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Abstract: Autoimmunity is defined as the inability to regulate immunological activities in the body,
especially in response to external triggers, leading to the attack of the tissues and organs of the host.
Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated
immune responses. In past years, there have been cases that show an increased susceptibility to other
autoimmune disorders in patients who are already experiencing the same type of disease. Research in
this field has started analyzing the potential molecular and cellular causes of this interconnectedness,
bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity.
With that, this study aimed to determine the correlation of four autoimmune diseases, which are type
1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE),
by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional
annotation was then employed to characterize these sets of genes based on their systemic relationship
as a whole to elucidate the biological processes, cellular components, and molecular functions of the
pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate
drugs for repositioning that could regulate the abnormal expression of genes among the diseases.
A total of thirteen modules were obtained from the analysis, the majority of which were associated
with transcriptional, post-transcriptional, and post-translational modification processes. Also, the
evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous
onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating
overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed
hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment
of microarray data, which is different from the use of traditional genomic analyses. Such a research
design for investigating correlations among autoimmune diseases may be the first of its kind.

Keywords: autoimmunity; immune dysregulation; hub genes; cytokines; autoantibodies

1. Introduction

Autoimmune diseases are a group of immunity disorders defined by an aberrant
immune response in which the body’s tissues, cells, and organs are unintentionally targeted
and attacked. In such conditions, the immune system, which is specialized to protect
the body from foreign invaders such as pathogens and transplanted material, becomes
dysfunctional in distinguishing the identity between “self” and “non-self” molecules. Gen-
eral manifestations include inflammation, skin problems, and fatigue, and the worst is
damage to organs and tissues due to misdirection of the immune response [1]. More than
100 autoimmune disorders have been identified, such as type 1 diabetes, psoriasis, systemic
sclerosis, and systemic lupus erythematosus. Although the symptoms and origins of the
diseases vary, the underlying cause that drives these complications is the same. The etiology

Genes 2024, 15, 393. https://doi.org/10.3390/genes15040393 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15040393
https://doi.org/10.3390/genes15040393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0009-0001-5081-9263
https://doi.org/10.3390/genes15040393
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15040393?type=check_update&version=1


Genes 2024, 15, 393 2 of 29

of autoimmune diseases is multifactorial, encompassing both genetic influences and envi-
ronmental susceptibilities. Management may be long-term, since most can lead to chronic
health issues and an increased likelihood of developing other autoimmune diseases.

One of the most common autoimmune diseases occurring worldwide is type 1 diabetes
(T1D). Also known as insulin-dependent diabetes, T1D is a condition in which the immune
system attacks pancreatic β cells that are responsible for producing insulin in the body.
The inability to produce insulin results in elevated blood glucose levels, since excess
glucose molecules cannot be properly stored. T1D is often characterized by insulitis,
inflammation of the islets of Langerhans found in the pancreas, and the presence of β-cell
autoantibodies, biomarkers for pancreatic damage caused by T1D [2]. It was found that
T1D has a strong correlation with human MHC class II isotypes HLA-DR and HLA-DQ
located on chromosome 6. Around 95% of T1D patients express the haplotypes DR3 and
DR4, which are associated with haplotypes DQA1*0301-B1*0302 [3].

Moreover, psoriasis (PSR) is a chronic autoimmune skin condition caused by the
hyperproliferation of keratinocytes mediated by T cells. The origin of PSR is yet to be fully
unraveled; nevertheless, current research suggests that the disease is a manifestation of
an overactive immune system, leading to the rapid growth of skin cells [4]. In normal
human skin conditions, the ratio of proliferating to nonproliferating keratinocytes is about
50–60%; meanwhile, the same ratio in PSR patients is almost 100% [5]. PSR has several
types, which are classified according to which part of the body the rash is observed. PSR
rash is characterized by red and silvery-white, scaly plaques on the skin, and in the worst
scenarios, it may include the formation of skin lesions. At present, HLA-Cw*0602, an
MHC class I molecule, remains the primary genetic indicator of human PSR susceptibility.
HLA-Cw*0602 plays a vital role in the presentation of cytoplasmic antigens to CD8+ T
cells, which, as previously mentioned, are immune cells known to play a crucial role in the
expression of PSR [6].

Systemic sclerosis (SSc) or scleroderma is another untreatable autoimmune disease
caused by the overreaction of the immune system. The etiology of the disease is still
unknown, but underlying effects involve abnormalities in the microvascular network
and connective tissues [7]. Cell-mediated autoimmunity, fibroproliferative vasculopathy,
and fibroblast dysfunction are the common manifestations of SSc [8]. Morphea, which is
characterized by the swollen-like appearance of the fingers, hands, arms, legs, and face
due to the thickening of skin patches, is often observed among SSc patients. Aside from
that, complications also affect the blood vessels and other internal organs, including the
heart, kidneys, and lungs. A misdirected immune response triggers inflammation of the
tissues as if they were damaged, and this causes the body to overproduce collagen in
response to the reaction. Just like T1D, the genetic risk factor of SSc is associated with the
presence of MHC class II molecules. Haplotypes HLA-DRB1*11-DQB1*0301 are found
to be related to the presence of anti-topoisomerase I autoantibodies, while haplotypes
HLA-DRB1*01-DQB1*0501 are related to the presence of anti-centromere antibodies [9].

Furthermore, just like other autoimmune diseases, systemic lupus erythematosus
(SLE) also occurs when the immune system begins to attack the body’s tissues and organs.
Production of autoantibodies is the primary immunologic disturbance commonly occurring
among SLE patients. These are generally directed toward “self” molecules found at various
cellular sites, including the nucleus, cytoplasm, and cell membrane [10]. Vasculopathy,
inflammation of the skin, and immune complex deposition are also pathological findings
associated with SLE, and it was found that these manifestations have strong correlations
with other autoimmune diseases such as thyroiditis and hemolytic anemia [11]. The
haplotypes DR2 and DR3, coming from the HLA class II family, are also linked to SLE.
This association accounts for the significant presence of certain autoantibodies, such as
anti-Sm, anti-nRNP, and anti-DNA antibodies, during its onset. Aside from that, the genetic
susceptibility of the disease is also caused by certain HLA class III molecules, specifically
those responsible for activating the production of complement molecules C2 and C4 [12].
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Weighted Gene Co-Expression Network Analysis (WGCNA) is a powerful bioinfor-
matics method primarily designed for analyzing and interpreting high-dimensional gene
expression data. It is an R package specifically useful in identifying co-expression pat-
terns among genes and exploring the relationships between these and various phenotypes.
WGCNA classifies genes into modules or clusters according to how similar their patterns
of expression are in different samples [13]. By accounting for the weighted correlations
among these genes, this approach makes it possible to identify nuanced co-expression inter-
actions that conventional correlation analyses might have overlooked. The term “weighted”
in WGCNA alludes to the fact that it uses varying weights to indicate distinct pairwise
gene correlations, downweighing weaker correlations while emphasizing stronger correla-
tions [14]. Functionally related genes are those that have a similar pattern of expression and
are closely associated with one another within a module. A more comprehensive under-
standing of the biological pathways and mechanisms that underlie the observed patterns
of gene expression can be obtained through this arrangement. The ability of WGCNA to
identify gene modules that are co-expressed and linked to particular traits is one advantage
in studying systems biology [15]. Modules that are biologically related to a phenotype can
be recognized by comparing module eigengenes, which are summary profiles of module
expression. This may result in the discovery of putative biomarkers and therapeutic targets
or provide a better understanding of molecular processes underlying a certain disease.

In this study, we used WGCNA in identifying gene expression patterns across
four autoimmune diseases: T1D, PSR, SSc, and SLE. Recent studies have shown the pos-
sible coexistence of these conditions, and medical records have presented actual cases
where these were manifested among patients with aggravated autoimmune conditions.
Moreover, we determined highly preserved co-expressed genes among the datasets for
functional annotation to determine common pathways that could enlighten the underlying
genetic factors that explain the interconnectedness of the four diseases, answering the
question as to why patients with an already-existing autoimmune disease a have high risk
of developing another autoimmune disorder. We also highlight the hub genes present
among the modules that play a central role in the common manifestations of the diseases.
Drug repurposing analysis was also undertaken to present possible drugs that may regulate
them. This study tackles the problem at the transcriptomics level, which is different from
most medical research, whose objectives are geared towards genomic assessment. The use
of WGCNA as a method for gene expression analyses of autoimmune diseases may be a
novel approach in terms of opening opportunities to address gaps in drug development
and therapy.

2. Materials and Methods
2.1. Evaluation of Autoimmune Disease Candidates

Microarray data of the four diseases were obtained from the National Center for
Biotechnology Information—Gene Expression Omnibus (NCBI-GEO) [https://www.ncbi.
nlm.nih.gov/geo/ (accessed on 10 January 2024)]. It is an online public repository of
genomics data, including multifarious microarray and high-throughput sequencing data,
submitted by various research institutes all over the world. The GEO datasets used in the
study were evaluated based on the following set of criteria for uniformity: (1) the samples
must have been obtained from humans or Homo sapiens, (2) the sample source must have
been extracted from blood, (3) the experiment type must be ‘expression profiling by array’,
(4) the platform used must be Affymetrix Human Genome U133 Plus 2.0 Array, (5) the
number of positive samples must be ≥20, and (6) the number of negative controls must be
≥20. Only those GEO datasets that complied with the mentioned parameters and that had
available TAR (of CEL) supplementary files were chosen for the study. A summary of the
GEO datasets used in the study is shown in Table 1.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. The parameters used in identifying the GEO datasets for the study.

T1D (GSE35725) PSR (GSE55201) SSc (GSE65336) SLE (GSE61635)

Organism H. sapiens

Sample Type Blood

Experiment Type Expression profiling by array

Platform Affymetrix Human Genome U133 Plus 2.0 Array (GPL570)

No. of Positive Samples 44 44 29 64

No. of Negative Controls 44 30 29 30

The chosen T1D dataset (GSE35725) contains 44 positive samples and 44 negative
controls taken from a study that sought to identify expressed genes in the peripheral
blood mononuclear cells of T1D patients [16]. The chosen PSR dataset (GSE55201) contains
44 positive samples and 30 negative controls taken from a study that characterized tran-
scriptional changes in the blood of PSR patients after IL-17 treatment [17]. The chosen SSc
dataset (GSE65336) contains 29 positive samples and 29 negative controls taken from a
study that aimed to evaluate the effects of anifrolumab and type 1 IFN in the regulation of
scleroderma [18]. Lastly, the chosen SLE dataset (GSE61635) contains 64 positive samples
and 30 negative controls taken from a study that assessed gene expression profiles between
SLE patients and healthy donors, focusing on cytokines central to B-cell activation and
differentiation [19].

2.2. Preliminary Screening through Differential Expression Analysis

To show the possible coexistence of the four diseases, a preliminary analysis was per-
formed by determining the presence of overlapping differentially expressed genes (DEGs)
among the four datasets through differential expression analysis (DEA) via GEO2R accessed
from the NCBI-GEO web server. GEO2R [https://www.ncbi.nlm.nih.gov/geo/geo2r/ (ac-
cessed on 10 January 2024)] is a bioinformatics tool that compares two or more groups
of microarray samples to determine genes that are highly expressed or regulated across
varying experimental conditions. To reduce false positives by adjusting the p-values of
the samples, Benjamini and Hochberg’s false-discovery rate was employed [20]. Mean-
while, the limma precision weights or vooma were used to calculate the mean–variance
relationship [21]. Force normalization was applied for the log transformation and identical
value distribution of the samples. Only those genes that passed the adjusted p-value
cutoff of <0.05 were retained and grouped either as upregulated, for a log2fold (FC)
score of 0, or downregulated, for an FC score < 0. Both groups obtained from the
four datasets were then sent to the Bioinformatics & Evolutionary Genomics web server
[https://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 10 January 2024)] to
identify overlapping DEGs across the diseases using a Venn diagram.

2.3. Weighted Gene Co-Expression Analysis (WGCNA) of Datasets
2.3.1. Pre-Processing of Datasets

Using Bioconductor v3.18 [https://www.bioconductor.org/ (accessed on 10 January
2024)], which is an open software equipped with features for computational biology stud-
ies, each dataset was loaded into the R program v4.3.2 [https://cran.r-project.org/bin/
windows/base/ (downloaded on 24 January 2024)] for pre-processing. Along with that,
the “affy” and “biomaRt” packages were also installed, the former of which is intended
for oligonucleotide array analysis and the latter of which is used for the easy and uniform
retrieval of large data without the need for complex database schemas [22]. Each raw data
point obtained from the datasets was normalized using the Robust Microarray Analysis
(RMA) function in the program. Then, the expression data of the four datasets were ex-
tracted, unnecessary extensions found in the samples were eliminated, and control probes
were removed. After which, the mean and variance of the expression data were calculated

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.bioconductor.org/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
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and the 20% percentile of each was determined. The expression data were filtered such
that only those genes that obtained a mean and variance higher than the 20% cutoff were
retained. IDs of common probes among the expression data were converted to gene sym-
bols, and those entries without gene symbols were removed. Finally, the expression data
were subjected to log-2 transformation using the “goodSamplesGenesMS” function to filter
out genes that contained missing values. Initial weighted gene co-expression networks
were also generated with the aid of scattered plot diagrams to check the comparability of
the datasets before modularization. Each dataset was compared to the others, with plots
showing the following dataset comparisons: T1D vs. PSR, T1D vs. SSc, T1D vs. SLE, PSR
vs. SSc, PSR vs. SLE, and SSc vs. SLE.

2.3.2. Quantitative Determination of Reference Dataset

The soft-thresholding power (β) was determined by plotting the network topology of
each dataset, as well as the mean and median connectivity fits to confirm the result, using
the “pickSoftThreshold” function from the WGCNA package. The value of β at which the
plots begin to flatten out was chosen as the soft-thresholding power in constructing the
respective scale-free topologies of the datasets. To further evaluate the β of choice, scatter
plots were generated, and the correlation coefficient of each was calculated. The dataset
with the highest fit at a particular value of β and the highest correlation coefficient was
used as the reference dataset for succeeding analyses.

2.3.3. Formulation of Co-Expression Networks

The chosen value of β was then utilized to calculate the adjacency matrices of the
reference dataset using the “adjacency” function through a “signed” network type via
Pearson’s correlation. After this, the results were subjected to topological overlap measure
(TOM) dissimilarity using the “1-TOMsimilarity” function through a “signed” TOM type.
This was to perform hierarchical clustering of the genes in the reference dataset to identify
co-expression networks or functional modules within the clusters. A dendrogram was then
plotted to show the tips of the branches, which are associated with those highly correlated
genes found in the reference dataset. These tips denote the clusters from which modules
were identified. Aside from that, a dynamic tree-cutting algorithm was also utilized using
the hybrid tree cut. A deep-split parameter ranging from 0 to 3 was evaluated to control
the sensitivity of the algorithm, as well as to better visualize the distribution of the modules
per deep split.

2.3.4. Calculation of Module Preservation and Membership

Using the “modulepreservation” function from the WGCNA package through a
“signed” network type, the weighted gene co-expression network preservation of the
reference dataset was calculated relative to the other three datasets. The number of per-
mutations was set to 100, and the maximum module size was set to 10,658, which is the
total number of genes obtained from the grey module. Those modules that were found
to be highly preserved across the datasets, that is, modules that obtained a z-score >10
in the other three datasets, were used for succeeding analyses. Afterward, the modules
were further processed by calculating the eigengene-based connectivity (kME) of each
gene using the “moduleEigengenes” function from the WGCNA package to quantify their
respective connectivity among the other genes within the module. The module membership
of each dataset was then programmed by correlating the eigengene and expression profile
of each gene, and these were ranked from highest to lowest within the modules. Scatter
plot diagrams under a set p-value < 0.05 were drawn to visualize these correlations.

2.4. Functional Annotation of Pathway Enrichment of Modules

Each module was sent to the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) web server for functional annotation clustering [23,24]. DAVID [https:
//david.ncifcrf.gov/ (accessed on 10 January 2024)] is a bioinformatics tool provided by

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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the National Institute of Health (NIH) that contains sophisticated functional annotation
programs for better understanding the biological mechanisms underlying sets of genes.
Due to the limitation of the web server, only the top 3000 genes based on the ranking
from the module membership were used for this analysis. Biological process (BP), cellular
component (CC), and molecular function (MF) under the gene ontology classification and
KEGG under the pathway classification were the selected annotations for clustering the
genes in each module, with stringency set to “medium”. Only the terms with the highest
enrichment scores and p-values < 0.05 were recorded for each annotation from every
module and were sent to the SRplot web server [http://www.bioinformatics.com.cn/srplot
(accessed on 10 January 2024)] for enrichment bubble visualization.

2.5. Identification of Hub Genes from Protein–Protein Interaction (PPI) Networks

The stringApp v2.0.2 [https://apps.cytoscape.org/apps/stringapp (downloaded on
10 January 2024)] and cytoHubba v0.1 [https://apps.cytoscape.org/apps/cytohubba (down-
loaded on 10 January 2024)] applications were installed in the Cytoscape v3.10.1 [https:
//cytoscape.org/index.html (downloaded on 10 January 2024)] software prior to net-
work analysis. StringApp is intended for augmentation of PPI networks sourced from
the Search Tool for Recurring Instances of Neighbouring Genes (STRING) v12.0 [https:
//string-db.org/ (accessed on 10 January 2024)] web database, while cytoHubba is spe-
cialized for predicting nodes and subnetworks in a PPI network to explore hub genes
based on various topological algorithms. Each module was uploaded to the Cytoscape
software under a minimum interaction score of 0.7, which is equivalent to a high confidence
level, and a large network of interactions was generated for each module. After which,
the constructed network was submitted to cytoHubba to identify the central hub genes
for every module. The following three topological algorithms were utilized: maximum
neighborhood component (MNC), degree, and closeness. The top 50 hub genes were
obtained for each algorithm, and using the same Venn diagram online tool, the overlapping
hub genes in all three algorithms were identified and analyzed further. A PPI network was
drawn from Cytoscape to calculate the connectivity among these hub genes.

2.6. Drug Repurposing Analysis of Hub Genes

All the hub genes were sent again to GEO2R for DEA, where they were classified either
as upregulated or downregulated. The two groups were then fed to the Drug Repurposing
Encyclopedia (DRE) web server, where they were subjected to drug repurposing. The
DRE [https://www.drugrep.org/drugrepurposinganalysis (accessed on 10 January 2024)]
is an online drug discovery platform that is referenced from four large drug databases
intended for drug repurposing analyses, screening over a total of 4690 consensus drugs
from 20 studied organisms [25]. The DEGs were treated as gene signatures and inputted
into the DRE. Drugs whose status is either experimental or withdrawn were excluded.
Only the top 5 drugs with the most negative Tau scores, FDR values < 0.05, and that are
approved for human use were recorded.

3. Results
3.1. Preliminary Screening through Differential Expression Analysis

All four datasets were sent to GEO2R for DEA, in which DEGs were identified by com-
paring changes in the expression of genes between the positive samples and the negative
controls. The DEGs from each dataset were grouped either as upregulated or downregu-
lated based on a set adjusted p-value and FC thresholds. The T1D dataset has 420 upregu-
lated DEGs and 274 downregulated DEGs, the PSR dataset has 332 upregulated DEGs and
318 downregulated DEGs, the SSc dataset has 612 upregulated DEGs and 776 downregu-
lated DEGs, and the SLE dataset has 761 upregulated DEGs and 366 downregulated DEGs.

http://www.bioinformatics.com.cn/srplot
https://apps.cytoscape.org/apps/stringapp
https://apps.cytoscape.org/apps/cytohubba
https://cytoscape.org/index.html
https://cytoscape.org/index.html
https://string-db.org/
https://string-db.org/
https://www.drugrep.org/drugrepurposinganalysis
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After this, the DEGs were compared across the datasets to determine or identify
overlapping DEGs within the two groups using a Venn diagram, as shown in Figure 1.
This further confirms the possible genetic coexistence of the four diseases, with 30 common
upregulated DEGs and 33 common downregulated DEGs.
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3.2. Normalization and Filtering of Datasets

Using the R program, the datasets were normalized via the RMA method, and the
expression data from the results were extracted. Furthermore, unnecessary extensions and
control probes were removed. The remaining genes that obtained a mean and variance
greater than the 20% cutoff were converted into gene symbols, and those without gene
symbols were eliminated. Lastly, log-2 transformation was performed, and those with
missing values from the expression data were filtered out. After a series of pre-processing
steps, a total of 20,350 genes remained. Moreover, Figure S1 shows the general network
properties of the datasets as initial constructs for comparability testing. All the obtained
ranked expression scattered plot diagrams exhibited positive correlation, which suggests
the presence of co-expression genes among the datasets. The SSc vs. SLE comparison
attained the highest correlation coefficient of 0.87, while the PSR vs. SLE comparison
attained the lowest correlation coefficient of 0.67. Aside from the presence of common
DEGs, these results further support the viability of the samples to be used for WGCNA.

3.3. Approximation of Scale-Free Networks

A scale-free topology model fit, including the mean and median connectivity fits, of
the datasets was generated to determine the appropriate soft-thresholding power (β) in
constructing the network model. As observed in Figure 2a, the datasets started to flatten out
at a β value of 20; thus, it was chosen for calculating the adjacency matrices. At the lowest
β value, SLE had the lowest scale-free topology fit, while PSR had the highest fit. However,
only T1D, SSc, and SLE had a steady exponential increase in slope with an increasing β.
PSR showed inconsistencies in its plot, as characterized by the variations in its slope with
β values in the range of 5–12, but eventually flattened out at 20. At this chosen β, PSR
attained the lowest scale-free topology fit, while SSc obtained the highest fit.
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Figure 2. Network index plots for determining the soft-thresholding power approximated from the
four datasets: (a) scale-free topology model fit; (b) mean connectivity; (c) median connectivity. The
mean and median connectivity plots measure the average and intermediate number of connections
per gene, respectively, in the network construct, supporting the overall interconnectedness and
suitability of the chosen β.

The choice of 20 as the β value for constructing the network model was further
confirmed by the plots obtained from the mean and median connectivity fits. As seen
in Figure 2b,c, the datasets exhibited mean and median connectivity at a β value of 20,
although there was greater connectivity in the median fit than the mean fit, as shown by
the difference in the overlapping of the plots between the two figures. Overlapping started
at a β value of 18 in the mean connectivity, while it started at 14 in the median connectivity.

Subsequently, scatter plots of the four datasets, as shown in Figure 3, were drawn,
and their respective correlation coefficients were calculated to provide another quantitative
basis for choosing the reference dataset. SSc had the highest correlation coefficient of 0.83,
followed by T1D with 0.8 and PSR and SLE with 0.76.
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Genes 2024, 15, 393 9 of 29

Based on the scale-free topology model fit and straight-line relationship results, SSc
was chosen as the reference dataset for modeling the co-expression networks. However,
aside from solely relying on the computations in choosing the reference dataset, it has been
reported that among the four diseases, SSc commonly coexists with either T1D, PSR, or
SLE in patients with an aggravated autoimmune condition.

One study reported the coexistence of T1D and SSc when a 14-year-old T1D patient
was found to have developed SSc upon the diagnosis of cheiroarthropathy, which is charac-
terized by the thickening of dorsal and palmar surfaces of the skin due to long-standing
uncontrolled diabetes [26]. Positive autoantibodies, aberrant nailfold capillaroscopy with
scleroderma patterns, interstitial lung disease, and cardiac involvement were all detected
after a thorough work-up of the case, which confirmed the diagnosis of SSc in the pa-
tient [27–29]. On the other hand, TH17 cells and IL-17 molecules were found to be involved
in the pathogenesis of both PSR and SSc [30,31]. In SSc, B cells aid CD4+ T cells to develop
into TH17 cells [32], and the TH17-cell count suggests how the severity of SSc can prime the
development of PSR [33]. IL-17 produced by TH17 cells plays a mechanistic role in collagen
overproduction and fibroblast proliferation, which are manifestations in both SSc and PSR,
elucidating the significant impact of this pathway on their coexistence [34]. Lastly, SSc and
SLE are comparatively defined as multisystem autoimmune connective tissue diseases [35].
There are many similarities between SLE and SSc, including autoantibodies against nuclear
antigens and, in certain cases, similar clinical characteristics. There is growing evidence
supporting the correlations between SSc and SLE at the gene level, such as the presence
of IRF5 [36–38] and PTPN22 [39–41] involved in their pathways. These genes are linked
to high serum levels of IFN-α in SLE patients [42,43], further confirming its possible and
simultaneous occurrence with SSc.

3.4. Identification of Co-Expressed Modules

Choosing a reference dataset and projecting the eigengenes of other datasets against
the reference is one meta-analytical approach in WGCNA [44–47]. The number of samples,
the scale-free network, and the TOM-based gene dendrogram of the reference affect the
robustness of the calculated network [47,48]. From the network construct modeled from
the calculated adjacency matrices of the SSc dataset, TOM dissimilarity and a dynamic
tree-cutting algorithm were applied to determine highly correlated genes from where the
modules were identified. A dendrogram was drawn to show the tips that are associated
with those highly correlated genes in the SSc dataset. On the other hand, a deep-split
parameter of 0–3 was used to visualize possible modules that can be obtained from these
correlated genes. Figure S2 displays the dendrogram of gene clustering in the SSc dataset,
where it can be observed that the tips from the dendrogram could be associated with
particular modules in a certain deep-split parameter generated from the dynamic tree-
cutting algorithm.

Using a deep-split parameter of 1 to obtain larger modules while maintaining effi-
ciency in the sensitivity of the algorithm [49], we obtained 25 co-expression modules that
are represented by various colors, as seen in Figure 4. The turquoise module contains
1476 genes, the blue module contains 1356 genes, the brown module contains 951 genes,
the yellow module contains 761 genes, the green module contains 730 genes, the red mod-
ule contains 619 genes, the black module contains 523 genes, the pink module contains
358 genes, the magenta module contains 327 genes, the purple module contains 285 genes,
the green–yellow module contains 268 genes, the tan module contains 248 genes, the cyan
module contains 245 genes, the salmon module contains 245 genes, the light-cyan module
contains 229 genes, the midnight-blue module contains 229 genes, the grey60 module
contains 209 genes, the light-green module contains 200 genes, the light-yellow module
contains 183 genes, the royal-blue module contains 164 genes, the dark-red module contains
128 genes, the dark-green module contains 116 genes, the gold module contains 100 genes,
the dark-turquoise module contains 78 genes, and the dark-grey module contains 44 genes.
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Figure 4. Dendrogram of the reference dataset containing co-expressed genes clustered into networks
that are represented by modules. Modules coming from the same branch have relatively similar
expression patterns but may have different biological manifestations.

3.5. Module Preservation and Module Membership

The modules obtained from SSc were quantitatively compared to the T1D, PSR, and
SLE datasets by computing their respective z-scores to measure the density and connectivity
of the modules. Those that obtained a z-score < 10 across the three datasets were considered
highly preserved [50]. Differences in the z-scores of the modules in the three datasets
suggest that the modeled co-expression networks showed variations in conservation among
the diseases. Some of the modules may be highly preserved in one disease and may be
poorly preserved in another, and these instances could be due to genes that are only specific
for a certain disease. Those modules that passed the z-score threshold in all three datasets
were then subjected to module membership.

Figure 5 shows the preservation analysis of the 25 modules from the SSc network.
Only 13 modules were highly preserved across the three datasets, as follows: turquoise,
brown, red, magenta, green yellow, tan, cyan, salmon, midnight blue, grey60, light green,
light yellow, and dark turquoise. The red line highlights the z-score threshold equal to 10.

The connectivity of each gene from the remaining 13 modules was calculated using
eigengene-based connectivity (kME). The eigengene of the module, which serves as the
first principal component of that module, was compared to the expression profile of the
gene, and their correlation was calculated [44,50]. Based on the obtained kME values, the
genes were ranked in each module from highest to lowest. Those top genes are deemed
to be highly connected—in other words, the genes that are greatly functional within the
co-expressed network—which ascertains the preservation of these genes across the datasets.
With that, this elucidates the possible key roles or underlying biological mechanisms of the
modules based on the ranking of these genes.
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3.6. Functional Annotation of Hub Genes

The modules were sent to the DAVID web server for functional annotation. They were
clustered based on BP, CC, MF, and KEGG annotations. Due to an overwhelming amount of
information obtained from the analysis, only the terms with the highest enrichment scores
and p-values < 0.05 for each annotation were sent to the SRplot web server for bubble plot
visualization. Figure 6 shows the bubble plots of the BP, CC, MF, and KEGG annotations
of the modules based on their enrichment scores and p-values. These top terms suggest
the main biological processes, cellular components, and molecular functions involved in
identifying the biological mechanism of the module, as well as the most similar KEGG
pathway from which the module could be highly associated with. The top five annotations
from each module are listed in detail in Table S1.

3.7. Identification of Hub Genes from Protein–Protein Interaction (PPI) Networks

Using the STRING database, all the genes from each module were sent to Cytoscape
to predict their respective PPI networks. MNC, degree, and closeness algorithms were
utilized from cytoHubba to augment the hub genes from each module. Each algorithm
provides one PPI network; thus, three PPI networks were generated. To obtain a better
understanding of the biological mechanism underlying each module, the top 50 hub genes
calculated using the algorithms were obtained, and these were compared with each other
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to determine the hub genes greatly preserved or overlapping among the PPI networks. The
overlapping hub genes are listed in Table S2.
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Hub genes are frequently at the center of regulatory pathways and networks that
control immune responses. Researchers can discover important participants in the dysregu-
lated immune system and obtain a deeper comprehension of the molecular underpinnings
of autoimmune disorders by finding hub genes linked to these conditions. These could
also be used as autoimmune disease biomarkers such that variations in these genes’ expres-
sion levels may be a sign of how a disease is developing or how a treatment is working.
Biomarkers can help with prognosis, diagnosis, and tracking of how well therapeutic inter-
ventions are working. Several genes, proteins, and signaling pathways interact intricately
in autoimmune disorders. The network perspective reveals how these various components
cooperate or are dysregulated within the framework of the immune system, aiding in
further understanding the complexity of these interactions. With that, a PPI network was
constructed from Cytoscape to visualize the interrelationships of the overlapping hub genes
from each module, as shown in Figure S3.

3.8. Drug Repurposing Analysis of Hub Genes

The hub genes were again sent to GEO2R for DEA, where they were classified as
upregulated or downregulated. The upregulated hub genes were CD8A, CCL5, TP53,
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MED1, CD4, SYK, BCL2, PRKCA, GNB1, HSP90AB1, PIK3R1, SMAD3, TOP2A, FYN,
CDK2, MRPL3, RPL35, RPS5, RPS24, CD40, and IMP3. Meanwhile, the downregulated
genes were CD44, BRCA1, TLR4, ITGAM, STAT1, MYC, JUN, CASP3, CCNA2, FOS,
MAPK1, CXCR4, CCL2, MAPK14, TLR2, CXCL8, TGFB1, IL1B, ICAM1, MAPK3, APOE,
MMP9, PTPRC, JAK2, GSK3B, CTNNB1, EZH2, DDX58, and PTEN. Then, the groups were
sent to the DRA web server for drug repurposing. Clomiphene was the top-ranked drug
candidate for the upregulated group, and prilocaine was the top-ranked drug candidate
for the downregulated group. Table 2 summarizes the top five drug candidates obtained
from DRE in regulating the abnormal expression of hub genes.

Table 2. The top 5 drug candidates obtained from DRE for regulating abnormal expression of hub
genes found among the diseases.

Expression Hub Genes Drug Name Mechanism Tau FDR

Upregulated

CD8A, CCL5, TP53, MED1, CD4,
SYK, BCL2, PRKCA, GNB1,

HSP90AB1, PIK3R1, SMAD3,
TOP2A, FYN, CDK2, MRPL3,

RPL35, RPS5, RPS24,
CD40, IMP3

Clomiphene Estrogen receptor
antagonist −97.3 0.00003

Estrone Estrogen receptor agonist,
estrogenic hormone −96.7 0.00635

Trimethobenzamide Histamine receptor
antagonist −96.6 0.00292

Norethindrone Progesterone receptor
agonist −96.5 0.00353

Cladribine
Adenosine deaminase

inhibitor, ribonucleotide
reductase inhibitor

−96.3 0.00415

Downregulated

CD44, BRCA1, TLR4, ITGAM,
STAT1, MYC, JUN, CASP3,

CCNA2, FOS, MAPK1, CXCR4,
CCL2, MAPK14, TLR2, CXCL8,
TGFB1, IL1B, ICAM1, MAPK3,
APOE, MMP9, PTPRC, JAK2,

GSK3B, CTNNB1, EZH2,
DDX58, PTEN

Prilocaine Local anesthetic −99.5 0.00544

Montelukast Leukotriene receptor
antagonist −99.2 0.00662

Escitalopram Selective serotonin
reuptake inhibitor −99.1 0.00566

Piracetam Acetylcholine receptor
agonist −99.0 0.00003

Oxymetholone Androgen receptor agonist −98.2 0.00398

4. Discussion
4.1. Role of Immune System Dysregulation in T1D, PSR, SSc, and SLE

The respective pathogeneses of T1D, PSR, SSc, and SLE have not been fully elucidated
yet, but recent studies have shed light on the role of the immune system in activating the
onset and, eventually, the aggravation of these diseases. Both environmental and genetic
cues are found to be possible causes of the failure of molecular and cellular mechanisms
in the body to follow regulatory restrictions, which result in such autoimmunity. This
dysregulation of the immune response triggers a cascade of immunological effects that
attack or kill certain functional cells that later manifest as various autoimmune diseases.
Table 3 summarizes the effect of immune dysregulation on the stimulation of unrestricted
pathways responsible for triggering the diseases.

Table 3. Summary of the mechanistic effect of immune dysregulation on the pathogenesis of T1D,
PSR, SSc, and SLE.

Disease Effect of Immune Dysregulation Ref.

T1D
Unrestricted immune cells initiate a series of immunologic effects that target β cells, resulting in
the inefficiency of the pancreas in producing insulin in response to elevated glucose levels in
the blood.

[51–53]
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Table 3. Cont.

Disease Effect of Immune Dysregulation Ref.

PSR
The immune system enters an unregulated, continuous cycle where the overstimulation of
keratinocytes produces chemokines and AMPs that, in turn, activate the immune cells to induce
further proliferation of skin cells.

[54–56]

SSc Vascular triggers result in the overproduction of ECM, which usually accumulates in connective
tissues, due to the uncontrolled release of cytokines by immune cells. [57–59]

SLE
The abnormal function of immune cells causes the formation of autoantibody–autoantigen
complexes that form an immunologic cycle, which creates an inflammatory response where the
immune system starts to attack the body’s tissues and organs.

[60–62]

4.2. Gene Co-Expression Modules among T1D, PSR, SSc, and SLE Datasets

According to the functional annotation and pathway enrichment analysis through
DAVID, the majority of the modules were associated with TH17 differentiation. Protein
phosphorylation, chromatin, and protein serine, threonine, or tyrosine kinase activity
involvement were also identified among most of the modules. These results suggest
the molecular and cellular mechanisms of the pathways that the four diseases may have
in common.

4.2.1. Implication of Transcriptional Polymorphisms for the Pathophysiology of Autoimmunity

Genetic triggers that lead to autoimmunity greatly impact the long-term phenotypic
manifestations of autoimmune diseases [63,64]. Dysfunction of components in the tran-
scription process often results in abnormal expression of certain genes, which can affect the
highly regulated stages of the immune response [65]. There has been a growing interest in
the study of transcription factors as main regulators in the development and function of
immune effector cells. These effector cells interact with other immune cells, such as T cells,
B cells, macrophages, and neutrophils, to carry out specific immune responses. Recent
genetic studies have linked transcription factors with the pathogenesis of autoimmune
diseases. Figure 7 illustrates the gene families of various transcription factors associated
with T1D, PSR, SSc, and SLE. All these genes were found to be present among the modules,
indicating the prominence of transcription dysregulation in the onset of these four diseases.

SNPs have been discovered to affect transcription binding sites in certain autoimmune
disorders [66]. The occurrence of SNPs in DNA causes a disturbance in the normal func-
tioning of signaling pathways associated with the immune system, which, in turn, increases
the risk for autoimmune complications. PDCD1 [67,68] is a programmed cell death gene
that interrupts Runx1 binding due to an intronic enhanced SNP wherein such a circum-
stance has been found to occur in both T1D and SLE. In the same manner, a loss-of-Runx1
binding SNP was found to be associated with PSR between the NAT9 and SLC9A3R1
genes [69]. On the other hand, multiple NF-κB genes were deemed to be involved in the
transcription processes of various autoimmune diseases. For instance, polymorphisms in
the NFKB1 [70–72] gene have shown a direct link to T1D susceptibility in humans, while
susceptibility in SLE is associated with the M196R polymorphism in TNFR2 [67–69,73].
Another transcription factor involved in T1D susceptibility is TCF7 [74], while PSR suscep-
tibility includes IRF2 [75] and JUNB [76,77] found in the PSORS6 locus. IRF5 [78–80] and
STAT4 [81,82] polymorphisms are present in both SSc and SLE, while the TBX21 [74,83]
polymorphism is present in both SSc and T1D.
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The enrichment results pertaining to the involvement of RNA polymerase II, chro-
matin, and ribosome suggest the relevance of the transcription process in autoimmunity.
The occurrence of polymorphisms in the DNA found in chromatin may lead to the trans-
lation of dysfunctional proteins by rRNAs, especially transcription factors, that could
affect the transcription of mRNAs and eventually cause immune system dysregulation.
The binding affinity of transcription factors can be affected by SNPs found in the pro-
moter region of a gene. Variations resulting from polymorphisms in these binding sites
could interfere with the regular recruitment of transcription factors, causing deviations
in gene expression levels. The regulatory network involved in gene expression may be
compromised, which could result in either the upregulation or downregulation of the gene,
which we has been found to be an important factor in autoimmune diseases. For instance,
polymorphisms in the transcription of TLR genes have been found to cause malfunction
in the signaling pathways crucial for the production of autoreactive T cells and B cells.
A study by Assmann et al. [84–89] supported this thought when the authors confirmed
the high correlation of TLR3 rs3775291 and rs13126816 polymorphisms with the risk of
T1D development. Other studies verified the association of TLRs in the pathogenesis of
SLE when they found that SNPs in TLR7, TLR8, and TLR9 increased SLE susceptibility in
Asians [90,91], while SNPs in TLR3, TLR8, and TLR9 increased that in Danish subjects [92].

4.2.2. Involvement of Post-Transcriptional Alternative Splicing in Autoimmunity Pathogenesis

Before proceeding to translation, newly synthesized mRNAs undergo post-transcriptional
modifications such as capping, splicing, and polyadenylation. Alternative splicing in-
creases the degree of diversity among species by producing multiple distinct mRNAs from
a single gene. Since it is a highly regulated process, disruption in its mechanisms may
negatively influence the maturation of mRNAs that could translate into dysfunctional pro-
teins. Abnormal splicing events may cause mutations in the post-transcriptional processing
of mRNA that could contribute to the dysregulation of autoimmune responses, such as
the overactivation of T cells and B cells and the unregulated production and secretion
of cytokines.

Using RNA sequencing and microarray analysis, Ergun et al. [93] discovered that
about 60% of alternatively spliced isoforms are associated with lymphocyte genes. The in-
volvement of alternative splicing in the complement protein C1 and complement receptors
CR1 and CR2 has been found in bronchoalveolar macrophages and fibroblasts [94]. Iso-
forms of IL-2, IL4, and IL-6 have also been reported to have immunomodulation effects in
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the signal transduction of the immune response [95]. In connection to previous discussions,
the occurrence of SNPs can result in genetic mutations that can lead to aberrant splicing
events. The presence of SNPs may introduce new alternative binding sites or dislocate
consensus splicing sites that could greatly influence the post-transcriptional modification
of the mRNA [96]. Autoantigens, a group of chemoattractants responsible for recruiting
immune cells to tissue damage sites, have been reported to be prone to alternative splic-
ing [97]. These have been found to be significant in the initiation of autoantigen-specific
autoimmune diseases, including the autoantigen islet cell Ag 512 in T1D [98]. Moreover,
disruption in the splicing machinery may greatly influence SLE susceptibility, since it is
mediated by the autoreactivity of T cells and B cells and their effect on the deposition of
autoantibody–autoantigen complexes.

The enrichment results pertaining to mRNA splicing and the spliceosomal complex
suggest that T1D, PSR, SSc, and SLE may have a common pathway relating to spliceosome-
mediated post-transcriptional modification, which can be further studied for therapeutic
strategy targeting. Table S3 lists the alternatively spliced isoforms of genes associated with
the onset of the four autoimmune diseases.

4.2.3. Role of Protein Phosphorylation in the Signal Transduction of Immune Dysregulation

Proteins typically generate post-translational modifications as a result of the phys-
iological reaction to cellular stress, which can lead to the release of biological products,
such as enzymes that facilitate the alteration of amino acid residues, and ROS [99]. The
production of ROS in the body contributes to the alleviation of inflammation and regulation
of tissue homeostasis. Nonetheless, excessive ROS release can cause these levels to rise
to the point where the antioxidant ability of the body to remove excess ROS becomes
dysfunctional [100]. Additionally, mutations induced by post-translational modifications
can trigger the formation of neoepitopes, which the immune system deems foreign to
the host and could lead to the disruption of immune tolerance, resulting in an amplified
autoimmune response [101]. Post-translational modifications in “self” proteins can also
affect T-cell and B-cell immunity such that alterations in APCs may influence immune
system specificity [102].

Protein phosphorylation is a crucial mechanism in cell signaling pathways. This
process refers to the transfer of an ATP-bound phosphate group to serine, threonine, or ty-
rosine amino acid residues in a substrate aided by the catalysis of a protein kinase. Kinases
participate in this process by serving as enzymes in attaching the phosphate group from
one protein to another to induce and maintain the transduction of signals in intracellular
pathways. Aberrant protein phosphorylation events can participate in the increased risk
of autoimmunity. Increased phosphorylation of STAT3, which is associated with mani-
festations in autoimmunity and immunodeficiency, has been correlated with multisystem
autoimmune disease occurrence in humans. The subsequent dimerization of STAT–STAT
protein interaction and nuclear translocation, as well as the increased phosphorylation
of pY705 by Janus activating kinases (JAKs), activate STAT3 in response to chemokine
signaling by IL-6, IL-10, IL-21, IL-23, and IFN-α [103]. High plasmatic concentrations
of IL-6, IL-10, and IL-17 found in patients were believed to be associated with a novel
mutation in STAT3, explaining its increased phosphorylation [104]. In another study, it
was demonstrated that the inappropriate phosphorylation of IRF4 by ROCK2 downregu-
lated production of IL-17 and IL-21 cytokines, which aggravated autoimmunity in mouse
models. The aberrant activation of ROCK2 in CD4+ T cells negatively affected its ability
to phosphorylate, which suggested its potential to ameliorate pathogenic mechanisms in
initiating autoimmunity [105,106]. In the same manner, increased levels of CD44 phospho-
rylation have been linked to SLE susceptibility. This increased phosphorylation results in
the increased expression of CD4, which, in turn, increases the ability of T cells in SLE to
migrate to tissues and adhere to membranes [106].
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Protein kinases phosphorylate proteins by converting extracellular signals into in-
tracellular downstream readouts to initiate protein conformation and facilitate protein
translocation. These are thought to be molecular precursors that activate self-reactive cells
in the body that induce inflammation and compromise regulatory cells in autoimmune
diseases. T cells, B cells, and other innate immune cells contain multifarious classes of
immune recognition receptors that utilize phosphorylation to induce the initial activation
of protein kinases. Receptor tyrosine kinases (RTKs), non-RTKs, receptor serine kinases
(RSKs), and serine–threonine kinases (STKs) are the central kinases involved in the signal
cascade of the immune response. JAK2 and TYK2 are members of the JAK family that are
linked to multiple cytokine receptor signaling pathways in the pathogenesis of autoimmune
disorders [107,108]. Moreover, these were also found to be present among the modules as
far as this study is concerned, suggesting their common roles in the onset of T1D, PSR, SSc,
and SLE.

4.2.4. Regulatory Effects of TH17 in Autoimmune Diseases

Most of the modules from the KEGG pathway results showed association with TH17
differentiation, which may imply the significant participation of TH17 cells in the simultane-
ous onset of T1D, PSR, SSc, and SLE. Apart from the classic TH1 and TH2 subsets, TH17 cells
are a more recently discovered T-helper subset that aid in the specificity of the immune
system. These immune cells preferentially contribute to the production and secretion of
IL-17A, IL-17F, IL-21, and IL-22 [109]. The pathophysiology of numerous autoimmune
disorders is influenced by TH17 cells and their effector cytokines, which also mediate host
defensive mechanisms against a variety of infections, particularly extracellular bacterial
infections. It is important to emphasize that the IL-17R and IL-22R receptors are widely
expressed on a variety of epithelial tissues in the human body [110], which reasons out
why TH17 cell effector cytokines are essential for tissue immunity and for arbitrating critical
immune system–tissue interaction. Figure 8 shows the interconnected pathways of the four
diseases central in TH17 differentiation.

In non-obese diabetic (NOD) mice, it has been found that there is a correlation between
insulitis and IL-17 and IL-17F expression in the islets of Langerhans in the pancreas.
Although the exact pathogenesis of T1D is, as yet, unclear, studies have proven that
the disease involves the unregulated activation of several immune cells, including the
participation of B cells, DCs, macrophages, and CD4+ and CD8+ T cells [111–113]. The
stimulation of β-cell autoantigens activates the differentiation and proliferation of TH17 cells
by autoreactive CD4+ T cells in the islets. This then causes the production and secretion of
IL-17, which enhances the release of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α.
These cytokines have a direct effect on the immunogenicity of the pancreatic islets and the
survival and apoptosis of β cells. These cytokines also enable CD4+ and CD8+ T cells to
infiltrate β cells and aggravate their killing. Studies on the disease have concluded that
the primary function of TH17 cells is in the induction of inflammatory processes in T1D,
resulting in the death of pancreatic β cells [111,112]. Meanwhile, the action of IL-17 alone
or its synergy with IFN-γ or IL-1β induces heightened expression of nitric oxide synthase-
2A, cyclooxygenase-2, and superoxide dismutase-2, which are said to participate in the
inflammation of the pancreatic islets [114]. This concludes the main function of IL-17 in
T1D, that is, to aggravate such inflammatory effects on β cells, leading to their destruction.

The explicit role of TNF in the pathogenesis of psoriasis has been established by its
significance as a blocker treatment for the disease. TNF is produced by various T lym-
phocytes, including TH1 and TH17 cells, and keratinocytes, which have both TNF-α and
IL-17 receptors that can induce inflammatory responses upon activation. A common route
between TNF and IL-17 signaling is the stimulation of NF-κB. Recent studies have shown
that TNF-α may activate the TH17 response indirectly by stimulating mDCs [111,115]. Also,
the synergistic interaction of TNF-α and IL-17 has been recorded to activate certain genes
found in fibroblast and osteoblast cells. Furthermore, a study by Zaba et al. reported the
potential of psoriatic dermal DCs to induce T-cell proliferation and polarization, aiding
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in the differentiation of TH17 and TH1 cells [116]. The release of IL-17A and IL-22 triggers
the expression of CCL20, which is a keratinocyte-expressing ligand, which causes the
chemotaxis of more TH17 cells to the inflammation site and drives epidermal acanthosis,
suggesting early manifestations of PSR. In the presence of TGF-β and IL-6, naïve T cells
undergo TH17 development due to cytokines IL-23, IL-12, and TNF-α being released by
activated mDCs in response to physical trauma [117]. Moreover, ROR-γt and ROR-α expres-
sion, as well as STAT3 activation, are necessary for TH17 differentiation. Pro-inflammatory
cytokines, including IL-17A, IL-17F, and IL-22, then cause the abnormal differentiation
and proliferation of keratinocytes, leading to the production and secretion of chemokines,
angiogenic factors, and antimicrobial peptides [118]. These mediators are able to draw
immune cells to the skin lesions, activate them, and create a positive feedback loop that
aggravates the core response of PSR.
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Figure 8. Interconnected pathways associated with TH17 differentiation involved in the pathogenesis
of T1D, PSR, SSc, and SLE. In T1D, CD4+ T cells found in the pancreatic islets activate TH17 differenti-
ation, which contributes to the increased production of IL-1β, IL-6, and TNF-α. These cytokines allow
the easy penetration of CD4+ and CD8+ T cells in the pancreas, allowing the direct killing of β cells.
In PSR, the secretion of IL-17A and IL-22 causes the migration of more TH17 cells in the inflammation
site, which results in epidermal acanthosis. The activation of mDCs, which is one of the triggers in
PSR, initiates TH17 differentiation to continue producing the cytokines responsible for maintaining
the cyclic overgrowth of keratinocytes. In SSc, TH17 cells promote fibrosis of the skin and lungs by
activating the production and stimulation of collagen. SSc incidence also shows a correlation with
IL-22, which is a pro-inflammatory cytokine found in the skin. Lastly, activated CD4+ T cells may
play a role in the elevated levels of IL-17 in SLE patients. Overexpression of the IL-17 gene was also
found to be associated with the manifestation of the disease.

Several studies have found that there is an increased level of TH17 cells and their
products in the blood and skin among SSc patients compared to healthy controls [119–122].
Some findings, on the other hand, showed evidence of the association of TH17 cells with cer-
tain manifestations of SSc, such as collagen overproduction and lung impairment [123,124].
Using murine SSc models, it was reported that IL-17A/TH17 cells can promote fibrosis of
the skin and lungs by stimulating the progression and secretion of type 1 collagen [120,125].
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However, some researchers found that IL-17A/TH17 cells downregulated type 1 collagen
production upon the differentiation of fibroblasts into myofibroblasts, concluding that said
mechanism may not be driven by fibrotic activity but by autoimmunity [126–128]. Even
though this result is indicative of anti-fibrosis events, such a pathway is deemed contrary to
the pro-fibrotic activity of other immune cells that still support the fibrotic manifestations
in SSc. In addition to the IL-17 family, other TH17-derived cytokine members also have
clear correlations with SSc, one of which is the production and secretion of IL-22, a crucial
pro-inflammatory cytokine in the skin because of its increased ability to destroy bacteria
and produce chemokines, such as IL-8 and MCP-1, as well as cytokines TNF, IL-1, and
IL-12 [129]. However, a different study discovered that while IL-21 is high, serum IL-23 and
IL-17 are also reduced [120,126,130–132]. Either way, it is undeniable that these cytokines
produced from TH17 play a pivotal role in SSc expression.

Increased plasma or serum levels of IL-17 were also seen in patients with SLE, even
those who at the early stages of the disease [133,134]. Studies have shown that the circula-
tion of this cytokine in the body could be associated with the expression of SLE [133–135].
Levels of IL-17 were even higher in SLE patients with nephritis relative to those without.
IL-17 can be produced by several kinds of immune cells linked to SLE, including CD3+,
CD4−, and CD8− T cells; CD4+ and CD8+ T cell; γδ-T cells; and natural killer cells [134].
Accordingly, it is speculated that the increased levels of IL-17 in the blood could be due
to the enhanced production of the cytokine by these immune cells [135]. However, it
was found that the expression of TH17 cells is not correlated with the expression of TH1
cells in SLE-positive blood. In other words, it is still uncertain whether the frequency of
IL-17-producing TH17 cells has an influence on the frequency of IFN-γ-producing TH1 cells.
Nonetheless, this was further tested by analyzing the ratio of IL-17-producing CD4+ T cells
to TH1 cells among the patients with devoid changes in the TH17/TH1 ratio. Results showed
that the TH17/TH1 ratio was still higher in SLE patients compared to healthy controls,
suggesting that unregulated activation in CD4+ T cells could play a role in the stimulated
increase in frequency of TH17 differentiation in SLE [136,137]. As mentioned in previous
discussions, IL-17 is an essential component in the release of inflammatory cytokines in
the immune response. Overexpression of the IL17 gene has been observed in the urine
sediments of SLE patients, further confirming its participation in SLE pathogenesis, es-
pecially in tissue damage [138]. Blocking of the IL-17 signal has also been linked with
reduced development and proliferation of B cells, indicating the impact of this disease on
the production of antibodies.

4.3. Drug Repositioning for Immune Dysregulation Treatment

The top 50 hub genes from each module were obtained through cytoHubba using the
Cytoscape software. The overlapping hub genes among the modules were determined,
grouped either as upregulated or downregulated, and subjected to DRA. Clomiphene, an
estrogen receptor agonist, was the top drug in the upregulated group, while prilocaine, a
local anesthetic, was the top drug in the downregulated group.

4.3.1. Drug Repurposing Analysis of Upregulated Hub Genes

Clomiphene, estrone, and norethindrone are drugs associated with the main female
sex hormones, i.e., estrogen and progesterone. Scientific evidence has shown the prevalence
of both estrogen and progesterone receptors in various immune response mechanisms.
CD4+ and CD8+ T cells, B cells, and NK cells found in human peripheral blood contain
intracellular estrogen receptors, specifically ERα46, which is its commonly expressed
isoform [139]. Estrogen also controls B cell maturation by inhibiting or downregulating
the differentiation of pro-B cells to pre-B cells, which influences their rate of survival
and activity in stimulating autoreactive B cells. In vitro studies have confirmed the anti-
psoriatic functions of estrogen in regulating the expression of PSR [140,141]. Recall that
the overproliferation of keratinocytes in PSR is activated by chemokines and AMPs. For
instance, 17β-estradiol (E2) downregulates the cyclic activation of keratinocyte production
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by binding to estrogen receptors in immune cells, which results in a decrease in MAPK,
STAT3, PI3K, and NF-κB activity, regulating the stimulation of these chemokines and
AMPs [142].

With clomiphene as the top drug obtained from the upregulated hub genes, this result
suggests that the expression of estrogen receptors in T1D, PSR, SSc, and SLE may be a
triggering effect, which reasons out the need for its inhibition among the four diseases. In
T1D, it has been shown that estradiol can contribute to an increase in insulin content in
β cells [143]. Additionally, a reduction in circulating estrogen can predispose to a higher
risk of T1D incidence [144]. It is assumed that the presence of estrogen receptors can
initiate the digestion of estrogen, which could significantly decrease its number. Thus,
inhibition of these receptors may mitigate the depletion of the hormone so that it could
perhaps counteract the inability of the pancreas to secrete insulin. Instead of binding
to its receptors, estrogen may participate in pathways that aid in the preservation or
synthesis of insulin to conciliate T1D ramifications. Moreover, the interaction of estrogen
with ERβ could be the reason for the increased mannan-induced skin inflammation in
PSR. Some effects of such a response include thickness of the epidermis, expression of
cebpb, infiltration of DCs and γδ-T cells, and stimulation of pro-inflammatory cytokines
and chemokines [145]. These could also serve as significant evidence of the possibility of
inhibiting estrogen receptors for the treatment of PSR. However, in SSc, a study discovered
that estrogen utilizes ERα to alleviate dermal fibrosis by the inhibition of TGF-β [146].
With that, clomiphene may be repurposed to act only on ERβ to increase the efficiency of
estrogen to bind with ERα and become more effective in treating SSc-mediated fibrosis.
Lastly, another study reported that the autoantigenicity of ER is greatly enhanced among
SLE patients, explaining its association with mitochondrial dysfunction by the formation
of estrogen–ER complexes [147]. To address this, estrogen receptors could be inhibited to
prevent the synthesis of these complexes to avoid immune attacks induced by SLE.

4.3.2. Drug Repurposing of Downregulated Hub Genes

Escitalopram and piracetam are drugs whose pharmacodynamics involve the regula-
tion of neurotransmitter activity, while the mechanistic action of the top drug, prilocaine,
blocks the propagation of action potential by acting on the neuronal cell membrane. Sero-
tonin has long been known to have immunomodulatory effects in the body. The release of
serotonin by mast cells activates 5-HT2 receptors in T cells, which causes delayed hypersen-
sitivity, and its stimulatory effect on 5-HT7 receptors enhances the development of naïve T
cells [148]. Moreover, serotonin influences adaptive immunity by aiding B-cell proliferation
by activating 5-HT1A receptors [149]. In some cases, the inhibition of serotonin reuptake
has been found to increase circulating B cells. However, the direct implication of serotonin
in autoimmunity has yet to be elucidated, although its molecular machinery in alleviating
or aggravating autoimmune effects in homeostasis has already been given attention in the
scientific community.

The pharmacodynamics of prilocaine involve the binding of the drug to sodium
channels, which prevents the influx of sodium ions into the cell, thereby inhibiting the
intracellular propagation of action potential. The metabolism of glucose acts on various
membrane proteins, such as ion channels, which initiates a cascade of electrical activity
that has a significant impact on the release of insulin [150]. A common clinical symptom in
diabetes is diabetic neuropathy, which is characterized by the damage to peripheral nerves
due to hyperglycemia [151]. Since prilocaine is an inhibitory drug of action potential prop-
agation, which is contrary to the supposed increased electrical signaling to induce greater
insulin release in treating hyperglycemia, it may be repositioned to attain stimulatory
effects in activating the action potential but without compromising its specificity to sodium
ion channels. Furthermore, it was discussed that common pathologic manifestations of
PSR, SSc, and SLE are correlated with skin inflammation. Several studies have reported
that blocking sodium channels may improve the skin’s barrier functions to inflammatory
responses [152–157]. These autoimmune diseases may involve pathways that could lead
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to sodium dysregulation and negatively affect the sodium homeostasis of the body. As
mentioned above, the participation of TNF-α in skin inflammation is very prevalent in
such a way that most autoimmune diseases involving skin conditions are associated with
it. Local anesthetics directly influence TNF-α production, predisposing it as candidate
for the use suppressive drugs in downregulating the overactive inflammatory response
in autoimmune diseases. This suggests that prilocaine, similar to other local anesthetics
such as lidocaine and procaine, may be utilized for the treatment of PSR, SSc, and SLE.
However, modifications may still be required to change the drug’s mechanism of action for
the treatment of T1D.

5. Conclusions

The complex nature of autoimmunity makes it a challenging problem for the scientific
community to address. The interplay between genetic and environmental factors in the
manifestation of autoimmune diseases continues to be an unsolved link in designing the
most effective and efficient drugs and therapies. To determine the molecular and cellular
mechanisms responsible for the interconnected pathogenesis of autoimmune disorders,
we looked into the expression patterns of these diseases and analyzed the pathways that
may elucidate their correlation. Using WGCNA, we identified thirteen highly preserved
modules of co-expressed genes based on the microarray datasets of T1D, PSR, SSc, and
SLE. The functional annotation of the modules revealed that the clusters of co-expressed
genes have associations with the transcription, post-transcription, and post-translational
processes occurring among the four diseases. The KEGG pathway result also suggested
the role of TH17 differentiation in the possible interplay of the diseases. On the other
hand, clomiphene and prilocaine were the top candidate drugs in regulating overexpressed
and under-expressed hub genes, respectively. These findings shed light on the possible
routes that could be targeted for the engineering of treatments to medicate the possible and
simultaneous onset of T1D, PSR, SSc, and SLE.

Since the datasets obtained from GEO and the literature supporting the relationships
of autoimmune diseases were limited, only T1D, PSR, SSc, and SLE were included in
the analysis. RNA-Seq data, which also hold promising information in transcriptomics
analyses, may also be utilized instead of DNA microarray data. Future researchers may look
into other autoimmune disorders and elucidate their interconnectedness using WGCNA.
They may also investigate individual genes obtained from the modules, which is contrary
to the objectives of this study, which focused on the systemic relationship among the
augmented genes. Drug repurposing may be further evaluated by using receptor–ligand
bioinformatics to procure a deeper understanding of the mechanistic action of the drugs
for a more reliable treatment process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15040393/s1, Figure S1: General network properties of the
datasets for comparability testing prior to WGCNA: (a) T1D vs. PSR; (b) T1D vs. SSc; (c) T1D vs.
SLE; (d) PSR vs. SSc; (e) PSR vs. SLE; (f) SSc vs. SLE. All the plots exhibited positive correlation
which suggests the presence of co-expression genes among the datasets; Figure S2: An integrated
visual of the dendrogram from gene clustering through TOM dissimilarity and the module split
sensitivity networks through the dynamic tree-cutting algorithm of the reference dataset. The deep
split parameter used in this study is enclosed in a red box; Figure S3: Protein-protein interaction
networks of the overlapping hub genes in the 13 modules: (a) brown module; (b) cyan module;
(c) dark turquoise module; (d) green yellow module; (e) grey60 module; (f) light green module;
(g) light yellow module; (h) magenta module; (i) midnight blue module; (j) red module; (k) salmon
module; (l) tan module; (m) turquoise module; Table S1: The top 5 terms in the BP, CC, MF, and KEGG
annotations from each module obtained from the functional annotation clustering; Table S2: List
of overlapping hub genes from each module obtained from the three algorithms; Table S3: List
of alternatively spliced isoforms found to participate in T1D, PSR, SSc, and SLE susceptibility.
References [158–191] are cited in the supplementary materials.
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