Table 2.
Optimal parameters for the classification models.
| Classifier | Parameters |
|---|---|
| KNeighborsClassifier | KNeighborsClassifier(n_neighbors = 20) |
| DecisionTreeClassifier |
DecisionTreeClassifier(max_depth = 90, max_features = ’log2’, max_leaf_nodes = 30, min_samples_leaf = 12, min_weight_fraction_leaf = 0.2) |
| RandomForestClassifier |
RandomForestClassifier(max_depth = 50, max_features = ’auto’, max_leaf_nodes = 40, min_samples_leaf = 3, random_state = 0) |
| SVC | SVC(C = 5.0, gamma = ’auto’, tol = 0.1) |
| GradientBoostingClassifier |
GradientBoostingClassifier(learning_rate = 0.02, max_depth = 15, min_samples_split = 5, n_estimators = 1000) |