Table 3.
Performance of the baseline classifiers.
| Model | Performance at different horizons | |||||
|---|---|---|---|---|---|---|
| Measure | n = 720 | n = 1440 | n = 2160 | n = 2880 | n = 3600 | |
| KNN | Accuracy | 0.740242 | 0.726611 | 0.713910 | 0.700434 | 0.684015 |
| Sensitivity | 0.495043 | 0.481722 | 0.469641 | 0.456629 | 0.437423 | |
| Specificity | 0.985440 | 0.971499 | 0.958178 | 0.944238 | 0.930607 | |
| Precision | 0.971429 | 0.944141 | 0.918231 | 0.891173 | 0.863081 | |
| F1_score | 0.655859 | 0.637949 | 0.621439 | 0.603851 | 0.580592 | |
| Decision tree | Accuracy | 0.738228 | 0.727695 | 0.712051 | 0.695167 | 0.681382 |
| Sensitivity | 0.491326 | 0.483891 | 0.465613 | 0.445787 | 0.429058 | |
| Specificity | 0.985130 | 0.971499 | 0.958488 | 0.944548 | 0.933705 | |
| Precision | 0.970624 | 0.944377 | 0.918143 | 0.889370 | 0.866166 | |
| F1_score | 0.652406 | 0.639902 | 0.617883 | 0.593892 | 0.573855 | |
| Random forest | Accuracy | 0.741481 | 0.727850 | 0.713755 | 0.700434 | 0.686029 |
| Sensitivity | 0.497831 | 0.484201 | 0.469641 | 0.456629 | 0.440830 | |
| Specificity | 0.985130 | 0.971499 | 0.957869 | 0.944238 | 0.931227 | |
| Precision | 0.970997 | 0.944411 | 0.917676 | 0.891173 | 0.865046 | |
| F1_score | 0.658202 | 0.640180 | 0.621311 | 0.603851 | 0.584034 | |
| Support vector machine | Accuracy | 0.741481 | 0.727850 | 0.714219 | 0.700434 | 0.685564 |
| Sensitivity | 0.497831 | 0.484201 | 0.470570 | 0.456629 | 0.441140 | |
| Specificity | 0.985130 | 0.971499 | 0.957869 | 0.944238 | 0.929988 | |
| Precision | 0.970997 | 0.944411 | 0.917825 | 0.891173 | 0.863030 | |
| F1_score | 0.658202 | 0.640180 | 0.622159 | 0.603851 | 0.583846 | |
| XG boost | Accuracy | 0.739312 | 0.724752 | 0.711896 | 0.699814 | 0.680452 |
| Sensitivity | 0.493185 | 0.477076 | 0.464684 | 0.454771 | 0.425960 | |
| Specificity | 0.985440 | 0.972429 | 0.959108 | 0.944857 | 0.934944 | |
| Precision | 0.971324 | 0.945365 | 0.919118 | 0.891859 | 0.867508 | |
| F1_score | 0.654202 | 0.634136 | 0.617284 | 0.602380 | 0.571369 | |