soil
samples, whereas only the numbers of Polyangia and Actinobacteria affected the numbers
of M. graminicola and Pratylenchus spp. within the roots. Castillo, Vivanco & Manter
(2017) reported correlations between dominant bacteria and nematode populations. The
alpha-proteobacteria, Rhodoplanes, Phenylobacterium, and Kaistobacter have been found to
be correlated with the Meloidogyne, while the Bacteroidia and gamma-proteobacteria have
been reported to be correlated with the Pratylenchus. Members of the Bacilli, Polyangia,
Actinobacteria, and Acidobacteriae are important contributors to ecosystems since they
are particularly abundant and ubiquitous in nature, such as in the soil, roots, water, and
sediment (Eichorst, Breznak & Schmidt, 2007; Nimnoi, Pongsilp & Lumyong, 2011; Nimnoi
& Pongsilp, 2022). Furthermore, they have been noted for their effects on the control of
biogeochemical cycles, the degradation of biopolymers, the release of exopolysaccharides,
and the encouragement of plant development (Kalam et al., 2020; Matsumoto et al., 2021;
Puri, Padda & Chanway, 2018; Puri, Padda & Chanway, 2020). Additionally, they can
synthesize diverse natural compounds that produce biomedically and industrially useful
chemicals, such as antifungals, antibiotics, and antinematodal agents, which can be applied
in regulating and affecting diverse microorganisms in ecosystems (Atta & Ahmad, 2009;
Crits-Christoph et al., 2018; Hadjithomas et al., 2015; Mahajan, 2012; Nigris et al., 2018;
Parsley et al., 2011; Reichenbach, 2001).

Notably, biocontrol plant diseases and plant growth-promoting bacteria, such as the
genera Bryobacter, Acidibacter, Pseudomonas, Burkholderia, Caballeronia, Paraburkholderia,
and Sphingomonas, were the predominant bacterial groups identified in the sampling
soils in the present investigation. These genera have been found in soils where there
has been significant suppression of soilborne disease through biocontrol, including
phytonematodes, as well as plant growth promotion. Pseudomonas spp. are chitinolytic
and hydrogen cyanide-producing bacteria that can be applied for the biocontrol of
nematodes (Ha et al., 2014; Kang, Anderson & Kim, 2018; Lee et al., 2011). Burkholderia,
Caballeronia, Paraburkholderia, and Sphingomonas have been stated to function biological
nitrogen fixation, increase nutrient uptake, and confer disease resistance against a bacterial
pathogen (Matsumoto et al., 2021; Puri, Padda & Chanway, 2018; Puri, Padda & Chanway,
2020). The establishment of Acidibacter in many plant species has been reported in
association with soil iron and nutrient cycles, and soil pollution treatments (Huang et al.,
2020; Jiao et al., 2018; Liu et al., 2016). The genus Bryobacter has been noted as a beneficial
microorganism for leguminous plants by playing roles in the degradation of minerals,
promotion of plant growth, nitrogen fixation, and the suppression of plant disease (Li et
al., 2023; Luis et al., 2018; Xiao et al., 2017). Nematodes and the microbial community have
been reported for their activities in response to environmental impacts and eco system
conversions (Briar, Grewal & Somasekhar, 2007; Renčo, Gömöryová & Čerevková, 2020).
The present results have provided comprehensive data that could be beneficial for designing
an appropriate cultivation method to control rice diseases caused by phytonematodes and
to preserve soil quality for sustainable management.
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CONCLUSIONS
The differences in soil properties, and numbers of nematodes and bacterial communities
in the soils sampled reveal the clear impact of biotic and abiotic soil characteristics on
ecosystem variables. We demonstrated thatM. graminicola, Hirschmanniella, Pratylenchus,
Helicotylenchus, and Tylenchorhynchus were the dominant phytonematodes distributed in
soil across rice fields in Thailand. The high-throughput sequencing analysis clarified that
Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi,
Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the
predominant bacterial phyla that had established niches in the sampled soils. The
numbers of Acidobacteriae, Clostridia, Bacilli, and Bacteroidia influenced the proportions
of Hirschmanniella spp., Tylenchorhynchus spp., and free-living nematodes in the soil
samples, whereas the numbers of Polyangia and Actinobacteria affected the numbers of
Pratylenchus spp. in both the roots and soils. The components of total P, K, Mg, Ca, Cu,
and Zn, as well as the pH, Ec, and OM of the soil might be influencing the composition of
the bacterial and nematode communities. Our findings provided insights into correlations
among rhizosphere microbiota, nematodes, and soil properties, contributing to the
potential development of suitable management programs to reduce phytonematodes in
rice production systems.
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