Skip to main content
. 2024 Apr 26;14:9645. doi: 10.1038/s41598-024-59958-9

Table 3.

Performance of the baseline classifiers.

Model Performance at different horizons
Measure n = 720 n = 1440 n = 2160 n = 2880 n = 3600
KNN Accuracy 0.740242 0.726611 0.713910 0.700434 0.684015
Sensitivity 0.495043 0.481722 0.469641 0.456629 0.437423
Specificity 0.985440 0.971499 0.958178 0.944238 0.930607
Precision 0.971429 0.944141 0.918231 0.891173 0.863081
F1_score 0.655859 0.637949 0.621439 0.603851 0.580592
Decision tree Accuracy 0.738228 0.727695 0.712051 0.695167 0.681382
Sensitivity 0.491326 0.483891 0.465613 0.445787 0.429058
Specificity 0.985130 0.971499 0.958488 0.944548 0.933705
Precision 0.970624 0.944377 0.918143 0.889370 0.866166
F1_score 0.652406 0.639902 0.617883 0.593892 0.573855
Random forest Accuracy 0.741481 0.727850 0.713755 0.700434 0.686029
Sensitivity 0.497831 0.484201 0.469641 0.456629 0.440830
Specificity 0.985130 0.971499 0.957869 0.944238 0.931227
Precision 0.970997 0.944411 0.917676 0.891173 0.865046
F1_score 0.658202 0.640180 0.621311 0.603851 0.584034
Support vector machine Accuracy 0.741481 0.727850 0.714219 0.700434 0.685564
Sensitivity 0.497831 0.484201 0.470570 0.456629 0.441140
Specificity 0.985130 0.971499 0.957869 0.944238 0.929988
Precision 0.970997 0.944411 0.917825 0.891173 0.863030
F1_score 0.658202 0.640180 0.622159 0.603851 0.583846
XG boost Accuracy 0.739312 0.724752 0.711896 0.699814 0.680452
Sensitivity 0.493185 0.477076 0.464684 0.454771 0.425960
Specificity 0.985440 0.972429 0.959108 0.944857 0.934944
Precision 0.971324 0.945365 0.919118 0.891859 0.867508
F1_score 0.654202 0.634136 0.617284 0.602380 0.571369