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Abstract: Early detection of autism spectrum disorder (ASD) is crucial for timely intervention, yet
diagnosis typically occurs after age three. This study aimed to develop a machine learning model to
predict ASD diagnosis using infants’ electronic health records obtained through a national screen-
ing program and evaluate its accuracy. A retrospective cohort study analyzed health records of
780,610 children, including 1163 with ASD diagnoses. Data encompassed birth parameters, growth
metrics, developmental milestones, and familial and post-natal variables from routine wellness visits
within the first two years. Using a gradient boosting model with 3-fold cross-validation, 100 parame-
ters predicted ASD diagnosis with an average area under the ROC curve of 0.86 (SD < 0.002). Feature
importance was quantified using the Shapley Additive explanation tool. The model identified a high-
risk group with a 4.3-fold higher ASD incidence (0.006) compared to the cohort (0.001). Key predictors
included failing six milestones in language, social, and fine motor domains during the second year,
male gender, parental developmental concerns, non-nursing, older maternal age, lower gestational
age, and atypical growth percentiles. Machine learning algorithms capitalizing on preventative care
electronic health records can facilitate ASD screening considering complex relations between familial
and birth factors, post-natal growth, developmental parameters, and parent concern.

Keywords: autism spectrum disorders; development; screening; machine learning; electronic
health records

1. Introduction

Autism spectrum disorders (ASD) manifest through social communication deficits
and atypical behaviors, as listed in The Diagnostic and Statistical Manual of Mental Dis-
orders, Fifth Edition (DSM-5) [1] and it may affect 1:36 individuals [2]. Nonetheless, the
prevalence is highly variable between countries, with lower prevalence in lower income
communities [3,4], depending primarily on the rate of detection and diagnosis. Recent rates
of diagnosis in Israel are 1% among 2–3-year-olds and 2% in 4–5-year-olds [5], which is
close to the global median of 1% [4] and higher than previous reports [3]. Early intervention
administered before three years of age leads to significantly greater social communica-
tion, adaptive functioning, and cognitive competencies [6,7]. The American Academy of
Pediatrics and other health organizations recommend [8–10] early screening for ASD at
18 and 24 months during dedicated well-baby visits to promote the initiation of early inter-
vention and improve outcomes [11–13]. In Israel, the well-baby check-ups are performed
at a national level and regulated by the Ministry of Health (MoH). The age distribution
of developmental milestones examined during the scheduled well-baby visits has been
recently studied in this national database [14,15]. The current study focused on a model
detecting children with elevated ASD markers in routine well-baby check-up records to
provide higher accuracy of ASD detection during developmental screening. Such a model
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can, in the long run, be implemented to alert healthcare providers during routine checkups
to follow-up with ASD-specific screening tools.

Behavioral markers linked to ASD can be observed during the first and second years
of life, even in low-risk populations (e.g., [7,16–19]), yet the average age of diagnosis
worldwide remains above three years of age [20,21]. One of the barriers to early detection
of ASD is the great heterogeneity in the ‘red flags’, onset, and progression of symptoms,
and in the divergence of developmental trajectories in ASD [18,22]. Early detection of
ASD relies upon behavioral observations in the social communication and sensory motor
domains (e.g., [7,16,23]), and on observing developmental trajectories [7]. Deviations in
motor and social communication development significantly differentiated the ASD group
from typically developing children and children with other delays during the first [22,24]
and second year of life [18,25]. Some early ASD signs can be easily missed by a healthcare
provider during a short checkup visit due to their gradual deviation or subtlety, such
as social reciprocity, social smile, and eye contact [11,22]. Furthermore, disparities in
healthcare screening resources and in provider awareness of individual developmental
differences [7,26] challenge early detection. To facilitate and adapt the screening level to
different trajectories, the screening procedure needs to match the risk level of the child [27].
Including known risk factors and individual differences may highlight specific variations
and increase the level of awareness in particular populations, such as those with prematurity
or familial factors [28–31].

Prematurity, like other factors, interacts with additional ASD risk factors, such as
cesarean delivery, parental age, and birth complications; therefore, there is a need for an
integrative/cumulative approach to risk estimation. These non-linear relationships can be
detected using machine learning (ML) analysis of big data, as conducted in the present study.
Research shows the value of ML model risk score predictions for accurately stratifying
clinical populations [32] and can guide the provider to personalize the checkup accord-
ing to their risk level. In the ASD literature, ML has been applied for various purposes,
including differentiating subgroups [33] and, specifically, parsing the behavioral pheno-
type variance [34]. Deep learning methods have been applied for ASD detection based
on motor abnormalities [35] and the prediction of behavioral intervention efficacy from
patient data [36]. Previous electronic health record (EHR) data analysis by ML algorithms
differentiated clusters of ASD patients with common co-morbidities (e.g., [37–39]). Further-
more, ML tools can predict ASD likelihood from family medical history in EHRs [40,41].
Such tools address the need for a cost efficient and accurate process which considers
neurodevelopmental heterogeneity among children [42].

The well-baby clinic system in Israel provides nation-wide developmental check-
ups from birth to six years and offers an opportunity for implementing universal ASD
screening [43]. The database was digitized to build and test a ML model that can identify
significantly deviant early milestones linked to ASD from a child’s EHR at early stages
of development and include specific background information, such as pregnancy and
familial history. In the current study, we aimed to identify the most significant features
linked to a subsequent diagnosis of ASD from a large database of EHRs using ML tools.
The ML prediction of ASD was also verified by examining the proportion of children that
were flagged as false positives by the model but manifested significant developmental
delays. Since the analysis is driven by a large and diverse population, it may provide an
applicable model for developmental surveillance and improve ASD detection below the
age of two years.

2. Materials and Methods
2.1. Study Design and Ethics

This was a health records retrospective cohort study. This study was approved by
the MoH Helsinki (#15/2021) committee. The need for consent was waived by the ethics
committee. EHR data were recorded by the providers of the Israeli national well-baby
developmental surveillance program called Tipat Halav (TH, “Drop of Milk”) managed
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by the MoH. Data were extracted and anonymized by the TIMNA project personnel
(Israel Ministry of Health’s Big Data Platform). Data were extracted until 31 December
2021. Researchers accessed de-identified participants’ data through this dedicated secured
MoH platform.

2.2. Data Source

The EHRs analyzed in this study reflected a cohort followed by the national well-baby
MoH clinics. The MoH is the main provider of developmental checkups at 503 clinics across
the country, covering 75% of the Israeli population. The remaining 25% are followed by two
Health Maintenance Organizations according to the same national guidelines. The services
include immunizations, growth, and developmental surveillance, as well as medical and
environmental risk detection for the mother and child. The services are provided by nurses
with specific training in maternal and child health and a developmental pediatrician. There
are approximately 11 visits from birth to age 6 years, each with a set of actions based on the
child’s age and risk status. The nurses enter the data in a digital EHR.

The developmental protocol of TH includes a checkup of progress in 60 age-related
milestones across gross motor, fine motor, language, and personal–social developmental
domains [43]. The milestones included in the TH protocol are based in part on the Denver
Developmental Screening Test (DDST) [44]. At each of the nine age bins, from six weeks to
six years, the nurses check between 4–9 milestones. There are 38 milestones tested up to
24 months. Performance results for each milestone are recorded. During developmental
checkups, parents are prompted to report their concerns regarding the child’s development
and/or hearing. An ASD-specific screening tool is not integrated into the checkups.

The EHR inclusion criteria were: (1) children born between 1 January 2014–31 De-
cember 2019; (2) the availability of at least two years of computerized data. This led to
a database of 780,610 EHRs. In order to develop a model that minimizes data leakage
from diagnosis to predictors, we included: (1) as predictors in the model measurements
up to two years of age and (22) as the outcome metric of ASD, only children with an ASD
diagnosis reported after two years of age. The average age at which diagnosis was recorded
for the full ASD group was 37.5 months, SD = 13.3 months (13.22 months–7.72 years).

2.3. Case Definitions

The prediction of an ASD diagnosis was based on a diagnosis of ASD reported in the
child’s EHR, either by an International statistical classification of diseases and related health
problems (ICD-9 [45]) code of ASD or reports in provider notes after the age of two years.
Following ICD-9 case identification, texts for the rest of the population were searched for
ASD-related keywords and verified manually for indication of ASD in the child (as opposed
to family members). Children with other conditions with the same acronyms as Pervasive
Developmental Disorders (PDD) and ASD were excluded (e.g., Atrial Septal Defect: ASD).
Of the total sample, 1275 children were labeled as ASD-diagnosed, 722 children were
identified by their ICD-9 diagnostic code, and an additional 553 were identified from the
clinical textual notes. In total, 1163 were diagnosed after the age of 2 years.

EHRs of the Typically Developing (TD) group were defined as records of children
without an ASD or other pervasive developmental and medical conditions diagnosis. The
TD group excluded EHR records of children with another non-ASD pervasive medical or
developmental condition. Since there are multiple etiologies linked to ASD, such as Fragile
X, Tuberous Sclerosis, metabolic disorders, and more than 200 single genetic disorders, we
did not exclude specific etiologies except Down syndrome, as explained below. Global
developmental delay and intellectual disability [46] can occur as a comorbidity of ASD or
differential diagnosis and are defined as significant delay in more than one developmental
domain with performance of at least two standard deviations below age norms. When
reported as a comorbidity, ASD symptoms should prevail, according to DSM-5 ASD
criteria—E (1). We excluded children who only had these diagnoses reported for them,
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since our goal was to build a system that can assist providers in noticing young children
whom they routinely miss.

The only diagnosis that may be causative and linked to ASD but was excluded from
our ASD analysis is Down syndrome. Although children with Down syndrome may also
have ASD, we decided to exclude this diagnosis since this etiology is overtly obvious
from birth and the routine checkups for infants with Down Syndrome are adapted to their
different trajectories.

The rationale was to focus the model design on the prediction of ASD and eliminate
the prediction of conditions that the provider/family are aware of very early on (e.g., Down
syndrome). The list of ICD-9 diagnosis was reviewed by clinical experts, and a list of
congenital or other conditions highly associated with developmental challenges was com-
piled to reach higher level of comparison norms in the control group. Based on this list,
4577 children were excluded from the TD group due to musculoskeletal and nervous
system disorders (20.3%), chromosomal abnormalities (4.5%), hearing loss (3%), convulsive
disorders (1.7%), Infantile Cerebral Palsy (0.8%), and Spina Bifida (0.6%).

2.4. Data Preparation

The EHR structure and, consequently, the database, includes all documented infor-
mation for a child and mother across all baby wellness visits. As such, the variables
are a mix of structured (e.g., concern for development Yes/No, ICD-9 codes) and text
data (e.g., provider notes), as well as fixed data points (e.g., birth weight) versus temporal
data (e.g., head circumference measurements). For the structured features, there were
continuous variables, such as birth weight in kg, and nominal variables, such as type of
birth delivery (see Figure 1 for Model process).
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As part of feature engineering, the distribution of variables in the database was in-
vestigated. Based on their distribution, several variables were recoded to enable their
meaningful integration in the model. Most features included a considerable number of
missing values (see Tables 1–3). Median imputation was applied in the case of continuous
features, and a missing category was applied for categorical features. To address age differ-
ences in timing and number of visits, we calculated first and last measurements, median
value, and standard deviation for longitudinal features. Each of the 38 developmental
milestones entered the model as two features: only failed or ever passed. This configuration
enabled the model to (1) account for cases in which a child had a milestone tested multiple
times and (2) to differentiate not performing from a missing entry.
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Table 1. Comparison of child and family demographic between groups.

Characteristics TD (N = 774,778) ASD (N = 1163) Statistics

Year of child’s birth χ2(5) = 106.49 ***, φc = 0.012
2014 124,401 (16.1%) a 174 (15%) a
2015 126,679 (16.4%) a 230 (19.8%) b
2016 129,421 (16.7) a 278 (23.9%) b
2017 131,721 (17%) a 212 (18.2%) a
2018 132,522 (17.1%) a 182 (15.6%) a
2019 130,034 (16.8%) a 87 (7.5%) b

Mother birth country χ2(5) = 375.48 ***, φc = 0.023
Israel 631,588 (81.5%) a 816 (70.2%) b
Russia 43,766 (5.6%) a 209 (18%) b
Europe 1750 (1.6%) a 6 (0.5%) b

Ethiopia 11,114 (1.4%) a 40 (3.4%) b
North America 8799 (1.1%) a 3 (0.3%) b

Other 8360 (1.3%) a 18 (1.5%) a
Missing 58,401 (7.5%) 71 (6.1%)

Mother Employment Status χ2(2) = 11.34, φc = 0.005
Employed 334,375 (43.2%) a 512 (44%) a

Unemployed 164,258 (21.2%) a 271 (23.3%) a
Student 32,129 (4.1%) a 27 (2.3%) b
Missing 244,016 (31.5%) 353 (30.4%)

Note. Continuous variables were compared using independent samples t-test, while nominal variables with
Chi square or Fisher exact tests. Missing data were not included in the comparisons. ASD: Autism spectrum
disorder. TD: Typical development. a,b Groups with different subscripts are significantly different based on
pairwise adjusted Z-tests. *** p < 0.001.

Table 2. Comparison of familial and birth parameters between groups.

Characteristics TD (N = 774,778) ASD (N = 1163) Statistics

Mother’s age c Mean (SD, Min–Max) 30.02 (5.71, 15–55) 31.43 (5.65, 19–52) t (767,831) = −8.27 ***, d = 0.24
Missing 8688 (1.12%) 2 (0.17%)

Birth weight (Kg) Mean (SD, Min–Max) 3.21 (0.51, 0.4–6) 3.15 (0.58, 0.72–4.77) t (747,034) = 3.96 ***, d = 0.1
Missing 28,871 (3.72%) 34 (2.92%)

Pregnancy week c Mean
(SD, Min–Max) 39.09 (1.8, 23–43) 38.65 (2.07, 25.2–42.3) U = 437,787,198 ***, d = 0.004

Missing 29,465 (3.8%) 32 (2.75%)
Males c N (%) 398,069 (51.4%) 911 (78.3%) ***, φ = 0.021

Preterm births (pregnancy week < 37) 54,937 (7.1%) 132 (11.3%) ***, φ = 0.006
Missing 41,496 (5.4%) 52 (4.5%)

Birth type χ2(2) = 86.04 ***, φc = 0.011
Spontaneous 539,004 (69.6%) a 693 (59.6%) b

Cesarean 129,685 (16.7%) a 309 (26.6%) b
Instrumental 37,232 (4.8%) a 71 (6.1%) b

Missing 68,857 (8.9%) 90 (7.7%)
Multiple Pregnancy χ2(3) = 18.87 ***, φc = 0.005

Single 741,871 (95.8%) a 1084 (93.2%) b
Twin 31,783 (4.1%) a 76 (6.5%) a

Triplet 1058 (0.1%) a 3 (0.3%) a
Other 66 (0.001%) a 0 (0%) a

Note. Continuous variables were compared using independent samples t-test, while nominal variables with
Chi square or Fisher exact tests. Missing data were not included in the comparisons. ASD: Autism spectrum
disorder. TD: Typical development. a,b Groups with different subscripts are significantly different based on
pairwise adjusted Z-tests. c These features were among the top important features in the final model. *** p < 0.001.
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Table 3. Comparison of post-natal parameters between groups.

Characteristics TD (N = 774,778) ASD (N = 1163) Statistics

Postpartum depression χ2(3) = 7.19, φc = 0.004
None 539,565 (69.6%) a 817 (70.2%) a
Mild 11,941 (1.5%) a 16 (1.4%) a

Moderate 2306 (0.3%) a 8 (0.7%) b
Severe 1062 (0.1%) a 3 (0.3%) a

Missing 219,904 (28.3%) 319 (27.4%)
Ever had Concern for

Development c
71,516 (9.2%) 820 (70.5%) ***, φ = 0.08

Missing 10,162 (1.3%) 8 (0.7%)
Ever had Hearing Suspicion 22,319 (2.9%) 272 (23.4%) ***, φ = 0.047

Missing 16,200 (2.1%) 12 (1%)
Ever Nursing c 584,345 (75.4%) 708 (60.9%) ***, φ = −0.014

Missing 11,830 (1.5%) 13 (1.1%)
Ever had Anemia 41,589 (5.4%) 58 (5%)

Missing 388 (0.1%) 0 (0%)
Note. Continuous variables were compared using independent samples t-test, while nominal variables with
Chi square or Fisher exact tests. Missing data were not included in the comparisons. TD: Typical development.
ASD: Autism spectrum disorder a,b Groups with different subscripts are significantly different based on pairwise
adjusted Z-tests. c These features were among the top important features in the final model. *** p < 0.001.

2.5. Analysis
2.5.1. ML Modeling

Gradient boosting (CatBoost) method with a 3-fold cross validation was applied, a
method implemented in EHR research [32,41]. Gradient boosting is a ML method that
is a model evaluation technique where the dataset is divided into three subsets and the
model is trained and tested three times, with two subsets for training and one for testing
each time, to assess its performance across different data partitions. This method builds
multiple decision trees, where each successive tree is fine-tuned to focus on the errors of
the previous trees. The ensemble of trees is then used for the final prediction, working in a
stage-wise manner rather than a parallel manner [47]. The high-risk group was defined
as a predicted risk score above the Youden Threshold, an objective measure that sets a
cutoff point that optimizes the sensitivity and specificity of the model [48]. The model was
evaluated using AUC and its corresponding accuracy metrics. The model was designed by
the team with the guidance of the third author, an expert in applying advanced machine
learning techniques to predict outcomes from medical data.

We used the SHapley Additive exPlanations (SHAP) tool to quantify feature impor-
tance. The tool is employed to provide a comprehensive method for interpreting the results
of ML models, attributing values to features to quantify their respective impacts on individ-
ual predictions. SHAP is a method used to explain the output of machine learning models
by attributing the importance of each feature to the model’s predictions [49].

2.5.2. Group Comparisons

The ASD and TD groups were compared across child and family characteristics, birth
parameters, and familial and post-natal variables excluding missing values. For nominal
variables, Chi square or Fisher’s exact tests were conducted with their corresponding
measures of association, Cramer’s V, or Phi. Pairwise-adjusted Z-tests were used for
variables with more than two categories. Normality tests showed that most continuous
variables were normally distributed (p > 0.05), except for pregnancy week (p < 0.001).
For normally distributed continuous variables, independent samples t-tests with Cohen’s
d were conducted. Mann–Whitney U test compared pregnancy week between groups.
A p-value threshold of 0.001 was applied given the large sample size [50] and multiple
number of comparisons.
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3. Results
3.1. Descriptive Statistics

The model analyzed EHRs of 774,778 TD children and 1163 ASD children (males 51.4%,
78.3% respectively). Table 1 presents the comparison of child and mother demographic
features of TD versus ASD children. The TD group is equally distributed between birth
years, while for the ASD group, as expected, there is a smaller proportion in 2019. There is
a higher rate of ASD diagnosis for mothers born in Russia and Ethiopia. Table 2 presents
familial and birth parameters, and Table 3 shows the post-natal features which were
included in the training of our model. Tables show a significantly higher rate of preterm
births in the ASD group, with older mothers, lower gestational week, lower birth weight,
lower proportion of nursing, and much higher rates of parental concerns.

In the ASD group, there was an average of 13.7 visits overall (SD = 3.18; e.g., vaccina-
tion, growth, development) which was significantly (t (775,939) = −23.05, p < 0.001, d = 0.7)
higher than for the TD group, with an average of 11.44 visits (SD = 3.26). Up to two years
of age, the average age at the first visit was 0.85 months (SD = 1.37), and at the last visit,
18.94 months (SD = 2.85 months). The EHR visit ages indicated that, following the age of
two years, the average age at the first visit was 28.19 months (SD = 0.26), and at the last
visit, 37.37 months (SD = 13.93).

3.2. ML Model Predicting Risk Score for ASD

The data initially included 100 features, from which we selected 59 clinically relevant
features to build a 3-fold ML model (see Figure 1 and Table S1). All three folds showed
similar results, with an average Area Under the ROC Curve (AUC) = 0.86 (SD < 0.009; see
Figure 2) and corresponding sensitivity = 0.75 (SD = 0.03) and specificity = 0.81 (SD = 0.02).
The average AUC for the training data was higher than the test (0.88, SD = 0.006), indicating
that the model is slightly overfit to the training data, as expected (see Table S2 for AUC by
fold). The full tested model classified a total of 81.4% children (n = 631,308) as low risk, and
18.6% children (n = 144,632) as high-risk. This high-risk group included 874 children with
ASD, which is an incidence rate of 0.006, 4.3-fold higher than the ASD incidence in the entire
cohort (0.001). We also present results for different distributions between sensitivity and
specificity based on changing multiples of the Youden Threshold (see Table S3). Notable is
the decrease in rates of false positive cases as threshold increases. In addition, comparing
results from different methods showed overall stable AUC with a small variance between
methods (see Table 4).
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Table 4. Comparison of 3-fold cross-validation using different methods.

Method Average AUC SD TP FP TN FN Sensitivity Specificity

Logistic regression 0.86 0.010 897 159,472 615,305 266 0.77 0.79

Random Forest 0.84 0.009 861 166,793 607,984 302 0.74 0.78

Naive bayes 0.83 0.011 888 185,027 589,750 275 0.76 0.76

We reviewed the top 20 important features based upon their SHAP values within each
fold. There was a high level of overlap between the top 20 features, with 15 (65%) in all
three folds, 6 (25%) in two folds, and 3 (12.5%) unique to a specific fold, out of the total
24 unique features across the three folds (see Table S1).

3.3. Results from a Representative Fold

We present a single fold as a representative model (see Figures S1 and S2 for the
distribution of features in other folds). Model summary plots show the relative importance
of 20 features and their distribution for a representative fold (see Figures 3 and 4). Seven
of the important features are related to developmental milestones from different domains.
Fisher’s Exact tests showed significant differences in (p < 0.001) the rates of attaining seven
important model milestones in the ASD group (see Figure 5):

1. has a vocabulary over 10 words (language domain), tested 18–24 months;
2. builds a tower from cubes (fine motor domain), tested 18–24 months;
3. gives kiss (personal–social domain), tested 18–24 months;
4. eats independently with spoon (personal–social domain), tested 18–24 months;
5. knows at least one body part (language domain), tested 12–18 months;
6. composes 2-word sentences (language domain), tested 18–24 months);
7. says 2–3 words (language domain), tested 12–18 months.
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the direction of the contribution of the individual values for each feature, to the right of the grey line
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the blue reflects lower values. %ile: Percentile.
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Figure 5. Comparison of percentages between groups considering prematurity for the seven impor-
tant milestones consistent across folds. Note. One milestone entered as passed and the others as
failed. All milestones in both ASD and TD showed no statistically significant difference between full
term and preterm children. a 12–18 months. b 18–24 months.



Children 2024, 11, 429 10 of 16

As can be seen in Figure 5, the group differences in the seven important milestones
were not accounted for by prematurity; in other words, group comparisons were also
significant when restricted to preterm versus full term samples (p < 0.001).

The remaining 13 features and their direction of association with ASD in this fold were
as follows (8 of which overlap between folds. Features 10–13 appeared in the presented
fold and not in all 3 folds):

1. boy
2. more parental developmental concerns
3. never nursing
4. advanced maternal age
5. lower pregnancy week (prematurity) (In some folds, pregnancy week was entered,

and prematurity status in others)
6. lower weight by height percentile at first visit
7. higher weight by height percentile at last visit
8. larger weight by height percentile SD (larger variance across visits)
9. higher head circumference percentile at first visit
10. cesarian birth
11. higher head circumference percentile median (across visits)
12. larger head circumference percentile SD
13. higher weight by height percentile median (across visits)

3.4. Subgroup ML Analyses by Sex and Birth Year

Running a 3-fold cross validation model with boys only yielded a lower average AUC
of 0.82 (SD = 0.03), with a sensitivity of 0.68 (SD = 0.02) and specificity of 0.82 (SD = 0.04).
The average AUC for the training data (0.85, SD = 0.01) was slightly higher than the test
(see Table S2 for AUC by fold). The 3 folds of the boys-only model had 12 overlapping
features between folds out of the 29 unique features that appear in the 20 most important
features in each fold. Of these, 10 features overlapped with the consistent features across
the full model’s folds (see Table S4 and Figures S3–S5 for details of the boys-only model).
Birth weight was a unique consistent feature for the boys-only model.

In addition, to verify stability of the results, we evaluated a model without children
born in the year 2019 and saw stable results in the model’s AUC (see Table S4 for details of
the model without 2019). The 2019-born children had a lower likelihood of ASD, therefore
it was important to examine their impact on false positive results.

3.5. Validity of the Model’s High-Risk Group

To evaluate the high-risk status (i.e., false positive and true positive) identified by
the above 3-fold model, we examined the rate of developmental provider referrals in
the high risk versus low-risk groups (i.e., false negative and true negative). Provider’s
developmental referral in the EHR was defined as a reported provider’s referral of the
child for an extensive developmental assessment due to developmental delay. This referral
variable was not included as a feature in the model and was therefore an external validity
indicator of the model’s classification. Those who the model identified as high-risk had
a 3.29 odds ratio (95% CI 3.18–3.39) of being referred for developmental delay than the
low-risk group.

4. Discussion

This study demonstrates how ML models can utilize existing routine preventative
care data to estimate a child’s ASD risk prior to the age of 2 years. The model predicting
early ASD signs capitalized on the ongoing recording of real-life data by baby wellness
providers, leading to a rich array of contributing real-world clinical measurements, includ-
ing biometric predictors, such as familial, birth, post-natal, growth, and clinical predictors
of developmental progress. At the healthcare policy level, this evidence calls for integrating
technology to facilitate ASD detection in routine care. This is crucial for earlier detection of
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ASD globally, overcoming screening barriers related to access to high quality healthcare.
The model detected 75% of ASD children and remained relatively stable in performance
when only boys were included. Such a system can flag risk factors in a child’s early profile
and facilitate a formal ASD screening during routine checkups [29]. While the model
tested was slightly overfit to training data, it displayed similar results. Furthermore, this
study presents the impact of different thresholds upon the balance of sensitivity and speci-
ficity. As threshold increases, the number of false positive cases decreases at the cost of
fewer true positives. Healthcare providers can select different thresholds to support their
context-specific policy and decision making. Future research with ample data would enable
employment of methods such as CatBoost overfit detection during the training process
to prevent overfitting. The current model’s contributing factors represented well-known
features—being a boy, lower pregnancy week, older mother’s age, parental developmental
concern, delayed language and personal–social development [51,52]—and less known
features—never nursing [53], fine motor delay [54], and higher growth percentiles [55].
While the latter have some supporting evidence, they are not well-established factors.
The model highlighted the most significant atypical developmental features among those
that are well-known. Such discoveries are made possible by ML algorithms learning the
interactions between features and improving the power of features by specific combination
of familial data and examination of the child. The early ASD diagnosis process must start
with identifying a child’s biometric and clinical data. Integrating ML tools as decision
support systems in EHRs offers a timely efficient way to alert providers regarding a young
child’s ASD risk.

Of the 38 milestones checked up to 24 months, six were important features consistent
across the model folds. These milestones reflect a mixture of the language (three mile-
stones), personal–social (two milestones) and fine motor (one) domains. Most were from
the 18–24 months checkup, but one was earlier, from 12–18 months (i.e., knows at least
one body part). While language expression and comprehension delay are not a diagnostic
feature of ASD, they appear to reflect the child’s social communication challenges early
on and are easier for providers and parents to observe. This is consistent with evidence
of robust divergence in ASD from 14–24 months, specifically in language and social de-
velopment [18,22,24]. These important milestones were identified by the model via their
interactions among themselves and with other features. Nonetheless, differences between
ASD and TD groups on each of the six milestones were not explained by prematurity or
by sex differences, indicating that they are a unique combination associated with the ASD
status in this population. The findings also demonstrate that about 50% of ASD children
do not fail these milestones during the second year of life. Thus, ASD-specific screening is
needed at later ages to detect children without early developmental concerns.

Some milestones from the second year of life which appear in early screeners for
ASD did not enter the model including eye contact, response to name, and expressing
needs. It is possible that these markers had a weaker signal since they require closer clinical
observation than a brief surveillance checkup and/or warrant a quality measuring scale
rather than a pass or fail mark. Further improvement of the developmental protocol to
target ASD-specific markers is warranted.

Implementing the model with subgroups of the population yielded relatively stable
results. For the boys-only model, 10 of the consistently important features overlapped with
the consistent ones in the full-model. Birthweight was only a consistent feature across the
boys-only model, supporting evidence for differences in birth parameters of boys versus
girls with ASD [28]. Since most of the ASD sample comprised males, there is need to
replicate the model with a large sample of girls to detect different early “red flags”.

There were strikingly higher rates of ASD among mothers born in Russia and, to some
degree, among those from Ethiopian origins relative to their proportion in the population
(see Table 1). Ethnicity and socioeconomic status are inconsistently linked with lower rates
of ASD [4]. In contrast with our findings, lower rates of ASD were reported in lower socioe-
conomic status (SES) groups [3] and, specifically, in non-native Israeli families, including
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Ethiopian ones [56]. Previous research differs dramatically in terms of ascertainment and
publication years. Higher rates of early ASD diagnosis in immigrant communities may
relate to a combination of biological risk factors, increased discrimination, isolation and
stress levels, and poor prenatal care, as well as provider biases in immigrant groups. Future
research into the healthcare and child contributing factors is critical to ensure equality in
early detection.

While our study does not explicitly focus on the disparities between developed and
developing countries in the detection of ASD, it is crucial to consider how such a model
would perform in diverse healthcare contexts. Though our research does not delve into the
specifics of this issue, we have included data that explore the role of immigration in mothers
on their children’s ASD detection rates. Previous findings using the Modified Checklist for
Autism in Toddlers (MCHAT) in a pediatric healthcare setting also showed higher rates
of positive screenings among children of color and those from lower-income households
compared with white, higher-income, privately insured, and suburban children [57]. As
opposed to a specific tool, designing a screening system that relies on routinely collected
data enables ASD detection that is based upon multi-cultural representative data. Carrying
over such technology to developing countries requires direct cross-cultural validation at
multiple levels, including the expression of signs, parental recognition, interpretation, and
reporting levels [58].

5. Limitations

Integrating developmental milestones in the model required accounting for the vari-
ability in timing of checkups as well as multiple entries per milestone per child. To avoid
attributing a-priori developmental assumptions, for instance to: ‘never tested’ and ‘late
tested’ data, milestones were transformed to binary features of ‘ever passed’ and ‘only
failed’. While this enabled us to minimize the attribution of late performance to later
development, we were not able to account for children who passed after several attempts.
Future ML work that integrates a child’s pattern of performance over time may improve
the model’s capacity to capture delay.

The ML model is limited to the list of milestones and risk factors examined and
recorded in national surveillance check-ups. Additional early signs linked to subsequent
ASD diagnosis were not examined, and as such, were not identified in our study. Milestones
such as head lag at 3 months, raising hands to be picked up at 6 months, and nodding at
12 months are not included in the formal examination and may potentially be important
“red flags” that strengthen the model [59]. In addition, father age and family history of ASD
are two known risk factors [51] that are not routinely collected and would be important to
add in future research for promoting better ASD detection. Advanced maternal age was
found to be significant, and it may be a proxy for advanced paternal age.

An additional limitation is that our identification of ASD is based on reports during
visits. It is plausible that there is a much larger ASD group that has been diagnosed later
or not reported during well-baby visits. Based on the national incidence of ASD, the true
positive ASD group is at least 10 times higher in the examined population [5]. Lower rates
of ASD also relate to the young age of this community sample (born 2014–2019). However,
as the model relied on accurate and early ASD diagnoses, it enhances its reliability in
identifying the group that has not been previously identified in the EHR through earlier
detection in future assessments. We attempted to identify some of these children through
the estimation of global developmental delay among the high-risk group. This adds a lot of
noise to the outcome label, and thus, requires replication with a later stable outcome label.
In addition, there was variability in the way providers recorded diagnosis, with 43.37% of
the ASD diagnoses ascertained via provider notes rather than ICD-9 code. Further research
into inter-rater assessment differences in clinics is warranted.
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6. Conclusions

This study highlights the value of ML systems for detecting elevated ASD signs in
preventative care. The most important predicting features in our models reflected a mixture
of biometric and clinical data. The representative nature of this rich database enables us to
account for the medical and behavioral heterogeneity of young children. Although clinical
data are noisy, the model showed high accuracy levels, identifying most children with ASD
prior to 2 years of age. While the model had a cost of high false positive rates, some of these
children showed other developmental issues that required verification. The model pointed
to significant milestones and features that are easy to recognize and can be incorporated in
detecting children that mandate a more thorough and systematic ASD-focused evaluation.
Future work is needed to integrate such data-driven ML systems to support providers in
personalizing early detection of ASD during routine developmental checkups.
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1 from the Full Model; Figure S2: Feature importance bar plot and SHAP summary plot for a fold 3 from
the Full Model; Figure S3: Feature importance bar plot and SHAP summary plot for a fold 1 from the
Boys Model; Figure S4: Feature importance bar plot and SHAP summary plot for a fold from the Boys
Model; Figure S5: Feature importance bar plot and SHAP summary plot for fold 3 from the Boys Model.

Author Contributions: Conceptualization and methodology, A.B.-S., J.G. and L.V.G.; formal analysis,
A.B.-S., J.G., L.N., M.S. and K.I.; data curation, A.B.-S., L.N., K.I. and M.S.; writing—original draft
preparation, A.B.-S., J.G. and L.V.G.; writing—review and editing, A.B.-S., L.V.G., J.G., K.I. and M.S.;
visualization, A.B.-S., J.G., L.N. and M.S.; supervision, A.B.-S. and L.V.G.; project administration,
A.B.-S.; funding acquisition, A.B.-S. and L.V.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Gertner Institute of Health Policy and Epidemiology, grant
number 2020.351.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the Israeli Ministry of Health (#15/2021
and 13 June 2021).

Informed Consent Statement: Patient consent was waived by the ethics committee due to the
anonymized data analysis nature of research.

Data Availability Statement: The data presented in this study are available on request from the
TIMNA-Israel Ministry of Health’s Big Data Platform, Ministry of Health and are available at
https://govextra.gov.il/ministry-of-health/big-data-research/home/ (accessed on 31 December
2021), Jerusalem, Israel. The data are not publicly available due to privacy and ethical restrictions.

Acknowledgments: Thank you to Roe Cohen and Galit Shefer from TIMNA-Israel Ministry of
Health’s Big Data Platform, Ministry of Health, Jerusalem, Israel for their assistance with admin-
istrative and database management issues. We appreciate Dina Zimmerman, MoH, for her input
regarding the interpretation of baby-wellness records.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association:

Washington, DC, USA, 2013.
2. Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier,

S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and
developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 2023, 72, 1–14. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/children11040429/s1
https://www.mdpi.com/article/10.3390/children11040429/s1
https://govextra.gov.il/ministry-of-health/big-data-research/home/
https://doi.org/10.15585/mmwr.ss7202a1
https://www.ncbi.nlm.nih.gov/pubmed/36952288


Children 2024, 11, 429 14 of 16

3. Davidovitch, M.; Hemo, B.; Manning-Courtney, P.; Fombonne, E. Prevalence and incidence of autism spectrum disorder in an
Israeli population. J. Autism Dev. Disord. 2012, 43, 785–793. [CrossRef] [PubMed]

4. Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of
autism: A systematic review update. Autism Res. 2022, 15, 778–790. [CrossRef] [PubMed]

5. Dinstein, I.; Solomon, S.; Zats, M.; Shusel, R.; Lottner, R.; Gershon, B.B.; Meiri, G.; Menashe, I.; Shmueli, D. Two-fold increase in
the prevalence of autism in Israel between 2017 and 2021. medRxiv 2023. [CrossRef]

6. Fuller, E.A.; Kaiser, A.P. The effects of early intervention on social communication outcomes for children with autism spectrum
disorder: A meta-analysis. J. Autism Dev. Disord. 2020, 50, 1683–1700. [CrossRef] [PubMed]

7. Zwaigenbaum, L.; Bauman, M.L.; Choueiri, R.; Kasari, C.; Carter, A.; Granpeesheh, D.; Mailloux, Z.; Roley, S.S.; Wagner, S.; Fein,
D.; et al. Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and
research. Pediatrics 2015, 136 (Suppl. S1), S60–S81. [CrossRef] [PubMed]

8. American Academy of Pediatrics; Council on Children with Disabilities; Section on Developmental Behavioral Pediatrics; Bright
Futures Steering Committee; Medical Home Initiatives for Children with Special Needs Project Advisory Committee. Identifying
infants and young children with developmental disorders in the medical home: An algorithm for developmental surveillance
and screening. Pediatrics 2006, 118, 405–420. [CrossRef] [PubMed]

9. Siu, A.L.; Bibbins-Domingo, K.; Grossman, D.C.; Baumann, L.C.; Davidson, K.W.; Ebell, M.; García, F.A.R.; Gillman, M.;
Herzstein, J.; Kemper, A.R.; et al. Screening for autism spectrum disorder in young children: US preventive services task force
recommendation statement. JAMA 2016, 315, 691–696. [CrossRef] [PubMed]

10. Workgroup, Bright Futures Periodicity Schedule; Committee on Practice and Ambulatory Medicine; Simon, G. R.; Baker, C.N.;
Barden, G.A.; Brown, O.S.W., III; Hackell, J.M.; Hardin, A.P.; Meade, K.E.; Moore, S.B.; et al. 2016 recommendations for preventive
pediatric health care. Pediatrics 2016, 137, 1.

11. Barbaro, J.; Dissanayake, C. Autism spectrum disorders in infancy and toddlerhood: A review of the evidence on early signs,
early identification tools, and early diagnosis. J. Dev. Behav. Pediatr. 2009, 30, 447–459. [CrossRef]

12. Dawson, G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev. Psychopathol.
2008, 20, 775–803. [CrossRef] [PubMed]

13. Webb, S.J.; Jones, E.J.H.; Kelly, J.; Dawson, G. The motivation for very early intervention for infants at high risk for autism
spectrum disorders. Int. J. Speech Lang. Pathol. 2014, 16, 36–42. [CrossRef] [PubMed]

14. Sudry, T.; Zimmerman, D.R.; Yardeni, H.; Joseph, A.; Baruch, R.; Grotto, I.; Greenberg, D.; Eilenberg, R.; Amit, G.; Akiva, P.;
et al. Standardization of a developmental milestone scale using data from children in Israel. JAMA Netw. Open 2022, 5, e222184.
[CrossRef] [PubMed]

15. Sadaka, Y.; Sudry, T.; Zimmerman, D.R.; Tsadok, M.A.; Baruch, R.; Yardeni, H.; Ben Moshe, D.; Akiva, P.; Amit, G. Assessing
the attainment rates of updated CDC milestones using a new israeli developmental scale. Pediatrics 2022, 150, e2022057499.
[CrossRef] [PubMed]

16. Ben-Sasson, A.; Carter, A.S. The contribution of sensory–regulatory markers to the accuracy of ASD screening at 12 months. Res.
Autism Spectr. Disord. 2013, 7, 879–888. [CrossRef]

17. Ben-Sasson, A.; Habib, S.; Tirosh, E. Feasibility and validity of early screening for identifying infants with poor social-
communication development in a well-baby clinic system. J. Pediatr. Nurs. 2014, 29, 238–247. [CrossRef] [PubMed]

18. Landa, R.J.; Gross, A.L.; Stuart, E.A.; Faherty, A. Developmental trajectories in children with and without autism spectrum
disorders: The first 3 years. Child. Dev. 2013, 84, 429–442. [CrossRef]

19. Pierce, K.; Carter, C.; Weinfeld, M.; Desmond, J.; Hazin, R.; Bjork, R.; Gallagher, N. Detecting, studying, and treating autism early:
The one-year well-baby check-up approach. J. Pediatr. 2011, 159, 458–465. [CrossRef] [PubMed]

20. Brett, D.; Warnell, F.; McConachie, H.; Parr, J.R. Factors affecting age at ASD diagnosis in UK: No evidence that diagnosis age has
decreased between 2004 and 2014. J. Autism Dev. Disord. 2016, 46, 1974–1984. [CrossRef]

21. Daniels, A.M.; Mandell, D.S. Explaining differences in age at autism spectrum disorder diagnosis: A critical review. Autism 2013,
18, 583–597. [CrossRef]

22. Ozonoff, S.; Heung, K.; Byrd, R.; Hansen, R.; Hertz-Picciotto, I. The onset of autism: Patterns of symptom emergence in the first
years of life. Autism Res. 2008, 1, 320–328. [CrossRef] [PubMed]

23. Rogers, S.J. What are infant siblings teaching us about autism in infancy? Autism Res. 2009, 2, 125–137. [CrossRef]
24. Davidovitch, M.; Stein, N.; Koren, G.; Friedman, B.C. Deviations from typical developmental trajectories detectable at 9 months

of age in low risk children later diagnosed with autism spectrum disorder. J. Autism Dev. Disord. 2018, 48, 2854–2869. [CrossRef]
25. Macari, S.L.; Campbell, D.; Gengoux, G.W.; Saulnier, C.A.; Klin, A.J.; Chawarska, K. Predicting developmental status from 12

to 24 months in infants at risk for autism spectrum disorder: A preliminary report. J. Autism Dev. Disord. 2012, 42, 2636–2647.
[CrossRef]

26. Lipkin, P.H.; Macias, M.M.; Chen, B.B.; Coury, D.; Gottschlich, E.A.; Hyman, S.L.; Sisk, B.; Wolfe, A.; Levy, S.E. Trends in
pediatricians’ developmental screening: 2002–2016. Pediatrics 2020, 145, e20190851. [CrossRef]

27. Zwaigenbaum, L.; Bryson, S.; Lord, C.; Rogers, S.; Carter, A.; Carver, L.; Chawarska, K.; Constantino, J.; Dawson, G.; Dobkins,
K.; et al. Clinical assessment and management of toddlers with suspected autism spectrum disorder: Insights from studies of
high-risk infants. Pediatrics 2009, 123, 1383–1391. [CrossRef] [PubMed]

https://doi.org/10.1007/s10803-012-1611-z
https://www.ncbi.nlm.nih.gov/pubmed/22836322
https://doi.org/10.1002/aur.2696
https://www.ncbi.nlm.nih.gov/pubmed/35238171
https://doi.org/10.1101/2023.04.02.23287784
https://doi.org/10.1007/s10803-019-03927-z
https://www.ncbi.nlm.nih.gov/pubmed/30805766
https://doi.org/10.1542/peds.2014-3667E
https://www.ncbi.nlm.nih.gov/pubmed/26430170
https://doi.org/10.1542/peds.2006-1231
https://www.ncbi.nlm.nih.gov/pubmed/16818591
https://doi.org/10.1001/jama.2016.0018
https://www.ncbi.nlm.nih.gov/pubmed/26881372
https://doi.org/10.1097/DBP.0b013e3181ba0f9f
https://doi.org/10.1017/S0954579408000370
https://www.ncbi.nlm.nih.gov/pubmed/18606031
https://doi.org/10.3109/17549507.2013.861018
https://www.ncbi.nlm.nih.gov/pubmed/24410019
https://doi.org/10.1001/jamanetworkopen.2022.2184
https://www.ncbi.nlm.nih.gov/pubmed/35285917
https://doi.org/10.1542/peds.2022-057499
https://www.ncbi.nlm.nih.gov/pubmed/36398448
https://doi.org/10.1016/j.rasd.2013.03.006
https://doi.org/10.1016/j.pedn.2013.11.001
https://www.ncbi.nlm.nih.gov/pubmed/24333238
https://doi.org/10.1111/j.1467-8624.2012.01870.x
https://doi.org/10.1016/j.jpeds.2011.02.036
https://www.ncbi.nlm.nih.gov/pubmed/21524759
https://doi.org/10.1007/s10803-016-2716-6
https://doi.org/10.1177/1362361313480277
https://doi.org/10.1002/aur.53
https://www.ncbi.nlm.nih.gov/pubmed/19360687
https://doi.org/10.1002/aur.81
https://doi.org/10.1007/s10803-018-3549-2
https://doi.org/10.1007/s10803-012-1521-0
https://doi.org/10.1542/peds.2019-0851
https://doi.org/10.1542/peds.2008-1606
https://www.ncbi.nlm.nih.gov/pubmed/19403506


Children 2024, 11, 429 15 of 16

28. Allen, L.; Leon-Attia, O.; Shaham, M.; Shefer, S.; Gabis, L.V. Autism risk linked to prematurity is more accentuated in girls. PLoS
ONE 2020, 15, e0236994. [CrossRef]

29. Johnson, C.P.; Myers, S.M. Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120,
1183–1215. [CrossRef] [PubMed]

30. Wang, C.; Geng, H.; Liu, W.; Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism. Medicine 2017, 96, e6696.
[CrossRef]

31. Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.;
Dobkins, K.; et al. Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics 2011, 128,
e488–e495. [CrossRef]

32. Guedalia, J.; Lipschuetz, M.; Novoselsky-Persky, M.; Cohen, S.M.; Rottenstreich, A.; Levin, G.; Yagel, S.; Unger, R.; Sompolinsky,
Y. Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries. Am.
J. Obstet. Gynecol. 2020, 223, 437.e1–437.e15. [CrossRef] [PubMed]

33. Parlett-Pelleriti, C.M.; Stevens, E.; Dixon, D.; Linstead, E.J. Applications of unsupervised machine learning in autism spectrum
disorder research: A review. Rev. J. Autism Dev. Disord. 2023, 10, 406–421. [CrossRef]

34. Stevens, E.; Dixon, D.R.; Novack, M.N.; Granpeesheh, D.; Smith, T.; Linstead, E. Identification and analysis of behavioral
phenotypes in autism spectrum disorder via unsupervised machine learning. Int. J. Med. Inform. 2019, 129, 29–36. [CrossRef]
[PubMed]

35. Milano, N.; Simeoli, R.; Rega, A.; Marocco, D. A deep learning latent variable model to identify children with autism through
motor abnormalities. Front. Psychol. 2023, 14, 1194760. [CrossRef] [PubMed]

36. Maharjan, J.; Garikipati, A.; Dinenno, F.A.; Ciobanu, M.; Barnes, G.; Browning, E.; DeCurzio, J.; Mao, Q.; Das, R. Machine learning
determination of applied behavioral analysis treatment plan type. Brain Inform. 2023, 10, 7. [CrossRef] [PubMed]

37. Lingren, T.; Chen, P.; Bochenek, J.; Doshi-Velez, F.; Manning-Courtney, P.; Bickel, J.; Wildenger Welchons, L.; Reinhold, J.; Bing, N.;
Ni, Y.; et al. Electronic health record based algorithm to identify patients with autism spectrum disorder. PLoS ONE 2016, 11,
e0159621.

38. Leroy, G.; Gu, Y.; Pettygrove, S.; Galindo, M.K.; Arora, A.; Kurzius-Spencer, M. Automated extraction of diagnostic criteria from
electronic health records for autism spectrum disorders: Development, evaluation, and application. J. Med. Internet Res. 2018, 20,
e10497. [CrossRef] [PubMed]

39. Maenner, M.J.; Yeargin-Allsopp, M.; Van Naarden Braun, K.; Christensen, D.L.; Schieve, L.A. Development of a machine learning
algorithm for the surveillance of autism spectrum disorder. PLoS ONE 2016, 11, e0168224. [CrossRef] [PubMed]

40. Rahman, R.; Kodesh, A.; Levine, S.Z.; Sandin, S.; Reichenberg, A.; Schlessinger, A. Identification of newborns at risk for autism
using electronic medical records and machine learning. Eur. Psychiatry 2020, 63, e22. [CrossRef]

41. Ejlskov, L.; Wulff, J.N.; Kalkbrenner, A.; Ladd-Acosta, C.; Fallin, M.D.; Agerbo, E.; Mortensen, P.B.; Lee, B.K.; Schendel, D.
Prediction of autism risk from family medical history data using machine learning: A national cohort study from denmark. Biol.
Psychiatry Glob. Open Sci. 2021, 1, 156–164. [CrossRef]

42. Thabtah, F. An accessible and efficient autism screening method for behavioural data and predictive analyses. Health Inform. J.
2018, 25, 1739–1755. [CrossRef] [PubMed]

43. Israel Ministry of Health. Developmental Assessments Guidelines for up to Age Six. 2016. Available online: https://www.health.
gov.il/hozer/bz12_2016.pdf (accessed on 3 January 2021).

44. Frankenburg, W.K.; Dodds, J.B. The Denver developmental screening test. J. Pediatr. 1967, 71, 181–191. [CrossRef] [PubMed]
45. World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 9th ed.; World Health

Organization: Geneva, Switzerland, 1979.
46. Shevell, M.I.; Ashwal, S.; Donley, D.; Flint, J.; Gingold, M.; Hirtz, D.; Majnemer, A.; Noetzel, N.; Sheth, R.D. Practice parameter:

Evaluation of the child with global developmental delay: Report of the quality standards subcommittee of the american academy
of neurology and the practice committee of the child neurology society. Neurology 2003, 60, 367–380. [CrossRef] [PubMed]

47. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv.
Neural Inf. Process Syst. 2018, 31, 6638–6648. [CrossRef]

48. Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [CrossRef]
49. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017, 30, 4765–4774.

[CrossRef]
50. Vidgen, B.; Yasseri, T. P-values: Misunderstood and misused. Front Psychol. 2016, 4, 6. [CrossRef]
51. Hyman, S.L.; Levy, S.E.; Myers, S.N.; Kuo, D.Z.; Apkon, S.; Davidson, L.F.; Ellerbeck, K.A.; Foster, J.E.A.; Noritz, G.H.; Leppert,

M.O.; et al. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics 2020, 145, e20193447.
[CrossRef] [PubMed]

52. Zwaigenbaum, L.; Bryson, S.; Garon, N. Early identification of autism spectrum disorders. Behav. Brain Res. 2013, 251, 133–146.
[CrossRef]

53. Tseng, P.-T.; Yen, C.-F.; Chen, Y.-W.; Stubbs, B.; Carvalho, A.F.; Whiteley, P.; Chu, C.-S.; Li, D.-J.; Chen, T.-Y.; Tang, C.-H.; et al.
Maternal breastfeeding and attention-deficit/hyperactivity disorder in children: A meta-analysis. Eur. Child. Adolesc. Psychiatry
2018, 28, 19–30. [CrossRef]

https://doi.org/10.1371/journal.pone.0236994
https://doi.org/10.1542/peds.2007-2361
https://www.ncbi.nlm.nih.gov/pubmed/17967920
https://doi.org/10.1097/MD.0000000000006696
https://doi.org/10.1542/peds.2010-2825
https://doi.org/10.1016/j.ajog.2020.05.025
https://www.ncbi.nlm.nih.gov/pubmed/32434000
https://doi.org/10.1007/s40489-021-00299-y
https://doi.org/10.1016/j.ijmedinf.2019.05.006
https://www.ncbi.nlm.nih.gov/pubmed/31445269
https://doi.org/10.3389/fpsyg.2023.1194760
https://www.ncbi.nlm.nih.gov/pubmed/37275723
https://doi.org/10.1186/s40708-023-00186-8
https://www.ncbi.nlm.nih.gov/pubmed/36862316
https://doi.org/10.2196/10497
https://www.ncbi.nlm.nih.gov/pubmed/30404767
https://doi.org/10.1371/journal.pone.0168224
https://www.ncbi.nlm.nih.gov/pubmed/28002438
https://doi.org/10.1192/j.eurpsy.2020.17
https://doi.org/10.1016/j.bpsgos.2021.04.007
https://doi.org/10.1177/1460458218796636
https://www.ncbi.nlm.nih.gov/pubmed/30230414
https://www.health.gov.il/hozer/bz12_2016.pdf
https://www.health.gov.il/hozer/bz12_2016.pdf
https://doi.org/10.1016/S0022-3476(67)80070-2
https://www.ncbi.nlm.nih.gov/pubmed/6029467
https://doi.org/10.1212/01.WNL.0000031431.81555.16
https://www.ncbi.nlm.nih.gov/pubmed/12578916
https://doi.org/10.48550/arXiv.1706.09516
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.3389/fphy.2016.00006
https://doi.org/10.1542/peds.2019-3447
https://www.ncbi.nlm.nih.gov/pubmed/31843864
https://doi.org/10.1016/j.bbr.2013.04.004
https://doi.org/10.1007/s00787-018-1182-4


Children 2024, 11, 429 16 of 16

54. Landa, R.; Garrett-Mayer, E. Development in infants with autism spectrum disorders: A prospective study. J. Child. Psychol.
Psychiatry 2006, 47, 629–638. [CrossRef] [PubMed]

55. Surén, P.; Stoltenberg, C.; Bresnahan, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.; Schjølberg, S.;
Susser, E.; et al. Early growth patterns in children with autism. Epidemiology 2013, 24, 660–670. [CrossRef] [PubMed]

56. Kamer, A.; Zohar, A.H.; Youngmann, R.; Diamonds, G.W.; Inbar, D.; Senecky, Y.A. Prevalence estimate of pervasive developmental
disorder among immigrants to Israel and Israeli natives: A file review study. Soc. Psychiatry Psychiatr. Epidemiol. 2004, 39, 141–145.
[CrossRef] [PubMed]

57. Guthrie, W.; Wallis, K.; Bennett, A.; Brooks, E.; Dudley, J.; Gerdes, M.; Pandey, J.; Levy, S.E.; Schultz, R.T.; Miller, J.S. Accuracy of
autism screening in a large pediatric network. Pediatrics 2021, 144, e20183963. [CrossRef] [PubMed]

58. de Leeuw, A.; Happé, F.; Hoekstra, R.A. A conceptual framework for understanding the cultural and contextual factors on autism
across the globe. Autism Res. 2020, 13, 1029–1050. [CrossRef]

59. Gabis, L.V.; Shaham, M.; Attia, O.L.; Shefer, S.; Rosenan, R.; Gabis, T.; Daloya, M. The weak link: Hypotonia in infancy and autism
early identification. Front. Neurol. 2021, 12, 612674. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1469-7610.2006.01531.x
https://www.ncbi.nlm.nih.gov/pubmed/16712640
https://doi.org/10.1097/EDE.0b013e31829e1d45
https://www.ncbi.nlm.nih.gov/pubmed/23867813
https://doi.org/10.1007/s00127-004-0696-x
https://www.ncbi.nlm.nih.gov/pubmed/15052396
https://doi.org/10.1542/peds.2018-3963
https://www.ncbi.nlm.nih.gov/pubmed/31562252
https://doi.org/10.1002/aur.2276
https://doi.org/10.3389/fneur.2021.612674

	Introduction 
	Materials and Methods 
	Study Design and Ethics 
	Data Source 
	Case Definitions 
	Data Preparation 
	Analysis 
	ML Modeling 
	Group Comparisons 


	Results 
	Descriptive Statistics 
	ML Model Predicting Risk Score for ASD 
	Results from a Representative Fold 
	Subgroup ML Analyses by Sex and Birth Year 
	Validity of the Model’s High-Risk Group 

	Discussion 
	Limitations 
	Conclusions 
	References

