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Metabolomics facilitates differential
diagnosis in common inherited retinal
degenerations by exploring their profiles of
serum metabolites

Wei-Chieh Wang 1,12, Chu-Hsuan Huang 2,3,12, Hsin-Hsiang Chung 1,
Pei-LungChen 4,5, Fung-RongHu 6,7, Chang-Hao Yang6,7, Chung-May Yang6,7,
Chao-Wen Lin6, Cheng-Chih Hsu 1,8,13 & Ta-Ching Chen 6,9,10,11,13

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to
its phenotypic and genotypic complexity. Clinical information is important
before a genetic diagnosis is made. Metabolomics studies the entire picture of
bioproducts, which are determined using genetic codes and biological reac-
tions. We demonstrated that the common diagnoses of IRD, including retinitis
pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and
Bietti’s crystalline dystrophy (BCD), could be differentiated based on their
metabolite heatmaps. Hundreds of metabolites were identified in the volcano
plot compared with that of the control group in every IRD except BCD, con-
sidered as potential diagnosing markers. The phenotypes of CRD and STGD
overlapped but could be differentiated by theirmetabolomic features with the
assistance of a machine learning model with 100% accuracy. Moreover, EYS-,
USH2A-associated, andother RP, sharing considerable similar characteristics in
clinical findings, could also be diagnosed using the machine learning model
with 85.7% accuracy. Further study would be needed to validate the results in
an external dataset. By incorporating mass spectrometry and machine learn-
ing, a metabolomics-based diagnostic workflow for the clinical and molecular
diagnoses of IRD was proposed in our study.

Inherited retinal degeneration (IRD) contains a group of retinopathies
characterized by high heterogeneity in phenotypes and a widely vari-
able genetic background. The incidence of IRD is ~1 in 2000 individuals
worldwide and is attributed to a significant proportion of people with
profound visual impairment or blindness1. Phenotypes of IRD are
diverse, and overlapping in clinical presentation is common2,3. Nowa-
days, over 300 genes have been considered causative for IRDs and
were reported on RetNet (https://sph.uth.edu/retnet/). Not only mul-
tiple genesmay result in one IRD, such as retinitis pigmentosa (RP) and
Leber congenital amaurosis (LCA), but many genes may also be

associated with different IRDs. It is even more difficult to predict the
causative genes in patients with similar phenotypes in these diseases,
despite some genotype-phenotype correlations being proposed4–6.
This complexity makes the diagnosis of IRDs very challenging.

Owing to the development of molecular diagnosis, for example,
next-generation sequencing (NGS) technology, the genetic spectrum
and diagnostic accuracy of IRDs have significantly progressed in this
decade7. For example, theTaiwan IRDProject (TIP) platformachieved a
57.1% detection rate in identifying causative genes by incorporating
panel-based NGS technology and could be further higher with whole-
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exome sequencing (WES) and whole-genome sequencing (WGS)8.
However, it is still time-consuming and expensive to check the com-
prehensive genome-wide profile of every potential patient and related
family member because of the wide genetic spectrum of IRD, not to
mention nationwide screening9. To promote public health and early
detection of potential patients with IRD, practical pre-test clinical
information may be beneficial10–12.

Metabolomics, the emerging tool investigating comprehensive
small molecules (<1500Da) constitution of biological samples, pro-
vides instantaneous phenotypic information as metabolites reflect
both genetic and environmental factors13. Mass spectrometry (MS) is
oneof themostwidely usedplatforms formetabolomic analysis due to
its high sensitivity and selectivity14. Therefore, MS-based metabo-
lomics analysis has been widely applied tomedical science and clinical
research, in which the health status of participants is obtained using
molecular fingerprints15,16. MS-based metabolomics approach has also
shown great potential in ophthalmologic diseases research, such as
glaucoma17, diabetic retinopathy18, age-related macular degeneration
(AMD)19,20, and dry eye21. It reveals potential biomarkers that improve
diagnostic accuracy and possibly introduce available treatment
options for eye diseases22–24. The metabolic profiling may not only
reveal potential biomarkers that improve diagnostic accuracy but also
possibly introduce available treatment options, which would benefit
the clinical aspect of IRDs.

High-throughput serum metabolic analyses and accurate
compound identification can be achieved using liquid
chromatography-high-resolution tandem mass spectrometry (LC-
HR-MS/MS). Themachine learning algorithm enabled the extraction
of potential biomarkers associated with specific IRD subtypes from
complex MS datasets, providing excellent performance in distin-
guishing different phenotypes or genotypes of these hetero-
geneous diseases.

In this study, we aimed to establish a model based on serum
metabolomic profiles and machine learning for classifying specific
IRDs before conducting genetic tests. Based on the database from the

TIP, RP was the most common diagnosis, accounting for 66% of the
cases, followed by macular dystrophy, CD/CRD, and BCD, accounting
for 12.5%, 6.1%, and 3.5%, respectively8. The most prevalent causative
genes in RP probands in this study were USH2A, EYS, PRPF31, and
ABCA4. Moreover, the most common diagnosis in the macular dys-
trophy group is STGD8. This study focuses on these IRD subtypes with
the highest prevalence in Taiwan.

Results
Metabolomic features of IRDs revealed using heatmap and
selected metabolites
A total of 155 participants were enrolled in the present study, including
70diagnosedwithRP, 20with STGD, 21withCD/CRD, 16withBCD, and
28 healthy participants in the control group (Fig. 1); the average age
was 48.7 ± 14.3, 29.0 ± 21.1, 41.4 ± 14.4, 49.2 ± 13.3, and 43.4 ± 17.3-year-
old in each group, respectively. The participants in the STGD group
were significantly younger than those in the control, BCD, and RP
groups [analysis of variance (ANOVA) with Tukey’s honestly significant
difference test, P = 0.024, 0.003, and <0.001, respectively]. There was
no statistical difference between IRD groups and healthy control for
the presence of systemic disease, body mass index (BMI), and habit of
smoking (P = 0.953, 0.895, and 0.726, respectively). The prevalence of
anti-oxidant supplementation was similar in different IRD groups as
well (P = 0.709) (Supplementary Table 1).

A heatmap of the serum metabolic profiles of all the partici-
pants is shown in Fig. 2a. Among the metabolites evaluated, we
selected 40 metabolites with the most significant differences
among the groups using ANOVA. There are distinct characteristics
and patterns in patients with different IRD subtypes. For example,
elevated D-xylonate, citronellyl acetate, and hexadecanedioic acid
levels were observed in all IRD subtypes, except BCD, compared
with that of the control group (Fig. 2b–d). In contrast, decreased
concentrations of N-undecanoylglycine and the other three gly-
cerophospholipids, phosphatidylserine (14:1/16:0), phosphati-
dylcholine [16:0/9:0(CHO)], and phosphatidylcholine (19:1) were

Fig. 1 | Flow chart of the present study.Metabolomic analysis using MS was
performed in enrolled IRD cases and the control groups. The heatmap, PLS-DA, and
volcano plots were used to reveal the difference in metabolomic profile between
IRDs and the control group. By incorporatingmetabolomic information, amachine
learning model was constructed for differentiating specific IRDs that cannot be

distinguished by clinical examination. MS, mass spectrometry, IRD, inherited ret-
inal degeneration, PLS-DA, partial least squares-discriminant analysis, BCD, Bietti’s
crystalline dystrophy, CRD, cone-rod dystrophy, RP, retinitis pigmentosa, STGD,
Stargardt disease; LC-HR-MS/MS, liquid chromatography-high-resolution tandem
mass spectrometry, ML, machine learning.
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found in all IRD subtypes, except BCD, compared with that of the
control group (Fig. 2e–h). Therefore, a great similarity was found
between the control and BCD groups, while other subtypes of IRD
exhibited different patterns of metabolites compared with that of
the control group. The levels of these identified metabolites after
adjustment with age are shown in Supplementary Fig. 1,
respectively.

PLS-DA plot in each IRD revealed diagnostic potential
Based on fundus appearance and clinical pathophysiology, IRD could
be preliminarily divided into three groups: cone-predominant degen-
erative diseases (e.g., CD/CRD and STGD), rod-predominant degen-
erative diseases (e.g., RP), and crystalline-deposition retinopathy (e.g.,
BCD). PLS-DA score and volcano plots are shown in Fig. 3. The meta-
bolomic profiles of RP, STGD, and CD/CRD could be successfully
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distinguished from healthy participants in the PLS-DA score plots,
whereas BCD largely overlapped with healthy participants. Further
analyses revealed that patients with different genotypes tended to
have different metabolic conditions despite having similar pheno-
types. As shown in Fig. 3a, patients with RP had different metabolic
profiles than healthy participants. In further subtype analysis, in
Fig. 3b, d, f, h, RP with different disease-causing genes tended to have
different metabolic expressions. Different RP genotypes could be
better separated from healthy participants in the PLS-DA score plot
than pooling them together as an overall RP group, suggesting that
different metabolic features exist between different RP phenotypes.

In contrast, patients with the same disease-causing gene but dif-
ferent clinical subtypes share similar metabolic features. For example,
as shown in Fig. 3j, patients with STGD and RP with the same genetic
mutation, ABCA4, exhibited similar metabolic profiles in the PLS-DA
score plot.

Volcano plots quantified the difference between the IRD and
control groups
The volcano plots in Fig. 3a–h revealed quantifying the differences in
metabolic composition between IRDs and healthy participants corre-
sponding to each PLS-DA score plot. The criteria for significant fea-
tures highlighted in plots were defined as a false discovery rate <0.05
based on the Benjamini–Hochberg test and fold change >2. While
147–260 features were identified in other IRDs when compared with
healthy participants, no significantly different metabolite was found
between BCD and healthy participants. Themetabolic compositions of
ABCA4-associated RP and STGDwere similar, and only 19 features were
identified (Fig. 3j). The Volcano plots after adjustment with age were
shown in Supplementary Fig. 2, revealing completely identical trends
mentioned above. The number of metabolites with significant differ-
ences between each group is shown in Supplementary Table 2. Lipid
metabolites contributed to a major part of the differences in each
group, especially in EYS- and USH2A-associated RP.

Propose machine learning models in rod- and cone-
predominant IRDs
As described above, IRD could be preliminarily divided into the fol-
lowing three groups: cone-predominant degenerative diseases, rod-
predominant degenerative diseases, and crystalline-deposition retino-
pathy. Cone-predominant degenerative diseases such as CD/CRD and
STGD could present similar clinical manifestations. However, by ana-
lyzing themetabolites shown in Fig. 3i, we could better differentiate the
two groups without a genetic diagnosis. Similar results have been
observed in rod-predominant degenerative diseases. Different geno-
types of RP are often indistinguishable clinically but could be separated
throughmetabolite studies, as shown in Fig. 3. Therefore, we attempted
to establish a machine learning model to provide first-line diagnostic
ability by incorporating big data from metabolomic information.

The first model was established for the diagnosis of CD/CRD,
STGD, and healthy participants. As shown in Fig. 4b, both the training
and validation sets achieved 100% sensitivity and specificity. The
accuracy for the training set based on the leave-one-out cross-
validation is 100 ±0%. Five metabolites were selected as diagnostic
features using a machine learning model: dodecanamide,

hexadecanedioate, N-undecanoylglycine, diacylglycerol, and N8-
acetylspermidine (Supplementary Fig. 3a and Supplementary
Table 3). The secondmodelwas established to predictEYS- andUSH2A-
associated RP, which are themost prevalent subtypes according to the
TIP database. The training and validation sets achieved 83.7% (84 ± 16%
in the leave-one-out cross-validation) and 85.7% accuracy, respectively
(Fig. 4d). Fourteen metabolites were selected as diagnostic features in
thismodel (Supplementary Fig. 3b and Supplementary Table 3); half (7
out of 14) belonged to the glycerolipid class, and 4 were poly-
unsaturated fatty acids. According to this finding, the targeted
machine-learning model could demonstrate value in differentiating
between cone- and rod-predominant IRDs. Therefore, by incorporat-
ing the thinking process from clinical information into the targeted
machine learning model in metabolomic analysis, we propose a diag-
nostic flowchart to facilitate the diagnosis of IRD when approaching
the genetic confirmation test (Fig. 5b).

Discussion
Owing to the wide variety of genetic and phenotypic spectra of IRD,
precise diagnosis for each individual and family member has been a
challenge in clinical practice25. With advances in NGS-based molecular
diagnosis, the diagnostic rate and genetic spectrum of IRD have been
broadened even further. To promote more time- and cost-effective
strategies for genetic testing, phenotype-guided, population-based,
and clinically directed tiered approaches have been proposed10–12,26,27.
In the present study, we provide an alternative approach by investi-
gating the information obtained from the metabolomic analysis.

As an end product of systemic metabolism, the profiling of
metabolites can serve as a bridge between genetic transcription and
the physiological environment. Metabolomics studies have been
introduced in ophthalmologic studies in several fields24,28–30. For
example, Lains et al. found that metabolites involved in the glycer-
ophospholipid pathway were strongly correlated with progress in
age-related macular degeneration20. Vehof et al. proved that the
decrease in serum androgens was associated with the development of
dry eye disease21. Zuo et al. found a link between specific metabolites
and the presence of diabetic retinopathy by establishing a machine-
learning model31. In the present study, we explored the metabolomic
profiles in common subtypes of IRD, including RP, STGD, CD/CRD, and
BCD, to determine if there are significant differences among groups
and compared them to the healthy population. The results showed
that the serum metabolomic profile differed significantly between
healthy participants and thosewith IRD. The profiles also variedwidely
among the different IRD subtypes. Although they presented with a
phenotype similar to that of RP, patients with different genotypes also
exhibited diverse serum metabolomic profiles. These results inspired
us to incorporate metabolomic studies for disease screening and
diagnosis when approaching patients suspected of having IRD before
conducting genetic consultation.

One important finding of our study is that the metabolomic pro-
file is more closely related to genetic variations than to the phenotypic
characteristics of the fundus. For example, EYS and USH2A are both
important and common disease-causing genes in autosomal recessive
RP, whereas patients in these two subgroups may have different
metabolomic profiles. In contrast, the metabolomic profile was

Fig. 2 | Metabolomics profile and selected identified metabolites in metabo-
lomics analysis in different IRD groups. a The heatmap of 40 identified meta-
bolites with the most significant differences among the seven IRD subgroups and
control group were selected using ANOVA. The red color represents the upregu-
lated metabolites, while the blue color represents the downregulated metabolites
in each enrolled case. For (2b–h), statistical analysis was performed using analysis
of variance (ANOVA) with Tukey’s honestly significant difference test (two-sided).
Results are indicated by: Nonsignificant; (ns), p >0.05; *p ≤0.05; **p ≤0.01;
***p ≤0.001; ****p ≤0.0001. The levels of D-xylonate (b), citronellyl acetate (c), and

hexadecanedioic acid (d) were higher in the CD/CRD, STGD, and RP groups than
those in the BCD and control groups. The levels of phosphatidylserine (14:1/16:0)
(e), phosphatidylcholine (19:1) (f), phosphatidylcholine [16:0/9:0(CHO)] (g), and
N-undecanoylglycine (h) were lower in the CD/CRD, STGD, and RP groups than
those in the BCDand control groups. Source data areprovided as a SourceDatafile.
IRD, inherited retinal degeneration; BCD, Bietti’s crystalline dystrophy, CRD, cone-
rod dystrophy, RP, retinitis pigmentosa, STGD, Stargardt disease, ANOVA, analysis
of variance, PC, phosphatidylcholine, PS, phosphatidylserine.
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relatively similar betweenABCA4-associated STGDandRPdespite their
distinct phenotypes. These results indicate that different disease-
causing genes have different pathological mechanisms in retinal
degeneration. Notably, some studies have shown that genotypes pre-
dispose the disease progression and poor outcomes for patients with
IRD3,6,25,32,33.

Another interesting finding is that, unlike other subtypes of IRD,
we found that the metabolomic profile of patients with BCD is highly
similar to that of healthy participants and apart fromother subtypes of
IRD. No metabolites were found to be significantly different between
BCD and healthy participants. BCD ismore prevalent in East Asia and is
caused by mutations in the CYP4V2 gene, which is responsible for the

Fig. 3 | PLS-DA and volcano plots of each IRD subgroup compared with that of
the control group. The significant features highlighted in the volcano plot were
defined as having a false discovery rate <0.05 (Benjamini–Hochberg test, two-
sided) and fold change >2. The number of metabolite features with significant
differences between each IRD subgroup and control group was shown in the par-
entheses in each volcano plot. No metabolite feature could be identified between
the BCD and control group (g). The PLS-DA plot showed that the RP, CD/CRD, and
STGD groups could be distinguished from the control group in metabolomic
analysis (a, c, e), while the overlapping area in the BCD group wasmore prominent
(g). Moreover, when we further sub-grouped RP by genotype, including EYS,
USH2A,ABCA4, and PRPF31, themetabolomic analysis showedmoredistinguishable

results in the PLS-DA plot (b, d, f, h). i Compared between CD/CRD and STGD, 71
features could be identifiedwith significant differences from the volcano plots, and
the two groups could be distinguished in the PLS-DA plot. jComparedwith RP with
the ABCA genotype, STGD showed that only 19 features in the volcano plots could
be identified, and the overlapping of the PLS-DA plot was prominent. Despite the
significant phenotypic differences, RP and STGD with the same genotype, ABCA4,
showed similar metabolomic profiles. Source data are provided as a Source Data
file. IRD, inherited retinal degeneration, BCD, Bietti’s crystalline dystrophy, CRD,
cone-rod dystrophy, RP, retinitis pigmentosa; STGD, Stargardt disease, PLS-DA,
partial least squares-discriminant analysis.
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transformation of polyunsaturated fatty acids34. Therefore, the
pathogenesis of BCD is primarily a dysfunction of lipid metabolism,
and the mechanism is much different from other subtypes of IRD,
which generally affect enzymes involved in the visual pathway or
protein, maintaining structural stability in photoreceptors and retinal
pigmented epithelium cells.

Specific metabolites could be identified from the heatmap and
volcano plots, revealing different pathogens in different IRD subtypes
and serving as potential biomarkers. From the heatmap, a higher
concentration of xylonate and hexadecanedioic acid has been found in
the serum of patients with IRD except for those with BCD, both par-
ticipating in an oxidative reaction as the role of precursor and end
product35,36. The increased concentration of these metabolites indi-
cated higher oxidative stress in the IRD disease process, which could
be associated with retinal cell apoptosis37. In contrast, lower con-
centrations of three different glycerophospholipids, phosphatidylser-
ine (14:1/16:0), phosphatidylcholine [16:0/9:0(CHO)], and
phosphatidylcholine (19:1) were observed in IRD samples excluding
the BCD. Glycerophospholipids are crucial components of photo-
receptor cells, and a reduction of glycerophospholipids in the serum
has been reported in patients with age-relatedmacular degeneration20,
which shares similar features of photoreceptor impairment with IRDs.

Furthermore, the highest serum level of N-undecanoylglycine was
found in BCD, which was also elevated in patients with various fatty
acid oxidation disorders38. The causative gene of BCD, CYP4V2, parti-
cipates in multiple steps of fatty acid oxidation39. From the large
amounts of metabolites identified in the volcano plot, several meta-
bolites showed correlations with different IRDs. For example, the
highest all-trans retinal levels were observed in the CD/CRD group,
followed by the RP group. This finding corresponds to a greater dis-
turbance in retinal homeostasis and more severe photoreceptor
impairment in CD/CRD and RP in IRDs. Moreover, higher serum levels
of 5-hydroxyeicosatetraenoic acid, 5-oxo-eicosatetraenoic acid, leu-
kotriene A4, and leukotriene B4 were found in the CD/CRD group, and
these metabolites participated in the inflammatory response during
oxidative stress, implying that interference of inflammatory regulation
might be involved in the pathogenesis of CD/CRD40. The change in the
abundance of serummetabolites of patients with IRD corroborates the
hypothesis that metabolic profiling is associated with disease pheno-
types, which paved the way for IRD subtype diagnosis and gained
insight into metabolic pathways that may be related to these diseases.

Artificial Intelligence has been increasingly used in clinical medi-
cine. Many studies have attempted to apply machine learning tech-
nologies to help diagnose retinal disorders, including IRD, mainly in

Fig. 4 | Performance of the machine-learning LASSO model for IRD subtypes
classification. a Two diagnostic models were established to differentiate (1) CD/
CRD, STGD, and control group and (2) RP with EYS, USH2A, and other genotypes,
using the machine learning LASSO model. b The sensitivity and specificity were
both 100% in the training and validation sets of the cone-predominant disease
diagnosis model. c The area-under-curve (AUC) was 1.0 in the three subgroups in
the training and validation set. d The diagnostic accuracy was 83.7% in the training

set and 85.7% in the validation set of the RP diagnosis model. e The AUC of the RP
diagnosis model for the USH2A, EYS, and other genotypes in the training and vali-
dation set. Source data are provided as a Source Data file. LASSO, Least Absolute
Shrinkage and Selection Operator, IRD, inherited retinal degeneration, CRD, cone-
rod dystrophy, RP, retinitis pigmentosa, STGD, Stargardt disease, AUC, area-
under-curve.
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the field of imaging reading41–44. With the inspiring results of metabo-
lomics analysis, we attempted to incorporate machine learning
methods to enhance diagnostic ability in the present study. In cases
with overlapping clinical presentations, such as STGD and CD/CRD,
machine learning can be used to construct a diagnostic model with
high accuracy. In addition, we demonstrated that themachine learning
model could helpdifferentiate between two commongenotypes ofRP,
EYS, and USH2A, before reaching a relatively expensive genetic diag-
nosis.Machine learning enables us tomanagemassive amounts of data
from serum metabolite analyses quickly and constitutes a
diagnostic model.

Genetic augmentation therapy targeted specific genotypes of
specific diseases have been developed as a potential treatment for
IRDs in recent years45. Among numerous ongoing clinical trials in gene

therapy for IRDs, Luxturna™ (Voretigene neparvovecryzl; Spark Ther-
apeutics, Philadelphia, PA) is the first treatment approved by the Uni-
ted States Food and Drug Administration, targeting the RPE65-
associated LCA cases46. Genetic therapy advancements have broa-
dened the treatment of choice in IRDs, but the better prognosis often
correlates with an earlier approach in cases with relatively preserved
retinal function47. To launch the potential gene therapy for IRD cases in
earlier disease stages, earlier and confirmative genetic and clinical
diagnosis of IRD becomes evenmore important. Furthermore, besides
the potential to reveal a diagnosis, metabolomic study has been
applied for more clinical aspects in other common ophthalmological
disease, including diabetes, age-related macular degeneration, glau-
coma, and dry eye disease48. Specific metabolites identified from
aqueous humor or serum are associated with disease activity,

Fig. 5 | Fundus photography and autofluorescence of representative cases and
proposed diagnostic flow chart for IRDs. a Different genotypes of RP cannot be
differentiated by fundus examination, which shared common features, including
pale disc, vessel attenuation, and pigmentary change, only with different disease
severity. Moreover, the fundus appearance of CD/CRD and STGD is also undis-
tinguishable, both with characteristic central maculopathy. However, the fundus
appearance of BCD was characterized by crystalline deposition and could be dif-
ferentiated easily from other IRDs. b we proposed a diagnostic flow chart to facil-
itate the early diagnosis of IRDs by incorporating clinical information,

metabolomics analysis, and genetic diagnosis. IRDs belonging to rod-predominant
disease, cone-predominant disease, and crystalline deposition were first deter-
mined by fundus examination. By incorporating targeted metabolomics analysis
and a machine learning model, we could further differentiate EYS and USH2A
genotypes in rod-predominant disease and STGD and CD/CRD in cone-
predominant disease. Finally, we could reach a targeted, small panel NGS for the
patient’s and family members' genetic diagnosis. IRD, inherited retinal degenera-
tion; BCD, Bietti’s crystalline dystrophy, CD/CRD, cone dystrophy/cone-rod dys-
trophy, RP, retinitis; STGD, Stargardt disease, NGS, next-generation sequencing.
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progression, and also treatment response in patients with AMD and
diabetic retinopathy49–51. Likewise, the metabolomic analysis in IRD
could be expected to further correlate with disease prognosis,
response to treatment, and discovering of available supplementation
as well, with a larger study being conducted in the future. Evidence of
metabolomic analysis in the diagnosis of IRDs was revealed in the
present study. Incorporating metabolomic analysis helps facilitate
differential diagnosis in patients suspected of having IRDs before
acquiring genetic confirmation (Fig. 5b).

However, this study has some limitations. First, the number of
cases was relatively small owing to the rare nature of IRDs. The influ-
ence of individual-specific and environmental factors on the metabo-
lomics profile remains a pertinent consideration. In addition, as this
was a cross-sectional study,we arenot sure of thepossible longitudinal
changes in metabolomic expression in each individual or each IRD
subtype. Future longitudinal studies are warranted to better under-
stand the differences in metabolomes at different disease stages.
Furthermore, expanding the participant pool is imperative to facilitate
a more in-depth exploration of metabolomics within specific IRD
genotypes and its correlation with disease severity and systemic
characteristics. Absolute quantification for the identified metabolites
would contribute to the establishment of a validatedmodel applicable
to new participants based on the findings of this study. Future studies
should also focus on broadening the identification of metabolites with
significant differences in and between these common IRDs, which
could provide greater diagnostic value.

In this study, our results showed that serummetabolomic profiles
differed significantly between healthy participants and those with IRD.
The profiles also varied widely among the different IRD subtypes. By
incorporating metabolomic analysis and fundus examination, we
propose a diagnostic workflow for efficiently accessing IRDs. Our
machine learning model could further identify the most common
USH2A- and EYS-associated RP in rod-predominant diseases, as well as
STGD and CD/CRD, which contributed the largest proportion of cone-
predominant diseases. Our study provides a preliminarily exploratory
overview of metabolomics in common IRDs and reveals the potential
of metabolomic studies to enhance clinical diagnosis before con-
ducting genetic consultation. Moreover, the information obtained
from the metabolomic analysis could reflect genomic variations
and possibly lead to future investigations into the pathophysiology
and treatment of IRDs.

Methods
Study participants
Patients diagnosed with IRDs, including RP, STGD, CD/CRD, and BCD,
at the National Taiwan University Hospital (NTUH) between 2015 and
2020 were prospectively enrolled in this cross-sectional observational
study. The study protocol adhered to the tenets of the Declaration of
Helsinki and was approved by the Institutional Review Board of NTUH.
The diagnosis of IRD and identification of genotype were established
by clinical data and NGS study targeting 212 IRD-related genes con-
ducted in the TIP report8. It was based on a comprehensive ocular
examination and was confirmed using panel-based NGS technology in
every participant. A total of 28 healthy participants comprised the
control group. Informed consent was obtained from all participants.
Medical records and demographic data were recorded, including age,
sex, body mass index, habit of smoking, supplementation of anti-oxi-
dants, and history of systemic diseases requiring regular medication
including hypertension, diabetes, cardiac disease, autoimmune dis-
ease, and cancer. Serum samples of all participants were collected
within 1 to 3 p.m. without fasting status.

Serum metabolites extraction
To extractmetabolites from serum, themethyl tert-butyl ether (MTBE)
extraction protocol was used with laboratory modification52. The

serum (50μL) was extracted by adding MTBE, methanol, and double-
distilled water. The upper portion containing mostly lipids and the
lower portion containing hydrophilic metabolites were separated,
dried, and storedunder–80 °Cbefore analysis. The detailed extraction
protocol is described in the Supporting Information.

Liquid chromatography-mass spectrometry analysis
Liquid chromatography-mass spectrometry (LC-MS) analysis was per-
formed using a Dionex UltiMate 3000UHPLC system coupledwith a Q
Exactive Plus hybridquadrupole-Orbitrapmass spectrometer (Thermo
Fisher Scientific, USA). The samples (5μL) were analyzed in random
order. Pooled quality control sampleswere injected every 10 injections
to ensure spectral quality. The upper (hydrophobic) and lower
(hydrophilic) portions of the serum extract were separated using C18
(Waters UPLC CSH C18: 2.1 × 100mm, 1.7 μm) and BEH amide columns
(Waters UPLC BEH Amide: 2.1 × 150mm, 1.7 μm), respectively. The
detailed LC gradient settings are provided in the Supporting Infor-
mation. Each sample was analyzed under both positive and negative
ion modes. The mass range was set at m/z 150–1500 and 70–1000 for
the analysis of the upper and lower portions, respectively. The detailed
MS settings are listed in the Supporting Information.

Statistical analysis and machine learning model construction
The LC-MS data were preprocessed using Thermo Scientific Com-
pound Discoverer v3.2 software for peak alignment, background fil-
tering, signal normalization, peak picking, and compound
identification. The detailed settings for data preprocessing are
described in the Supporting Information. Heatmap, volcano plot, and
partial least squares-discriminant analysis (PLS-DA) were conducted
using the MetaboAnalyst 5.0 online platform (https://www.
metaboanalyst.ca/home.xhtml).

Two diagnostic models were constructed in this study: one for
CD/CRD, STGD, and healthy participant classification and the other
for genotype prediction in patients with RP. Diagnosticmodels were
built based on the entire MS metabolic dataset using the commer-
cially available data mining software RapidMiner Studio (version
9.10.001). First, the MS data were randomly separated into training
and validation sets at a ratio of 7:3 for each subtype. The training
dataset was used to train the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) model and was evaluated using leave-one-
out cross-validation. The trained model was evaluated using a vali-
dation dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings and for generating figures were
provided in the Supplementary Information and also a SourceDatafile.
The MS datasets have been deposited and are available at Metabo-
lomics Workbench under the study ID ST003124 (https://doi.org/10.
21228/M8PX4X). Raw data for clinical information are available from
the corresponding authorupon request. Sourcedata areprovidedwith
this paper.
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