Skip to main content
. 2024 Apr 26;14:9645. doi: 10.1038/s41598-024-59958-9

Table 2.

Optimal parameters for the classification models.

Classifier Parameters
KNeighborsClassifier KNeighborsClassifier(n_neighbors = 20)
DecisionTreeClassifier

DecisionTreeClassifier(max_depth = 90, max_features = ’log2’, max_leaf_nodes = 30, min_samples_leaf = 12,

min_weight_fraction_leaf = 0.2)

RandomForestClassifier

RandomForestClassifier(max_depth = 50, max_features = ’auto’,

max_leaf_nodes = 40, min_samples_leaf = 3, random_state = 0)

SVC SVC(C = 5.0, gamma = ’auto’, tol = 0.1)
GradientBoostingClassifier

GradientBoostingClassifier(learning_rate = 0.02, max_depth = 15,

min_samples_split = 5, n_estimators = 1000)