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TO THE EDITOR

Squamous cell carcinomas are the most common type of cancers that are capable of 

metastasis (Yan et al., 2011). The enzymatic activity of cyclooxygenase-2 (Cox-2 also 

known as Ptgs2) contributes to the synthesis of prostanoids and is upregulated in several 

types of cancers, including cutaneous squamous cell carcinomas (cSCCs) (Hua et al., 2015; 

Sobolewski et al., 2010; Subbaramaiah and Dannenberg, 2003;). Cox-2 is an important 

regulator of tumor development and progression in the UV and chemical carcinogenesis 

models of cSCC (Elmets et al., 2014; Jiao et al. 2014a, 2014b). In addition to tumorigenesis, 

Cox-2 may also have the potential to mediate the formation of a mesenchymal-like spindle 

cell form of cSCC as previous studies have also shown that Cox-2 can also regulate 

epithelial–mesenchymal transition (Bocca et al., 2014).

Hair follicle stem cells (HFSCs) can act as the cancer cells-of-origin for cSCCs upon 

the expression of KrasG12D and loss of function in the tumor suppressor p53 (Lapouge 

et al., 2011; White et al., 2011). Moreover, HFSC-originating cSCCs are primed to 

form mesenchymal-like cSCCs with morphological and gene expression characteristics of 

epithelial–mesenchymal transition in vivo (Figure 1a) (Latil et al., 2017; Pastushenko et 

al., 2018; White et al., 2014). Upon global transcriptional analysis, Ptgs2 was found to be 

significantly overexpressed in HFSC-originating cSCCs (White et al., 2011), which was 
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confirmed by quantitative real-time reverse transcriptase–PCR (Figure 1b, Supplementary 

Table S1).

In order to determine whether Cox-2 is required for the development of HFSC-originating 

cSCCs, we crossed Ptgs2flox/flox mice to Krt15-CrePR; LSLKrasG12D; p53flox/flox; Rosa-
LSLTdTomato mice (Figure 1c and d) (Supplementary Figure S1). Similar to other Cox-2 

studies, using 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate- 

or UVB-induced cutaneous tumorigenesis in SKH-1 or 129S1+C57BL/6 mice, cutaneous 

tumors appeared in the conditional knockout mice; however, tumor-free survival was 

significantly improved (Figure 1f) (Jiao et al., 2014a, 2014b; Tiano et al., 2002). Gene 

deletion was confirmed in knockout tumor tissues, and the protein levels of Cox-2 were 

found to be strongly suppressed as compared with Ptgs2 wild-type tumors (Figure 1d and e).

Interestingly, there were strikingly distinct macroscopic features between Ptgs2 wild-type 

and knockout tumors (Figure 2a and b). When macroscopic tumors are evident in this cSCC 

mouse model, they exhibit a smooth surface, rapid growth, and often ulceration within a 

relatively short period (Figure 2a). In contrast, Ptgs2 knockout tumors grew slowly and 

developed a rough surface (Figure 2b). Similar to previous studies (Lapouge et al., 2011; 

White et al., 2011), histopathological examination demonstrated that HFSC-originating 

cSCCs show mesenchymal-like spindle cell carcinomas with minimal keratinization (11 

of 15) more frequently than cSCCs with mixed mesenchymal-like and epithelial components 

(4 of 15) (Figure 2c and e). On the contrary, Ptgs2 knockout tumors showed significantly 

different phenotypes than those expressing wild-type Ptgs2 (Fisher-Freeman-Halton test, 

*P < 0.002), as they were frequently well-differentiated with significant hyperkeratosis or 

papillomatous growths (6 of 11), and less often, mixed (3 of 11) or mesenchymal-like 

only tumors (2 of 11) (Figure 2d and e). Lineage tracing by using the LSLTdTomato allele 

demonstrated that tumor cells in both Ptgs2 wild-type and knockout animals originated from 

Krt15-CrePR+ HFSCs (Figure 2c and d) (Madisen et al., 2010).

Consistent with the characteristics of epithelial–mesenchymal transition, Ptgs2 wild-type 

mesenchymal-like cSCCs express high levels of Vimentin, low or absent levels of E-

Cadherin, and a lack of clear borders between stromal Pdgfr-α+ fibroblasts and tumor cells 

(Figure 2f) (Supplementary Figure S2). On the contrary, Ptgs2 knockout tumor cells show 

an absence of Vimentin staining, high levels of E-cadherin, and distinct borders between the 

stromal and tumor cell compartments (Figure 2g) (Supplementary Figure S2).

In vitro, TdTomato+ positive tumor cells from Ptgs2 wild-type animals showed 

mesenchymal phenotypes with elongated cell bodies, thereby indicating an invasive potential 

(Figure 2h and i) (Latil et al., 2017; Pastushenko et al., 2018; White et al., 2014). In 

contrast, Ptgs2 conditional knockout tumors demonstrated round cell bodies and exhibited 

a relatively reduced expression of mesenchymal markers (N-Cadherin, Vimentin) at the 

protein level (Figure 2h and i). To understand the potential role of Cox-2 activity on 

the mesenchymal-like phenotypes of Krt15-CrePR; LSLKrasG12D; p53flox/flox cSCCs cells 

during tumor growth, we established primary cell lines (Supplementary Figure S3a and 

b). Pharmacological suppression of Cox-2 by a selective Cox-2 inhibitor (Celecoxib) 

in vitro was confirmed by PGE2 ELISA assay and Cox-2 immunoblot (Supplementary 
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Figure S3c and d), which resulted in a small and transient increase in E-cadherin, but 

no apparent changes in N-cadherin expression was observed (Supplementary Figure S3e). 

Additionally, celecoxib treatment demonstrates a change in cell morphology in vitro from 

elongated spindle-shaped to large, often multi-nucleated cells, thereby suggesting the 

potential induction of cellular senescence (Supplementary Figure S3f). These data indicate 

that primary cSCC cell lines do not exhibit a full mesenchymal to epithelial transition when 

Cox-2 is suppressed in vitro, but future experiments will be needed to further explore this 

finding because this system does not faithfully recapitulate the microenvironment of cSCC 

in vivo.

Taken together, oncogenic Ras/p53 expression in Krt15-CrePR+ HFSCs can induce the 

formation of advanced cSCCs with mesenchymal characteristics; however, the loss of Cox-2 

function significantly suppresses epithelial–mesenchymal transition–like characteristics 

in HFSC-originating tumors and causes a conversion to tumors that possess epithelial 

characteristics at a high frequency (Figure 2j). While Cox-2 is required for an advanced 

squamous cell carcinoma formation from tumor-prone HFSCs, this phenotype may not be 

reversible solely by Cox-2 inhibition or may primarily be useful at the early stages of 

spindle cell cSCC initiation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cox-2 is required for efficient tumor formation.
(a) Gene set enrichment analysis shows the correlation between KrasG12D and EMT 

markers. Original transcriptomics data were derived from the research of White et al. 

(2014). (b) Ptgs2 gene expression was compared between the normal mouse skin and cSCCs 

collected from Krt15-CrePR; LSLKrasG12D; p53flox/flox mice. n = 3/each. Error bar, SEM. 

(c) Experimental scheme. Krt15-CrePR; LSLKrasG12D; p53flox/flox; RosaLSLTdTomato mice 

were bred to animals harboring Ptgs2flox/flox genetic alleles. (d) Animal genotypes were 

confirmed by PCR, and (e) Cox-2 expression at the protein level in tumors originating from 

animals with or without Ptgs2 conditional knockout was confirmed by using western blots. 

(f) The Kaplan–Meier curve demonstrates a significantly longer tumor-free survival period 

in Ptgs2 conditional knockout animals. n = 18/group. Statistical significance: *P < 0.01, **P 
< 0.001. Bar = 100 μm. bp, base pairs; cSCC, cutaneous SCC; Cox-2, cyclooxygenase 2; 

EMT, epithelial–mesenchymal transition; fl, flox; NES, normalized enrichment score; wt, 

wild-type.
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Figure 2. Cox-2 expression correlates with aggressive cSCC phenotypes.
(a, b) Macroscopic phenotypes of oncogenic Ras/p53-mediated cutaneous tumors 

originating from murine skin with or without the conditional knockout of Ptgs2. (c, d) 

Histological differences between cutaneous tumors with or without Cox-2 expression. 

TdTomato expression represents lineage tracing. (e) The histological phenotypic differences 

between cutaneous tumors ± Cox-2 expression. n = 15 for wild-type Cox-2 and 11 for Cox-2 

knockout. (f, g) The expression pattern of cSCC (Krt14), mesenchymal (Vim), epithelial 

(E-Cad), and stromal fibroblast (Pdgfr-α) markers in cutaneous tumors. (h) The phenotype 

of primary cells isolated from cutaneous tumors were observed 16 hours after culture in 

vitro. (i) Relative expression levels of epithelial (E-Cad) and mesenchymal (N-Cad and 

Vim) markers, and Cox-2 of primary cells was examined by immunoblots. Loading control: 

α-tubulin. (j) Summary. Oncogenic Ras/p53-mediated cSCCs originating from Krt15+ hair 

follicle stem cells can be more mesenchymal-like upon the expression of cell-type specific 
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expression of Cox-2. Bar = 100 μm. cSCC, cutaneous SCC; Cox-2, cyclooxygenase 2; fl, 

flox; SCC, squamous cell carcinoma; wt, wild-type.
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