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Abstract: The deteriorated plasticity arising from the insoluble precipitates may lead to cracks during
the rolling of FeCrAl alloys. The microstructure evolution and hot deformation behavior of an FeCrAl
alloy were investigated in the temperature range of 750–1200 ◦C and strain rate range of 0.01–10 s−1.
The flow stress of the FeCrAl alloy decreased with an increasing deformation temperature and
decreased strain rate during hot working. The thermal deformation activation energy was determined
to be 329.49 kJ/mol based on the compression test. Then, the optimal hot working range was given
based on the established hot processing maps. The hot processing map revealed four small instability
zones. The optimal working range for the material was identified as follows: at a true strain of 0.69,
the deformation temperature should be 1050–1200 ◦C, and the strain rate should be 0.01–0.4 s−1.
The observation of key samples of thermally simulated compression showed that discontinuous
dynamic recrystallization started to occur with the temperate above 1000 ◦C, leading to bended grain
boundaries. When the temperature was increased to 1150 ◦C, the dynamic recrystallization resulted
in a microstructure composed of fine and equiaxed grains.

Keywords: FeCrAl alloy; flow stress; constitutive equation; microstructure; hot processing map

1. Introduction

Fuel cladding prevents radioactive fission products from escaping the fuel matrix
into the reactor coolant and contaminating it, which is one of the key aspects of the
safety of the nuclear power plant. Thus, it needs a corrosion-resistant material with a
low absorption cross section for thermal neutrons, and the Zirconium alloy is normally
used as fuel cladding. However, the rapid reaction between this alloy and the water
vapor may cause leakage and explosions of hydrogen, which may lead to serious acci-
dents. In order to prevent this crisis, researchers tend to pursue new materials for fuel
cladding [1,2]. The FeCrAl alloy emerged as a promising candidate for fuel cladding
in nuclear power plants due to its excellent high-temperature oxidation resistance, ra-
diation resistance, and mechanical properties [3–7]. People have carried out a series of
studies on FeCrAl alloys. Guessev et al. [8] proposed the optimal alloy composition as
Fe-(10-18)Cr-(2-6)Al-2Mo-1Nb-0.2Si-0.05Y by combining the design space of FeCrAl al-
loys and thermodynamic calculation. Field et al. [9,10] found that the displacement of
neutrons irradiated per atom (dpa) was as high as 13.8 at a radiation temperature of
320 to 382 ◦C when the FeCrAl alloy was in an irradiated environment for a long time.
Yamamoto et al. [11] found that with the addition of Mo and Nb, fine Fe2(Mo, Nb) Laves
phases can be precipitated after hot rolling and annealing at 800 ◦C, thus improving tensile
properties and thermal stability. Sun et al. [12] found that the microstructure stability
of the FeCrAl alloy was closely related to the number, size, shape, and distribution of
the Laves phases. Liu et al. [13] reported that Fe2Zr particles were formed after the Zr
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element was adopted, which improved the tensile strength of the alloy. However, when
the trace elements are introduced in the FeCrAl alloy, the deteriorated plasticity arising
from the insoluble precipitates may lead to cracks during rolling [14,15]. Consequently, it is
important to explore the hot workability of the FeCrAl alloy.

The microstructure and workability of the materials during hot rolling are mainly
influenced by the strain rate, deformation temperature, and strain [16]. The complex inter-
actions of these factors under high-temperature plastic deformation are described by the
constitutive equations. As a promising candidate material for nuclear fuel cladding [17–19],
the current investigations on the hot processing map of the FeCrAl alloy are quite limited.
However, it is of great significance to construct the hot processing map for investigating
the hot workability of FeCrAl alloy and facilitating the practical production through hot
compression [20–23].

In this paper, the hot compression tests of the FeCrAl alloy were carried out to construct
the constitutive equations deriving from the flow stress–strain curves. The microstructures
of the hot compressed samples were investigated. The hot processing map was constructed
based on the Prasad instability criterion.

2. Materials and Methods

The tested material was a commercial alloy with the chemical composition of Fe-12.5Cr-
4Al-0.01-Nb (wt.%).The ingot was forged after casting, and the cylindrical compression
samples with a size of Φ8 × 12 mm were cut along the forging direction. The samples
were compressed at 750–1200 ◦C with strain rates of 0.01, 0.1, 1, and 10 s−1 on the Gleeble-
3800 thermal simulation test machine, and the deformation amount was 50%. During the
compression test, the samples were heated to 1200 ◦C at a rate of 10 ◦C/s and kept for 5 min.
After cooling to the required temperature of 10 ◦C/s and soaking for 30 s, the samples
were compressed. At the same time, the data of true stress–strain curves were recorded
by a computer. Then, these samples were quenched in water to retain the deformation
structures. It should be noted that two 0.1 mm thick Tantalum sheets were inserted between
the compression hammer and samples to reduce contact friction during the compression
test. The samples were heated and compressed after vacuuming.

The microstructures at 1/4 position along the axial direction of the compressed sam-
ples were observed by an Olympus GX71 optical microscope (OM) after etching with a
solution composed of FeCl3, HCl, and H2O (FeCl3:HCl:H2O = 1:10:20). The samples were
subjected to electrolytic polishing with a solution composed of perchloric acid and alcohol
(perchloric acid/alcohol = 1:7).Then, the electron back scatter diffraction (EBSD) equipped
within a Zeiss Ultra 55 scanning electron microscope (SEM) was used to investigate the
microstructures of the compressed samples.

3. Results and Discussion
3.1. Stress–Strain Curves of the FeCrAl Alloy during Compression Test

The stress–strain curves under various deformation conditions (temperature and strain
rate) are shown in Figure 1. These curves can be divided into three stages. Firstly, the
curve increased almost linearly and reached its peak stress due to the rapidly increasing
dislocation density [24]. Subsequently, the flow stress gradually decreased because of the
trigger of dynamic softening. After the equilibrium was established between the work
hardening and dynamic softening, the curve nearly remained constant with an increasing
strain [21,25,26]. Figure 1 shows that the flow stress of the FeCrAl alloy decreased with
increasing temperature or decreasing strain rate. In the case of a constant strain rate, the
elevated deformation temperature enhances the thermal vibration of atoms, facilitating
the dynamic recovery or recrystallization during hot compression [27]. Conversely, the
increasing temperature weakens the binding force between the atoms due to expanded
atom spacing. When the deformation temperature is fixed, the increased strain rate gives
rise to a reduced duration of dynamic recovery or recrystallization. The work hardening
may also become predominant and result in improving flow stress.
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Figure 1. True stress–true strain curves at different deformation temperatures and the same strain
rate: (a) 0.01 s−1; (b) 0.1 s−1; (c) 1 s−1; (d) 10 s−1.

3.2. Regression of Constitutive Equation Parameters

The hot deformation behavior of metals can be regarded as a thermal activation
process. The relationship between flow stress (σ), strain rate

( .
ε
)
, and deformation tempera-

ture (T) can be described by the hyperbolic sinusoidal Arrhenius relationship. including
deformation activation energy (Q) and temperature (T) [28]:

.
ε = AF(σ) exp[−Q/(RT)] (1)

The stress function F(σ) in the formula has the following three different expressions:

F(σ) = σn(ασ < 0.8) (2)

F(σ) = exp(βσ)(ασ > 1.2) (3)

F(σ) = [sinh (ασ)]n(For all σ) (4)

A, n, β, and α are all material constants that are independent of temperature, where A is
the structure factor (s−1), n is the stress exponent, β = nα, and α is the stress factor (MPa−1);
Q is thermal deformation activation energy (kJ·mol−1), also known as dynamic softening
activation energy, which reflects the equilibrium relationship between work hardening and
dynamic softening during thermal deformation; R is the gas constant (8.3145 J·mol−1·K−1);
.
ε is the strain rate (s−1); σ is flow stress; and T is the thermodynamic temperature (K).

Substitute Equations (2) and (3) into Equation (1), respectively, and logarithm both
sides of the equation to obtain the following formula:

ln
.
ε = lnA1 + n1lnσ−Q/(RT) (5)
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ln
.
ε = lnA2 + βσ−Q/(RT) (6)

A1 and n1 are the structural factor (s−1) and stress exponent at low stress levels,
respectively; A2 is the structural factor (s−1) at high stress levels.

By substituting the true stress–true strain data into the above formula, the fitting
curves of lnσ-ln

.
ε and σ-ln

.
ε can be obtained, as shown in Figure 2. Linear regression is

carried out with the least square method, and the constants at different temperatures are
obtained: n, β, and α. The reciprocal of the average slope of the straight line obtained by
fitting lnσ with ln

.
ε is the parameter n = 6.1772, and the reciprocal of the average slope

of the straight line obtained by fitting σ with ln
.
ε is the parameter β = 0.0738, α = β/n, so

α = 0.0119.
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ε (b).

After determining the value of α, n undergoes further modification by substituting
Equation (4) into Equation (1) and subsequently taking the natural logarithm on both
sides. The modified n is found to be 4.2293, and the derivation of both sides of the
equation results in a functional relationship of ln[sinh(ασ)] − 1000/T. This relationship
yields a linear function, as shown in Figure 3 below. When the strain rate is constant,
the thermal deformation activation energy Q of FeCrAl alloys can be determined using
the modified n. A linear fit to a straight line is obtained by fitting ln[sinh(ασ)] to 1000/T
(where T is the Kelvin temperature), with an average slope value of 9.37. Therefore, the
thermal deformation activation energy of the material can be calculated at 329.49 kJ/mol
by Equation (7).

Q = R
∂ln

.
ε

∂ln[sinh(ασ)]

∂ln[sinh(ασ)]

∂T−1 (7)

For all stress levels, substituting Equation (4) into Equation (1) can be expressed
as follows:

.
ε = [Asinh(ασ)]n exp[−Q/RT] (8)

Simultaneously, the strain rate of metals during thermoplastic deformation is governed
by a thermal activation process. The relationship between the strain rate (

.
ε) and the

deformation temperature (T) is aptly expressed through the Zener–Hollomon parameter (Z
parameter), as elucidated by Zener and Hollomon in their theoretical framework [29,30].
The Zener–Hollomon parameter is defined as follows:

Z =
.
εexp[Q/(RT)

]
= A[sinh(ασ)]n (9)

The relationship between lnZ and ln[sinh(ασ)] is derived by taking the logarithm of
both sides of the equation and substituting the correlation constant along with the true
stress–true strain data obtained from hot compression experiments. This relationship is
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depicted in Figure 4 below, where σ represents the peak stress corresponding to various
process parameters during hot deformation.
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Figure 4. Relationship between lnZ and ln[sinh(ασ)].

The lnZ-ln[sinh(ασ)] function relationship obtained is linear. By substituting Q, n,
and α into Equation (8), the constitutive equation of flow stress during hot compression
deformation can be obtained, and the expression of the Z parameter can be obtained. From
the fitting graph of lnZ and ln[sinh(ασ)], the intercept is lnA, so A = 3.032 × 1013 s−1.
By substituting Equation (8), the constitutive equation of the material is

.
ε = 3.032 ×

1013[sinh(0.0119 σ)]4.2293exp[−329.49/RT].
In the actual plastic deformation process, the flow behavior of metallic materials at

high temperatures is influenced by the strain. The constitutive equations presented earlier
are established based on peak stress (σ) for various process parameters in the hot defor-
mation process without considering the effect of strain. The values of material constants
stabilize gradually with an increase in true strain. Consequently, it becomes necessary to
develop strain-compensated equations for FeCrAl alloys. This study calculates the stresses
corresponding to the strains ranging from 0 to 0.65 in sequential intervals of 0.05. The
material constants lnA, n, Q, and α are solved based on these equations, and a fifth-order
polynomial is fitted to each parameter. Consequently, a fifth-order polynomial of material
constants with respect to the strain compensation constitutive equation is established, as
shown in Equation (10), with the corresponding coefficients listed in Table 1. The fitted
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variations of different material constants with strain are illustrated in Figure 5. By com-
bining this constitutive equation with Equation (10), stress values can be calculated for
different deformation conditions. To validate the accuracy of the strain-compensated con-
stitutive equation, experimental values of peak stresses under various thermal deformation
conditions are compared with calculated values obtained from the constitutive equation.
The results in Figure 6 demonstrate that the calculated stress values aligned well with the
experimental values. Thus, the developed equation accurately predicts the flow stresses of
FeCrAl alloys across a range of deformation conditions.

lnA = a0 + a1ε + a2ε2 + a3ε3 + a4ε4 + a5ε5

n = b0 + b1ε + b2ε2 + b3ε3 + b4ε4 + b5ε5

Q = c0 + c1ε + c2ε2 + c3ε3 + c4ε4 + c5ε5

α = d0 + d1ε + d2ε2 + d3ε3 + d4ε4 + d5ε5 (10)

Table 1. Coefficient values of fifth-order polynomials in Equation (9).

lnA n Q α

a0 = 30.95279 b0 = 4.39193 c0 = 338.10486 d0 = 0.01573
a1 = 9.17155 b1 = 1.15911 c1 = 123.31095 d1 = −0.03196

a2 = −27.80001 b2 = −17.00512 c2 = −574.27089 d2 = 0.11212
a3 = −57.92418 b3 = 60.54788 c3 = 470.3829 d3 = −0.15243
a4 = 244.31678 b4 = −88.55523 c4 = 898.15577 d4 = 0.06349

a5 = −185.57526 b5 = 48.49286 c5 = −1017.49623 d5 = 0.00603
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To validate the accuracy of the strain-compensated constitutive equation, the experi-
mental values of peak stresses under various deformation conditions were compared with
the calculated values. Figure 7 shows the correlation between the predicted stress and the
test stress after linear fitting. The square correlation coefficient R2 of the test value and the
predicted value was up to 0.987, indicating that the predicted data have a good correlation
with the test data.
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In order to further evaluate the accuracy of the established constitutive equation, the
average relative error (∆, %) between the prediction and the test stress was calculated. The
calculation parameter expression is shown in Equation (11). Where Ei is the test value, MPa;
Pi is the predicted value, MPa; and N is the number of total data points. The calculation
results showed that the prediction error of the constitutive equation is 7.23% in the whole
range of deformation parameters. Thus, the developed equation accurately predicted the
flow stresses of FeCrAl alloys across a range of deformation conditions.

∆ = (1/N)∑N
i=1 |(Ei − Pi)/Pi| × 100% (11)

3.3. Construction of Hot Processing Maps

The hot processing map of three typical strains (reduction 20%, 30%, and 50%, corre-
sponding true strains ε = 0.22, 0.36, and 0.69, respectively) was constructed for an FeCrAl
alloy. The subsequent production, development, and utilization of FeCrAl alloys are linked
to early hot working technology. One of the best methods to investigate this technology is
hot processing map [31–34]. These maps offer an opportunity to control microstructure evo-
lution during hot deformation and to analyze the deformation mechanism. In addition, the
easily forming intervals and unstable forming intervals are illustrated, aiding in avoiding
low-efficiency zones and reducing defects. Consequently, the hot processing maps serve as
important theoretical foundations for industrial production. The hot processing maps were
conducted using the experimental data, the dynamic material model theory, and Prasad
stability criterion [35].

The hot processing map consists of two components: the power dissipation map
and the instability map. According to the dynamic material model, the absorbed energy
is primarily allocated to plastic deformation and microstructure evolution. The former
is denoted as power dissipation (G component), while the latter is power dissipation
coquantity (J component). The ratio of these components can be expressed through the
strain rate sensitivity index [35],

m =
∂J
∂G

=

∫ σ
0

.
εdσ∫ .

ε
0 σd

.
ε

(12)

When the material is in the most ideal linear dissipation state under thermal deforma-
tion, that is, m = 1, the dissipation coquantity J will reach the maximum value of Jmax =σ· .ε

2 .
For the nonlinear dissipation state, the energy consumption efficiency can be expressed by
introducing the efficiency of power dissipation (η):

η =
J

Jmax
=

2m
m + 1

(13)

By taking the logarithm of flow stress σ and strain rate
.
ε under specific strain ε

and temperature T measured by hot compression experiments and fitting with a cubic
polynomial, we can achieve the following:

lgσ = a + blg
.
ε + c

(
lg

.
ε
)2

+ d
(
lg

.
ε
)3 (14)

where a, b, and c are constants and a 6= 0, the strain rate sensitivity index m can be obtained
by the following formula:

m =
∂(lgσ)

∂
(
lg

.
ε
) = b + 2clg

.
ε + 3d

(
lg

.
ε
)2 (15)

The power dissipation factor (η) can be determined by substituting the calculated
value of m into the aforementioned formula. The power dissipation map illustrates the
correlation between η, deformation temperature, and deformation rate. Typically, a higher-
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power dissipation factor indicates greater energy utilized for microstructure evolution
while concurrently dissipating more energy in the form of heat during plastic deformation.
In the power dissipation map, a larger value is considered optimal for the processing zone.

However, it is crucial to note that potential issues such as cracking and void formation
during hot working can significantly impact the power dissipation factor. Therefore,
judging the optimal processing interval solely based on η values may be insufficient.
Prasad et al. established criteria for determining the plastic instability zone, considering
the critical condition of rheological instability and adhering to the principles of irreversible
thermodynamic extremum [35].

ξ
( .
ε
)
=

∂lg
( m

m+1
)

∂lg
.
ε

+ m =
1

2.3m(m + 1)
· ∂m
∂lg

.
ε
+ 1 (16)

By differentiating both sides of the aforementioned formula, (∂m/∂lg
.
ε) can be ob-

tained. A Prasad instability coefficient less than 0 indicates a microstructure undergoing an
instability transition during hot working. The shadowed area in the map represents values
less than 0, constituting the instability map.

In conclusion, the power dissipation map and the instability map are overlaid to create
the hot working map, depicted in Figure 8. The contour values in the map signify the power
dissipation factor (η), with the shaded portion indicating the region where the instability
coefficient ξ

( .
ε
)

is less than 0, signifying the instability ξ
( .
ε
)
.
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Figure 8. Hot processing map under different true strains: (a) 0.22; (b) 0.36; (c) 0.69. (Grey shadow
represents the instability region).

As can be seen from Figure 8, as the true strain increases from 0.22 to 0.69, the in-
stability region of the material is merged from five small regions into two large regions,
the overall shape does not change much, and the maximum power dissipation increases
from 0.5 to 0.6. Analyzing the hot processing map for the material with a true strain of
0.69 revealed the distinct instability zones across low-, medium-, and high-temperature
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ranges. Instability zone I: temperature range of 750–870 ◦C; strain rate of 0.01–10 s−1. A
small stability zone exists within this temperature range. The dissipation value was low; the
microstructure was mainly characterized by dynamic recovery; and the narrow temperature
range was not conducive to efficient production. Instability zone II: temperature range of
870–930 ◦C; strain rate of 0.01–1 s−1. Instability zone III: temperature range of 950–1080 ◦C;
strain rate of 0.4–10 s−1. Instability zone VI: temperature range of 1130–1200 ◦C; strain rate
of 0.7–10 s−1. Stable regions are primarily concentrated in the medium-high, moderate,
and low strain ranges. Stable zone I: temperature range of 930–1000 ◦C; strain rate of
0.05–0.4 s−1. Stable zone II: temperature range of 1050–1200 ◦C; strain rate of 0.01–0.4 s−1.
This region exhibited a high power dissipation value, conducive to the dynamic recrystal-
lization of the microstructure. The processing temperature window is larger, making it the
optimal processing region for this material.

3.4. Microstructures of the Hot Compressed Samples

Figure 9 shows the microstructure of the hot compressed sample at a strain rate of
0.1 s−1. Most grains in the 750 ◦C and 800 ◦C samples were elongated along the direction
of material flow due to the deformation. With the temperature rising to 1000 ◦C, the
bended grain boundaries (grain boundary arching phenomenon) indicated the occurrence
of discontinuous dynamic recrystallization. In cases of deformation at 1150 ◦C and 1200 ◦C,
a large number of fine grains emerged due to dynamic recrystallization. Figure 10 showed
the microstructure of the sample deformed at 1 s−1. Because of the increased strain rate, the
duration of dynamic recrystallization has decreased and may be insufficient for dynamic
recrystallization. As a result, the grain boundary arched at 1200 ◦C-0.1 s−1, while the
equiaxed grains formed at 1200 ◦C-1 s−1.

Figure 11 shows the orientation image maps of the samples. The samples exhibited the
typical dynamic recovery microstructures with dense low-angle (≤15◦) grain boundaries
when the deformation temperature was no more than 950 ◦C, even at a low strain rate of
0.01 s−1. When the temperature was improved to 1000 ◦C, many small grains emerged at
a strain rate of 0.01 s−1 because of the dynamic recrystallization. When the temperature
increased to 1050 ◦C and the strain rate was above 0.01 s−1, the recrystallization was
restricted. When the temperature rose to 1150 ◦C, the dynamic recrystallization occurred at
all four strain rates (0.01 s−1, 0.1 s−1, 1 s−1, and 10 s−1). When the strain rate was improved
to 10 s−1, grain growth was inhibited due to insufficient time for dynamic recrystallization.
Thus, all the new recrystallization grains were small and equiaxed.

As shown in Figure 11b, the sample exhibited a typical dynamic recovery microstruc-
ture mainly composed of elongated grains, and the power dissipation value was 30–40%.
These characteristics corresponded to the stable zone I in the hot processing maps. Similarly,
a small number of dynamic recrystallized grains were distributed along the grain bound-
aries in Figure 11g, while the corresponding power dissipation value of this deformation
condition was 7%. These corresponded to instability zone III in the hot processing maps.
As shown in Figure 11i, a typical continuous recrystallization microstructure composed of
a large number of serrated recrystallized grains at grain boundaries was formed, and the
power dissipation value was 40%, corresponding to the optimal stability zone II in the hot
processing maps.



Materials 2024, 17, 1847 11 of 15Materials 2024, 17, x FOR PEER REVIEW 11 of 15 
 

 

. 

Figure 9. Metallographic structure at different temperatures with deformation rate of 0.1 
s−1: (a) 750 °C; (b) 800 °C; (c) 850 °C; (d) 900 °C; (e) 950 °C; (f) 1000 °C; (g) 1050 °C; (h) 1100 
°C; (i) 1150 °C; (j) 1200 °C. 

Figure 9. Metallographic structure at different temperatures with deformation rate of 0.1 s−1:
(a) 750 ◦C; (b) 800 ◦C; (c) 850 ◦C; (d) 900 ◦C; (e) 950 ◦C; (f) 1000 ◦C; (g) 1050 ◦C; (h) 1100 ◦C;
(i) 1150 ◦C; (j) 1200 ◦C.



Materials 2024, 17, 1847 12 of 15Materials 2024, 17, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 10. Metallographic structure at different temperatures with deformation rate of 1 s−1: (a) 750 
°C; (b) 800 °C; (c) 850 °C; (d) 900 °C; (e) 950 °C; (f) 1000 °C; (g) 1050 °C; (h) 1100 °C; (i) 1150 °C; (j) 
1200 °C. 

Figure 10. Metallographic structure at different temperatures with deformation rate of 1 s−1:
(a) 750 ◦C; (b) 800 ◦C; (c) 850 ◦C; (d) 900 ◦C; (e) 950 ◦C; (f) 1000 ◦C; (g) 1050 ◦C; (h) 1100 ◦C;
(i) 1150 ◦C; (j) 1200 ◦C.
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Figure 11. Crystal orientation diagram at different temperatures and different deformation rates:
(a) 900 ◦C-0.01 s−1; (b) 950 ◦C-0.1 s−1; (c) 950 ◦C-1 s−1; (d) 1000 ◦C-0.01 s−1; (e) 1050 ◦C-0.1 s−1;
(f) 1050 ◦C-1 s−1; (g) 1050 ◦C-10 s−1; (h); 1150 ◦C-0.01 s−1 (i) 1150 ◦C-0.1 s−1; (j) 1150 ◦C-1 s−1;
(k) 1150 ◦C-10 s−1.

4. Conclusions

In this work, the microstructure evolution and hot deformation behavior of an FeCrAl
alloy were investigated in a wide temperature and strain rate range. The hot processing
maps were established, and the optimal hot working ranges were given. Based on this
study, the following conclusions can be drawn:

(1) The flow stress of FeCrAl alloys decreased with increasing deformation temperatures
and increased with an improving strain rate. The thermal deformation activation
energy was determined to be 329.49 kJ/mol. The resulting constitutive equation,
considering strain compensation, is expressed as

.
ε = 3.032 × 1013[sinh(0.0119σ)]4.2293

exp [−329.49/RT].
(2) The hot processing map revealed four small instability zones: Instability zone I:

temperature of 750–870 ◦C; strain rate of 0.01–10 s−1. Instability zone II: temperature
of 870–930 ◦C; strain rate of 0.01–1 s−1. Instability zone III: temperature of 950–1080 ◦C;
strain rate of 0.4–10 s−1. Instability zone VI: temperature of 1130–1200 ◦C; strain rate
of 0.7–10 s−1. The optimum processing range is 1050–1200 ◦C with a strain rate of
0.01–0.4 s−1.

(3) At lower temperatures (750 ◦C and 800 ◦C) and strain rates of 0.1 s−1 and 1 s−1,
the microstructures remained in a deformation state. As the temperature increased
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to 1000 ◦C, the bended grain boundaries emerged due to dynamic recrystallization.
With further increasing temperatures, lots of recrystallized grains were formed. The
microstructure characteristics and related power dissipation values under various
conditions corresponded well with the stability and instability zones in the hot pro-
cessing map.
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