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MRBEE: A bias-corrected multivariable Mendelian randomization
method

Noah Lorincz-Comi,!2 Yihe Yang,2 Gen Li,! and Xiaofeng Zhu!.3*
Summary

Mendelian randomization (MR) is an instrumental variable approach used to infer causal relationships between exposures and out-
comes, which is becoming increasingly popular because of its ability to handle summary statistics from genome-wide association studies.
However, existing MR approaches often suffer the bias from weak instrumental variables, horizontal pleiotropy and sample overlap. We
introduce MRBEE (MR using bias-corrected estimating equation), a multivariable MR method capable of simultaneously removing weak
instrument and sample overlap bias and identifying horizontal pleiotropy. Our extensive simulations and real data analyses reveal that
MRBEE provides nearly unbiased estimates of causal effects, well-controlled type I error rates and higher power than comparably robust
methods and is computationally efficient. Our real data analyses result in consistent causal effect estimates and offer valuable guidance
for conducting multivariable MR studies, elucidating the roles of pleiotropy, and identifying total 42 horizontal pleiotropic loci missed

previously that are associated with myopia, schizophrenia, and coronary artery disease.

Introduction

Mendelian randomization (MR) is an instrumental variable
(IV) approach used to infer causal relationships between ex-
posures and outcomes and can apply to summary statistics
from genome-wide association studies (GWASs), providing
a cost-effective and generalizable alternative to randomized
controlled trials." Inverse-variance weighting (IVW)? is the
fundamental approach to perform MR with GWAS summary
statistics, and the validity of which relies heavily on three so-
called valid IV assumptions: the geneticIVsare (IV1) strongly
associated with the exposures; (IV2) not directly associated
with the outcome conditional on the exposures; and (IV3)
not associated with any confounders of the exposure-
outcome relationships. Violations of the (IV1)—(IV3) assump-
tions will introduce weak instrument,® unbalanced uncorre-
lated horizontal pleiotropy (UHP),* and correlated horizontal
pleiotropy (CHP)® biases into the casual effect estimation,
respectively. As for balanced UHP, which aligns with the in-
strument strength independent of direct effect (InSIDE)
assumption,” the causal effect estimation remains unbiased.

From a statistical perspective, both unbalanced UHP and
CHP in an MR model exhibit characteristics similar to out-
liers in traditional regression analyses. Therefore, these is-
sues can be addressed using robust statistical tools. In the
literature, MR-PRESSO® and IMRP’ identify and remove
horizontal pleiotropic variants through hypothesis tests,
while the MR-Lasso® and MRcML’ methods detect hori-
zontal pleiotropy through variable selection tools. On
the other hand, approaches like MR-Median'’ and
MR-Robust'! employ robust loss functions to mitigate
the horizontally pleiotropic effects. Furthermore, Gaussian

mixture models are implemented in methods such as
MRMix,'? MR-Conmix,'®> CAUSE,” MRAID,'* and MR-
CUE."® These models offer an advantage over traditional
robust tools by utilizing fewer degrees of freedom to
describe unbalanced UHP and CHP, thereby increasing ef-
ficiency when the mixture models are correctly specified.

While univariable MR (UVMR) methods allow some IVs
to have horizontally pleiotropic effects, they generally as-
sume that most IVs influence the outcome solely through
the mediation of the exposure. However, this assumption
can be problematic when traits share more than 50% causal
variants. For instance, both systolic and diastolic blood
pressure (SBP and DBP)'® are revealed to share substantial
causal variants. When analyzing the causal effect of SBP
on cardiovascular disease, it is often challenging to remove
the effect through DBP. A more effective way to address this
issue is multivariable MR (MVMR), which accounts for the
majority of horizontally pleiotropic variants that are shared
by multiple exposures.'” To date, the multivariable versions
of IVW,'® MR-Egger,'” MR-Median,'’ and MRcML?" have
been developed. As demonstrated by Sanderson et al.,'’
MVMR is reliable in estimating the direct causal effects of
one or more exposures.

The issue of weak instrument bias, stemming from the
violation of the (IV1) assumption, poses even more
challenging to resolve in MVMR than in UVMR. Specif-
ically, it is usually difficult to find a set of IVs that are
strongly associated with all exposures under consideration.
In contrast, IVs are generally selected if they are associated
with at least one exposure.”' With the growing identifica-
tion of causal variants for complex traits, the pool of IVs
used in MVMR can easily reach the thousands due to this
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IV selection procedure, therefore worsen weak instrument
bias. Traditional approaches to mitigate this bias involve
discarding weak IVs whose F-statistic or conditional
F-statistic is less than 10. This threshold is believed to
keep the relative bias in causal effect estimates below
10%.%*? However, the exclusion of IVs can lead to reduced
statistical power and introduce a “winner’s curse,” thereby
compromising the validity of the causal inference.”’

We propose to resolve the weak instrument bias by using
tools in measurement error analysis.”* Specifically, measure-
ment error bias occurs when explanatory variables are
measured with random error, leading to biased estimates of
model parameters. Since current MR approaches are per-
formed with GWAS summary statistics that always contain
estimation errors, the causal effect estimates inevitably suffer
from measurement error bias.>>?° Therefore, we view a weak
instrument as a relatively large measurement error in effect
size estimate based on finite sample size and is the primary
reason for violating assumption (IV1) in IVW and other
MR approaches. Furthermore, unlike traditional measure-
ment error analyses that assume uncorrelated estimation er-
rors in exposures and outcomes, overlapping individuals in
exposure and outcome GWAS can result in correlated mea-
surement errors, leading the direction of measurement error
bias either toward or away from zero. As we observed in
Figure 1, IVW estimates®” exhibit negative bias with small
numbers of overlapping samples and positive bias with large
numbers of overlapping samples, respectively.

We develop a computationally efficient MVMR method,
MR using bias-corrected estimating equations (MRBEE), to
eliminate weak instrument bias while simultaneously ac-
counting for horizontal pleiotropy in the presence of weak
IVs or sample overlap. In contrast, existing methods only
address weak instrument bias in specific cases such as no sam-
ple overlap (debiased IVW)?® or no horizontal pleiotropy
(MRlap).”® Although the multivariable MRcML methods™
generally provide unbiased causal estimates, they may be
vulnerable to horizontal pleiotropy and computationally
intensive. To underscore its practical significance, we apply
MRBEE to three datasets, each targeting a unique disease,
namely, myopia, schizophrenia (SCZ), and coronary artery
disease (CAD), with the aim to unravel the distinct causal ex-
posures associated with each. In addition, we extend the plei-
otropy test to a genome-wide pleiotropy test (GWPT) for de-
tecting novel loci. These empirical analyses offer valuable
guides for conducting MVMR studies, elucidating the roles
of pleiotropy and weak instrument bias, and illustrating
how toidentify novelloci through pleiotropy tests. The study
was approved by the institutional review board (IRB number:
STUDY20180592) at Case Western Reserve University.

Results
Overview of method

The detailed MRBEE is described in the material and
methods section. Briefly, suppose that there are p expo-

sures having causal effects on an outcome and m genetic
variants as IVs. Let ¢ = (aq, ..., am)T be a vector of length
m, representing the genetic effect sizes of IVs on the
outcome, B = (61,...,8,,) " be an (mxp) matrix with
B = (Bj1 ...,ﬁip)T representing the genetic effect sizes of
the j th IV on the p exposures, 8 = (61, ..., BP)T be a vector
of length p representing the causal effects of the p expo-
sures on the outcome, and y = (yq, ...,ym)T be a vector
of length m representing horizontal pleiotropy. We model
the causal effects of the exposures on the outcome by

Oéj = 6:0—0—’)’]

The goal in MR analysis is to estimate the causal effects 0
unbiasedly. In the above equation, the true genetic effect
sizes « and B are not observed but can be estimated
through the GWAS of exposures and outcome and the
pleiotropy effect vy is simply unknown. Let a@; and E,- be
the effect size estimates of the j th IV from the outcome
and exposure GWASs. We have

& = C(j+Wa/.,
bi = B +wg;,

where w,, and wyg represent the measurement errors
because of finite sample sizes of the GWASs.

In general, an MVMR analysis is performed by the
following linear regression:

&,‘ = 6;64—’)’]‘ +8,‘,

where ¢; represents the residual. When we standardize a;
and g; by their corresponding standard errors obtained
from GWASs, the multivariable IVW (MV-IVW) estimates
dis

Orvw = argmﬁin{H& ~ BY|;} = (BTB) 'Bq,

which is equivalent to solve the score equation
Swvw(f) = BT (BO — @) = 0. However, the MV-IVW fails
to consider the weak IVs and the correlations among w,,
and wg, induced by sample overlap and assumes pleiot-
ropy v; = 0 for all IVs. Thus, the MV-IVW is biased. To solve
this problem, we propose MRBEE by solving the following
estimating equation,

Spre(0) = Sww(6) — m(zwﬁwﬂ —

where Zw,w, and oyw,y, represent the covariance matrix
among wg and between wg and w, (material and
methods) in the set of the m IVs. The score function in
Spee(6) adds a corrected term, which corrects the bias
because of weak IVs and sample overlap, meanwhile as-
sumes there are no pleiotropic IVs (y; = 0). The solution
of the equation Sppg(6) is

O-WK;WD‘) = 07

/éBEE = (ﬁTﬁ — meﬁwﬁ)_l(ﬁT& — mO’Wﬁwa).

With the presence of pleiotropic IVs, we apply an itera-
tive procedure” with the pleiotropy test Spieio for multiple
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Figure 1. Principle of MRBEE

(A) Traditional MR methods are vulnerable to weak instrument bias arising from the estimation errors in GWAS associations for the ex-
posure(s) and outcome. The direction of the bias is influenced by the degree of sample overlap between the studies where the red and blue
points refer to two simulated data with 0% and 100% sample overlap. The shadow regions represent the 95% confidence interval regions.
(B) MRBEE corrects for weak instrument bias using bias-correction terms which are calculated from the matrix of correlations between
measurement errors for all exposures and the outcome. In this example with myopia and its four exposures, the numbers in the lower
triangle of the table are the correlations estimated using LD score regression and that in the upper triangle of the table are the correlations
estimated using non-significant SNPs.

(C) MRBEE uses an iterative estimation procedure, where horizontally pleiotropic IVs are removed at each iteration until convergence.
The y axis in panels (2) and (4) reflect the SNP association with the outcome not mediated by the exposures. The numbers under the red
vertical lines represent p values.

(D) After estimating causal effects, MRBEE performs genome-wide horizontal pleiotropy testing to find loci associated with the outcome
(e.g., myopia) that were not detected in the original GWAS.

exposures and an outcome, which uses the following sta-
tistic Spjeio for the j th IV,
2
N G
Spleio; (0) = —F—— -
var(a,- -6/ 0)
Thus, MRBEE estimates the causal effect 4, and identifies

pleiotropic IVs with the current estimated causal effect ¢
iteratively. The entire pipeline from inputting summary

statistics, estimating causal effects, and identifying pleio-
tropic IVs is illustrated in Figure 1. Note that after
estimating the causal effect 4, we can further search pleio-
tropic variants across the entire genome.

Simulation

We compared MRBEE with the multivariable MR of
IVW, MR-Egger, MR-Median, MR-Lasso, MRCML-DP, and
MRcML-BIC. MRBEE is implemented with the R package
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MRBEE and the other methods are implemented through
the R package MendelianRandomization.”” We call
IVW, MR-Egger, MR-Median, and MR-Lasso the traditional
MVMR methods, as they either do not account for estima-
tion error of effect size or the sample overlap. Our simulation
setting was adapted from the ones considered by Lin et al.,*’
but with specific adjustments to better reflect real-world sit-
uations. Specifically, we set the heritability of both expo-
sures and confounders at 0.1, introduced moderate genetic
correlations among the exposures, and added correlations
among random errors of exposure and outcome GWAS co-
horts. In our analysis, we consider three scenarios: no pleiot-
ropy, 30% unbalanced UHP, and 30% CHP. All exposures are
assumed to come from the same GWAS sample, while the
outcome may overlap completely (100% sample overlap),
partially (50% and 77% overlap), or be entirely independent
(0% sample overlap). In addition, the sample size was set at
50,000, the number of IVs was set at 50, 100, and 200, repre-
senting the increasing of weak IVs, the number of exposures
was 4, and the causal effect was § = (0,0.2, —0.2,0.4)7,
which represents no causal effect, and positive, negative,
and large causal effects, respectively. Simulation settings
are fully presented in supplement 1 and the R code used to
generate simulated data is available at the GitHub repository
of this paper. The number of simulation replicates was 500,
and additional simulations can be found in supplement 1.

Bias of causal effect estimates
Figures 24, 2D, 2G, and 2] demonstrate that the bias in
traditional MVMR methods (IVW, MR-Egger, MR-Median,
MR-Lasso) is proportional to the number of IVs used, espe-
cially in the absence of horizontal pleiotropy. The direc-
tion of this bias is influenced by sample overlap: no overlap
results in bias toward the null, while sample overlap leads
to bias away from the null. On the contrary, MRBEE,
MRcML-BIC, and MRcML-DP are unbiased under these
conditions. The unbiasedness for MRcML methods is likely
attributed to the fact that the objective function of MRcML
methods®’ accounts for the covariance of estimation er-
rors. Our results suggest that incorporating the estimation
error covariance matrix mitigates measurement error bias.
Figures 2B, 2E, 2H, and 2K demonstrate that when there
was 30% unbalanced UHP, IVW, and MR-Egger generally
incurred substantial bias. Moreover, there were inflated
standard errors in the causal estimates due to the horizon-
tal pleiotropy. MR-Median and MR-Lasso also incurred
substantial bias, but the standard errors of their causal esti-
mates were smaller than that from IVW and MR-Egger.
These methods apply robust tools to estimate the causal ef-
fects in the presence of horizontal pleiotropy but are not
able to remove the bias by weak instrument or sample
overlap. MRCML-BIC and MRcML-DP generally provided
unbiased causal estimates when there was no sample over-
lap. When the sample overlap percentage was 100%, both
MRcML-BIC and MRcML-DP incurred biases in different
directions. The magnitude of this bias was proportional
to the number of IVs used. For example, for exposure 1

with true ; = 0, MRcML-BIC and MRcML-DP had bias
away from the null; for exposure 3 where 3 = — 0.2,
the two methods had bias toward, and even past, the
null. In comparison, MRBEE was unbiased in all scenarios
except when there were 200 IVs and 100% overlap. In this
case, MRBEE still had a smaller upward bias for exposure 3
with 63 = — 0.2 than other methods.

Figures 2C, 2F, 21, and 2L demonstrate that when there
was 30% CHP, IVW, and MR-Egger had larger bias and stan-
dard errors in their causal estimates than the rest of
methods. Both had bias away from the null for exposure
1, and the magnitude of which depended on the number
of IVs used. MR-Median and MR-Lasso generally were less
biased than IVW and MR-Egger, as they are more robust in
handling of CHP IVs. The weak instrument bias of MR-
Median and MR-Lasso followed the same bias patterns as
no pleiotropy. MRcML-BIC and MRcML-DP were both
biased when the sample overlapping percentage was
100% or 0%, potentially due to the instability of algorithm
when horizontal pleiotropy is present. MRBEE was unbi-
ased in all cases and generally had standard errors compara-
ble to other methods excluding IVW and MR-Egger. Finally,
when the number of IVs increased from 50 to 200, repre-
senting the increasing of weak IVs, MRBEE was always per-
forming better than the comparing methods (Figure 2).

Type | error and power

Figures 3A-3C present the type I error rates for all the
methods when the true causal effect ; = 0, which corre-
sponds to the first exposure in our simulations. When
there was no sample overlap between exposures and the
outcome, the type I error was well controlled for MRBEE
in all three scenarios, i.e., no pleiotropy, 30% unbalanced
UHP, and 30% unbalanced CHP. In comparison, MRcML-
DP, MR-Median, MR-Egger, and IVW was generally conser-
vative, while MRcML-BIC and MR-LASSO usually had
inflated type I error rates. When 100% overlap between
exposures and the outcome, MRBEE still controlled type I
error rate well. The rest of the methods either had inflated
or extremely conservative type I error rate.

Figures 3D-3L present power for different causal effects
in the three scenarios. Overall, MRBEE has comparable
power with the best of the other methods but maintains
a type I error rate. We specifically compared MRBEE and
MRcML-DP, where the latter controlled type I error rate
well under all the simulation scenarios. We observed that
MRBEE either had similar or better power than MRcML-
DP. The power pattern across the seven methods does
not align well with the type I error pattern, that is, high
type I error rate corresponds to high power and vice visa.
We observed that the reason is the bias direction in causal
effect estimates as illuminated in Figure 2, i.e., the bias
direction could be in opposite to the true causal effect.

Again, when the number of IVs increased from 50 to
200, the performance of type I error and power of
MRBEE was either equal well or better than the comparing
methods. We further evaluated these approaches in terms
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Figure 2. Comparison of the causal effect estimates by the 7 MVMR methods

(A-L) Boxplots display the causal effect estimates from seven methods in the MVMR simulation. The four rows represent the four causal
effects 6, j = 1,2,3,4. Each column corresponds to one of the three pleiotropy scenarios for IVs (i.e., No pleiotropy; 30% unbalanced
UHP IVs; 30% CHP 1Vs). The x axis indicates the value of the causal effect estimate, while the y axis lists the seven methods. The true
values of causal effects are denoted by dashed lines. Plots in (A), (D), (G), and (J) when the sample overlap proportion is 0% can be used to
infer the magnitude of weak instrument bias since differences between MRBEE and IVW causal estimates in these scenarios are propor-
tional to the degree of weak IV bias. The left and right vertical edges of each box plot represent the 25 and 75" percentiles of causal
effect estimate, and the vertical middle line represent the 50th percentile.

of the root-mean-square error (RMSE), standard error (SE)
estimation, and coverage frequency of causal effects.
MRBEE was again the best among the methods evaluated
(Figures S1-S83, and Tables S1-524 in supplement 1).

We have performed additional simulations in which the
overlapping proportion takes values 0, 0.5, 0.77, and 1. In
these scenarios MRBEE still performs well. The results are
presented in supplement 1.

Computational efficiency

Figure 4 illuminates the computation efficient across seven
methods. We observed that MRBEE is computationally as
efficient as MR-Median, MR-Lasso, MR-Egger, and MR-IVW.
We attribute the computational requirements of MRcML to
two potential factors. First, MRcML methods utilize an algo-
rithm similar to the best subset selection to identify the
optimal subset of pleiotropic variants. This involves
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Figure 3.

power

power

Comparisons of type | error and power of the seven MVMR methods

(A-C) Type I error of the seven methods (MRBEE, MRcML-BIC, MRcML-DP, MR-LASSO, MR-Median, MR-Egger and IVW). (D-L) Power of
the seven methods. The three columns corespond to no pleiotropy, 30% unbalanced UHP IVs and 30% CHP IVs, respectively. In each
figure, the top and bottom panels represent 0% and 100% sample overlap between exposures and outcome, respectively. Each row rep-
resents different causal effects. Simulation settings are described in the simulation section in the main text, supplement 1, and at our
GitHub repository. Displayed are bar plots of rejection frequency estimations across 500 simulations for each scenario, which represents
the type I error or power depending on the true causal effect is zero or not. The two dotted vertical lines in (A)—(C) represent the 95%

confidence interval.

performing MVMR iteratively by considering numbers
of pleiotropic variants ranging from 1 to K (defaulting to
m/2), and determining the optimal number based on the
BIC criteria. In contrast, MRBEE automatically detects pleio-
tropic variants using a hypothesis test, and MR-Lasso utilizes
lasso for pleiotropic variant selection, both of which are
computationally efficient. Second, MRcCML-DP relies on per-
mutations to derive the SE, which further increases computa-

tional burden. Conversely, MRBEE uses the sandwich for-
mula to estimate its SE, which appears to be accurate in our
simulations (Equation 19 in material and methods).

Real data analysis

Data sources

To demonstrate the MRBEE performance in real data analysis,
we analyzed three outcomes, including myopia, SCZ, and
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CAD. Myopia is known to be influenced by a combination of
genetic and environmental factors, including educational
attainment (EDU), near-work activity, and outdoor activ-
ities®” but their direct causality to myopia is not clear. In
this MVMR analysis, we considered refractive error, the mea-
sure of myopia degree, as the outcome. The exposures include
EDU, near-work activity measured by time spent watching
TV and playing on the computer (TV and Computer), and
outdoor activity measured by time spent driving (Driving).

Attention-deficit/hyperactivity disorder (ADHD), cannabis
use disorder (CAN), EDU, intelligence (INT), left-handedness
(LH), intelligence (INT), neuroticism (SESA), and sleep
duration (SLP) have been reported as risk factors for SCZ. Of
these risk factors, CAN arguably has the strongest evidence
of causality with respect to SCZ, with studies reporting
dose-response’’ and strong temporal®” relationships for
at-risk individuals. The direct causality of the risk factors on
SCZ is also not clear.

Many studies have been published to understand the
causal effects of risk factors on CAD. However, the findings
in these studies have been inconsistent. For instance,
Holmes et al. and Lin et al.**** found that HDL-C is not
significant, while Zhu et al.,” using the GWAS summary
data with a much larger sample size (1.3M vs. 90K), found
it to be significant. Besides, Wang et al.?' found that low-
density lipoprotein cholesterol (LDL-C) is not significant
in European populations, which seems unreasonable. In
this data analysis, we investigated the causal relationships
of these risk factors on CAD using the GWAS summary data
with the largest sample sizes to date. We focus on the same
eight factors studied in Lin et al.,”" i.e., body mass index
(BMI), DBP, fasting plasma glucose (FPG), height, HDL-C,
LDL-C, triglycerides (TG), and SBP.

MR cgger ims ims ams ms
I ime [ime me me |ame ame ame
. SIS ST PSR IS B SIS UL S e LSS

m=50 m=100 m=200

all exposure-specific IV sets from
UVMR, then restricted this set to only
include SNPs with a joint x?-test p
value reaching genome-wide signifi-
cance and again passing C + T using
the same parameters as before. The
joint x2-test for the exposures is presented in Equation 22
in material and methods and is used to assess the null hy-
pothesis that an SNP is not associated with any exposure.
We additionally standardized the GWAS effect size esti-
mates so that their SEs were the inverse of the sample sizes.
This procedure leads to comparable causal effect estimates
across different exposures. We used false discovery rate
(FDR) correction in MRBEE to identify and remove SNPs
with evidence of horizontal pleiotropy (see Algorithm 1).
Table 1 summarizes the information of GWAS data in
this study. In Table 1, the last three columns present the
SNP heritability estimated by the LD score regression
(LDSC),** the variances explained by the IVs in UVMR,
and the variances explained by the IVs in MVMR. It is
evident that for the trait with lower heritability and small
sample sizes, the UVMR IVs account for about 1% of its
SNP heritability, which may reduce power to detect causal
effects using UVMR. However, for most traits, IVs in
MVMR analyses explain a substantial portion of the vari-
ance, which will provide good power to detect causal
effects. This is because the standard error of causal esti-
mate(s) is inversely proportional to the variance(s) ex-
plained by the IVs. The last column of Table 1 shows the
reliability ratios, a measure of IV strength, for exposures
used in real data analysis. The estimation errors averagely
account for ~20% variance of the GWAS effect estimates.
Myopia
All the MVMR methods consistently showed that EDU
(MRBEE p=9.3E—21) and Driving (p = 3.8E—11) are directly
causal on myopia, but not TV (p = 0.136) or Computer (p =
0.972) (Figure 5A). The no direct causal effect of TV or Com-
puter on myopia risk although all exposures were observed
to have significant causal effects on myopia in the UVMR
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Table 1.

Summary of GWAS data used in real data analyses

Sample Significant LDSC UVMR MVMR Reliability
Trait Source size IVs heritability variance® variance® ratio®
Myopia Driving van De Vegte etal. °* 422K 4 0.0365 0.00034 0.00400 0.705
Playing computer Armns et al. >° 422K 46 0.0719 0.00408 0.01154 0.873
Watching TV Rustad et al. °© 422K 189 0.1321 0.01788 0.02775 0.943
EDU Okbay et al. °’ 765K 656 0.1352 0.03954 0.03683 0.976
Joint 4 test 707
Refractive error Hysi et al. *® 246K 420 0.2702 0.11079 0.01433 0.838
Schizophrenia ~ ADHD Demontis et al. > 55K 12 0.0956 0.00279 0.01871 0.832
CAN Johnson et al. ©° 384K 5 0.0174 0.00033 0.00272 0.552
EDU Okbay et al.>’ 765K 656 0.1222 0.03954 0.03728 0.973
Intelligence Neale’s Lab 430K 48 0.2326 0.01527 0.06023 0.900
Left handedness Cuellar-Partida 205K 4 0.0338 0.00086 0.00533 0.576
et al. ©!
Neuroticism (SESA) Nagel et al. ** 450K 42 0.0800 0.00476 0.01056 0.825
Sleep duration Dashti et al. ** 493K 66 0.0649 0.00589 0.00998 0.850
Joint 7 test 1,227
SCZ Trubetskoy et al.** 320K 287 0.3380 0.06378 0.03570 0.855
Coronary BMI Loh et al. ©® 458K 882 0.2076 0.09494 0.10612 0.918
artery disease
DBP Evangelou 1.00M 942 0.1095 0.06022 0.04525 0.823
et al. **+MVP
FPG Neale's Lab 361K 115 0.0848 0.03729 0.05156 0.789
Height Loh et al. ® 458K 2,728 0.6023 0.48986 0.49156 0.981
HDL-C Graham et al. ©’ 1.32M 1,031 0.1779 0.09207 0.09745 0.965
LDL-C Graham et al. ©’ 1.32M 754 0.1293 0.08435 0.08713 0.961
TG Graham et al. ©’ 1.32M 900 0.1251 0.07298 0.08105 0.959
SBP Evangelou 1.00M 895 0.1152 0.05626 0.04550 0.829
et al. ®°+MVP
Joint 8 test 4,336
CAD Aragam et al.®*4+MVP 1.45M 343 0.0500 0.01610 0.01712 0.850

Variance explained by the IVs in UVYMR analysis.
BVariance explained by the IVs in MVMR analysis.
“Reliability ratios of exposures in MVMR analysis.

analysis (Figure 5B). The insignificance of both TV and
Computer in MVMR analysis suggests their correlations
with myopia could be attributed to the confounding with
EDU and Driving time. MRBEE provided larger protective
causal estimate of driving time than that by IVW (.e.,
MRBEE odds ratio [OR] = 0.71 vs. IVW OR = 0.84), likely
due to a correction for weak instrument bias given that
the driving time variance explained by the IVs was less
than 1%. The causal effect of driving time estimated by
MRcML-BIC and MRcML-DP was 3-5 times larger in mag-
nitude than those from other methods. (MRcML-BIC
OR = 0.38 and MRcML-DP OR = 0.58, respectively). In the
iterative pleiotropy test, we detected 31 IVs demonstrating
pleiotropy of the exposures and myopia (Figure 5C). Figure
5D compares the computational efficiency of the MR

methods. We observed that IVW was the fastest (<0.1 s), fol-
lowed by MRBEE (0.1 s), MR-Lasso (0.9 s), MR-Median (1.4
s), MRcML-BIC (1 min), and MRcML-DP (107 min), which
were consistent with the simulations.

Schizophrenia

All MVMR methods consistently estimated that CAN
(MRBEE p = 3.7E-8), EDU (p = 3.6E-15), INT (p =
7.7E—12),and SESA (p = 1.8E—7) have direct causal contribu-
tions on schizophrenia (Figure 6A). MRBEE, MR-Lasso, and
MR-Median suggested that SLP (p = 3.4E—4) has direct causal
contribution on schizophrenia but not MRcML-BIC or
MRcML-DP. It is not clear why both MRcML-DP and
MRcML-BIC failed to detect this causal contribution given
our simulations suggest MRcCML-BIC could be more powerful
although with inflated type I error. A potential reason could
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Figure 5. Myopia data analysis

Driving

EDU

Computer MVMR

(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.
(B) Corresponding causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars.
The radius of the confidence interval equals /ax SE, where a = F)Zzl(l — 0.05/4,1), F;Z1 (x,df) is the inverse cumulative distribution

function of a x? distribution.

(C) Pleiotropy test where the x axis represents the linear predictor
ciation with myopia from GWAS. The annotation of a pleiotropic
present in the figure.

BBgpz and the y axis represents the corresponding standardized asso-
variant is made if its pleiotropic test p value is < SE—8. Only IVs are

(D) Computation times of the six comparing methods. Columns 1-4 represent computation time for UVMR of four exposures and the

last column represents computation time for MVMR.

be the instability of MRcML, which may converge to local
maximum. However, this requires additional investigation.
MRBEE suggested no direct causal effect of ADHD (p =
0.510) or LH (p = 0.096), possibly due to the relatively low
exposure variance explained by the IV set (i.e., 0.018 for
ADHD and 0.005 for LH). We observed relatively larger
odds ratios of EDU and CAN for MRBEE than MR-Median,
MR-Lasso, and IVW, but less than MRcML-DP and MRcML-
BIC. In comparison, UVMR analyses by all methods sug-
gested evidence of total causal effects of CAN (MRBEE p =
1.6E—4), INT (p = 3.2E-7), SESA (p = 2.0E-10), ADHD
(p =0.017), and SLP (p = 1.4E—4), but not EDU (p = 0.542)
or LH (p = 0.716) (Figure 6B). We did not observe any
IVs with evidence of horizontal pleiotropy at the Bonfer-
roni-corrected p = 0.05 level (Figure 6C), suggesting that
the genetic association of the IVs with SCZ are strictly medi-
ated by the five significant exposures. Again, we observed

similar computational efficient for these methods as before
(Figure 6D).

Coronary artery disease

Figure 7A presents MVMR causal estimates for the effects of
BMI, DBP, SBP, FPG, height, HDL-C, LDL-C, TG, and SBP
on CAD. Using MRBEE, we identified the following signif-
icant direct causal effects on CAD, including BMI (MRBEE
p = 3.8E-39), FPG (p = 6.7E—10), HDL-C (p = 8.4E-21),
LDL-C (p = 1.5E-87), TG (p = 1.9E-7), and SBP (p =
1.1E—-25). We observed that MRBEE estimates were gener-
ally consistent with estimates from IVW, MR-Median, and
MR-Lasso. Conversely, MRCML-BIC and MRcML-DP esti-
mates diverged from all other methods for DBP and FPG.
For example, MRcML-DP/BIC were the only methods
that simultaneously produced significant causal effects
for SBP (p = 1.6E-39) and DBP (p = 1.8E—45) on CAD,
two traits that are highly genetically correlated. In
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Figure 6. Data analysis of schizophrenia
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(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.

(B) Causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars. The radius of
the confidence interval equals /axSE where a = F;}(l - 0.05/7,1).

(C) Pleiotropy test where the x axis represents the linear predictor Bfggr and the y axis represents the standardized association of the IV

with SCZ from GWAS.

(D) Computation times of the comparing methods. Columns 1-7 represent computation time for UVMR of seven exposures and the last

column represents computation time for MVMR.

comparison, UVMR analyses by all methods consistently
suggested that all the exposures have causal contributions
on CAD (Figure 7B). We also observed 173 IVs demon-
strating horizontal pleiotropy by the horizontal pleiotropy
test in MVMR (Figure 7C). Again, our proposed MRBEE is
computationally efficient (Figure 7D).

Pleiotropic variants detected by GWPT

GWPT uses the Spio statistic (Equation 21 in materials and
methods) to test whether a genetic variant is associated
with the outcome phenotype strictly through the media-
tion of a select group of exposures. In our GWPT analyses,
these groups of exposures are those that were used in each
MVMR. This test can be used to find these outcome-associ-
ated loci'® that do not reach the level of genome-wide sig-
nificance in the original outcome phenotype GWAS but
are genome-wide significant in GWPT. In these regions, it
is possible that the local genetic correlations between the

exposures and outcome are of different sign or magnitude
than the genome-wide genetic correlations.’® To ensure
that the loci identified in GWPT were not primarily influ-
enced by other exposures, we excluded any loci that
showed even a marginal association with any of the expo-
sures at a genome-wide significance level (i.e., p < SE-8).
We also compared GWPT with cross-phenotype associa-
tion analysis (CPASSOC),?” multi-trait analysis of GWAS
(MTAG),*® which are joint tests of association between
all exposures in the outcome.

Table 2 lists the variants detected by GWPT for myopia,
SCZ, and CAD but missed in the original GWAS. For com-
parison, we listed the p values for association from the orig-
inal outcome GWAS, cross-phenotype tests by CPASSOC
and MTAG, and by GWPT, respectively. The GWPT identi-
fied 18 genome-wide significant loci for myopia, four for
SCZ, and 20 for CAD, respectively. All these loci did not
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Figure 7. Data analysis of coronary artery disease
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(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.

(B) Causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars. The radius of
the confidence interval equals \/ax SE where a = F;zl (1 - 0.05/8,1).

(C) Pleiotropy test where the x axis represents the linear predictor Bégr and the y axis represents the standardized association between
the IVand CAD from GWAS. The annotation of this pleiotropic variant is made if it is associated with the most significant exposures with

p < SE-8.

(D) Computation times of the comparing methods. Columns 1-8 represent computation time for UVMR of eight exposures and the last

column represents computation time for MVMR.

reach genome-wide significance level in the outcome
GWASs, suggesting GWPT captures pleiotropic evidence
and the standard GWAS does not. We also performed
expression quantitative trait loci (eQTL) mapping for the
identified loci using functional mapping of GWAS
(FUMA GWAS).*” Each SNP that tagged a locus had mar-
ginal evidence of association with the expression of a
gene in that locus in at least one tissue, where association
p values ranged from 3.3E—310 to 6.7E—S5. This suggests
that these loci may have functionally relevant conse-
quences in their conferred risk for myopia, SCZ, or CAD.

Discussion
We proposed MRBEE to overcome the weak instrument,

pleiotropy and sample overlap bias in MVMR analysis.
We pointed out that weak instrument bias is essentially

driven by measurement error of GWAS effect estimates,
whose scale and bias direction are influenced by the degree
of weakness of IVs and the GWAS sample overlap, respec-
tively. An IV is not considered weak when the estimation
error is negligible, which can be achieved with a suffi-
ciently large GWAS sample size, no matter how large or
small the effect size is. In genetics, Burgess et al.” suggested
using the F-statistics to define the strength of an 1V,
whereas we recommend the reliability ratio (material and
methods, Equation 11), a commonly used statistic in mea-
surement error analysis. Both metrics are equivalent and
will be influenced by the GWAS sample size and the num-
ber of IVs, highlighting that the definition of a weak instru-
ment is dynamic. MRBEE removes the measurement error
bias by using an unbiased estimating function. Although
this estimating function has a long history in the literature
of measurement error analysis,*” it has not been utilized to
modify the current MVMR approaches.
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Table 2. Loci detection of GWPT and eQTL mapping of leading variant

SNP information

Association test

eQTL mapping

SNP CHR:BP GWAS MTAG CPASSOC GWPT Symbol Tissue Database p
Myopia 1855761633 1:20757820 9.9e-07 3.1e-05 5.6e—07 9.6e—09 CAMK2N1 Muscle Skeletal GTEx/v8 3.9e—06
152419964 2:124252256 1.3e-07 1.2e-05 2.6e—10 6.0e—10 NA NA NA NA
1s7602460 2:182261869 4.9e-07 9.2e—06 6.6e—07 3.2e-08 ITGA4 Blood eQTLgen 2.0e—19
1561548163 2:184349492 9.2e—07 1.3e—05 3.3e—06 2.7e—08 NA NA NA NA
156764842 3:123106287 1.6e—06 NA 2.0e—07 3.1e—08 ADCY5 Artery Tibial GTEx/v8 3.0e—17
159761983 4:138482973 1.5e—07 NA 9.0e—06 4.4e—08 RP11-714L20.1 Cortex GTEx/v8 2.2e—06
152461726 6:166316838 5.1e-07 1.7e—-05 1.2e—-06 1.1e—08 SDIM1 Pituitary GTEx/v7 2.8e—07
1s12699288 7:11975557 3.8e—06 1.4e—04 3.4e—08 1.4e—08 THSD7A Nerve Tibial GTEx/v8 6.7e—05
1s2970498 7:30478056 1.1e-07 1.8e—06 7.0e—06 3.1e-08 NOD1 Blood eQTLgen 1.0e—07
1s1532278 8:27466315 3.4e-07 1.1e-05 9.6e—07 6.7e—09 CLU Eye EyeGEx 1.1e-26
157048915 9:4206388 1.0e—07 2.0e—06 6.2e—06 1.3e—08 NA NA NA NA
1s902997 10:105384262 1.9e-07 9.2e—07 1.2e—08 3.2e-09 USMGS Blood eQTLgen 3.0e-37
1517065719 13:44925021 4.3e-07 1.1e-05 2.6e—05 3.7e-08 SERP2 Blood eQTLgen 7.7e—48
1s1926715 13:111538590 8.6e—08 1.4e—-05 2.4e—-12 2.0e—09 ANKRD10 Eye EyeGEx 3.0e—48
1s7141076 14:67922172 9.2e—08 1.8e—05 5.7e—06 1.7e-08 TMEM229B Pituitary GTEx/v8 1.1e-08
1512889206 14:68769182 8.8e—08 1.5e—-06 1.2e-06 3.9e-08 NA NA NA NA
1s7198357 16:67884619 2.5e—07 4.2e—06 2.1e—09 4.3e—09 DUS2 Blood eQTLgen 3.3e-310
1s35594082 16:84796864 8.5e—07 1.8e—05 1.8e—06 3.1e-08 USP10 Eye EyeGEx 2.9e—09
Schizophrenia 1517672204 5:74946518 1.1e-06 8.2e—06 1.9e-06 2.4e—-08 COL4A3BP Muscle Skeletal GTEx/v8 5.8e—-15
1579650876 3:187997616 1.7e—07 4.3e—08 4.5e—07 3.2e—-08 AC022498.1 Blood eQTLGen 5.7e—06
152300921 3:185651001 8.0e—06 8.9e—06 4.9e—06 3.2e-08 TRA2B Breast GTEx/v8 1.8e—06
157225476 17:78561603 8.2e—07 2.1e-06 7.0e—05 3.3e—08 RPTOR Blood eQTLGen 4.0e—89
Coronary artery 152045886 2:29010517 3.6e—07 4.6e—05 2.7e-21 7.7e—-11 PPP1CB Blood eQTLGen 3.3e-310
disease
156727524 2:238570309 8.9e—-07 6.3e—05 4.4e—09 2.8e—08 LRRFIP1 Blood eQTLGen 3.4e-76
151868217 3:98445534 2.1e-05 4.5e—04 1.3e-10 3.6e—08 ST3GAL6 Blood eQTLGen 2.0e-30
1s73070809 3:186885760 1.1e-07 NA 3.7e-07 1.0e—08 RPL39L Adipose GTEx/v8 4.0e-05
1s12523133 5:86297919 8.5e—08 2.3e—05 3.2e—-19 2.5e-10 RP11-72L22.1 Spinal Cord GTEx/v8 6.6e—08
156899197 5:111250597 8.8e—06 NA 1.2e-20 2.2e—09 EPB41L4A Esophagus GTEx/v8 5.0e-05
1513202921 6:41687366 3.3e—07 2.9e—-06 1.8e—08 3.8e—08 CCDC77 Artery Coronary GTEx/v7 4.9e—-11

(Continued on next page)
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Table 2.

eQTL mapping

Association test

SNP information

Database

Tissue

Symbol

GWPT

MTAG CPASSOC

CHR:BP GWAS

SNP

NA

NA NA

1.1e-07 2.6e—05 5.2e—14 3.2e—11 NA

7:14029739

152073533

NA

NA NA

NA

1.6e—10

1.5e-08

NA

6.0e—08

8:106468592

157822979

3.8e-08

GTEx/v8

Esophagus

3.1e-05 5.3e—06 1.3e—-10 ZFPM2

7.8e—08

8:106587829

14734881

4.3e-15

eQTLGen

8:125054365 3.2e—07 4.0e—06 2.5e—04 1.0e—08 TRMT12 Blood

1512375254

6.6e—13

eQTLGen

Blood

6.8e—03 2.7e—19 2.3e-10 INPPSA

2.4e—06

10:134456762

1512412313

5.3e—305

eQTLGen

Blood

2.2e-05 2.7e—08 2.4e—08 PPFIA1

7.8e—07

11:70236819

157113595

3.3e-310

eQTLGen

7.7e—19 2.1e-11 CCDC77 Blood

NA

12:417633 3.0e—07

157315852

3.4e-75

xQTLServer

Brain

1.7e—04 3.4e-20 2.9e—09 BTBD1

2.2e—07

15:83955536

1s55893521

1.1e-85

eQTLgen

Blood

9.7e—04 2.8e—32 5.2e-10 STX4

6.8e—06

16:30626616

1512918327

6.3e—08

GTEx/v8

4.2e—08 RP11-99A1.2 Testis

9.9e—-10

4.0e—06

18:52769637

159958798

7.0e—79

eQTLGen

Blood

1.2e-03 4.6e—17 3.4e—08 SUN2

8.5e—06

22:39147235

1535496634

1.6e—07

EyeGEx

2.9e—-06 9.3e—06 5.2e-15 3.8e—08 MKL1 Eye

22:40820151

155757949

Our simulations suggested that MRBEE in general leads to
equal or less bias of causal effect estimate than the
comparing methods when weak IVs, pleiotropy, and sam-
ple overlap are present (Figure 2). Similarly, MRBEE also
has equal or better type I error control and statistical power
than robust comparing methods (Figure 3). MRcML-DP and
MRcML-BIC were robust to weak IVs and consistently yield
unbiased causal effect estimates under the “no pleiotropy”
case. However, in the presence of horizontal pleiotropy,
our simulations suggested that MRcCML methods may pro-
duce local minimizers in some specific scenarios in which
horizontal pleiotropy was not completely removed.
MRcML employs the best subset selection for detecting plei-
otropy and the algorithm’s stability and time consumption
could be a challenge,*" as we observed in our simulations.
MRBEE uses an iterative pleiotropy test, whose reliability
has been validated in MR-PRESSO and IMRP.

In the myopia analysis, our detected causal effects for
outdoor activities are consistent with the literature. For
example, spending more time outdoors reducing incident
myopia was confirmed by a randomized clinical trial.*
On the other hand, near-work activities such as time spent
watching TV or using the computer have not been found
to be associated with myopia risk.** The potential biolog-
ical mechanism is that outdoor activities increase the
exposure time to natural light, which induces the release
of dopamine and thereby inhibits axial elongation, thus
suppressing the development of myopia.’” Moreover,
MRBEE vyields a relatively large causal estimate for time
spent driving, likely correcting for weak instrument bias
given the small variation of driving time explained by
the IVs. Although MRcML-DP and MRcML-BIC can effec-
tively reduce weak instrument bias in simulations, their
estimates for the effects of driving time were 3-5 times
larger than those from other methods.

We observed that cannabis use disorder and education
have substantially larger causal effects on SCZ than other
exposures we examined. For LH, the current GWAS has
identified four genome-wide significant IVs together ex-
plaining its 0.086% variation. As a result, we did not
have sufficient power to confirm their causal effect due
to its relatively smaller variance of LH explained by IVs.
MRBEE did not identify pleiotropic variants in these
data, suggesting that our study may already include most
of the direct causal risk factors for SCZ.

Our MVMR analysis seems to suggest that HDL-C is
likely a protective factor against CAD but with a weaker ef-
fect size than that from UVMR analysis, aligning with
recent pharmaceutical trial outcomes.** The previously
observed negative results**** are likely because they did
not utilize the lipid GWAS summary data with the largest
available sample sizes. When using the largest GWAS sum-
mary statistics of CAD as in this study, all methods
including IVW, MRcML-DP, and MRBEE resulted in signif-
icant protective causal effect of HDL-C on CAD (Figure 7A).
We noted that the estimated equal contributions of DBP
and SBP on CAD risk by MRcML-BIC and MRcML-DP,
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which is in direct conflict with all other MR methods we
tested and the literature.*® In addition, MRBEE identified
173 pleiotropic IVs, one of which (rs10757278) is strongly
associated with CAD (p < 5E—300) but whose biological
mechanism warrants for further investigation.

We introduced the GWPT using the statistic Spjeio, which
can be applied in UVMR or MVMR to identify specific IVs
with evidence of horizontal pleiotropy. When S,¢j, was
applied to the whole genome, we identified genetic loci
associated with myopia, SCZ, and CAD that were missed
in their original GWAS. These loci also reflect their direct
association with the outcomes or through exposures not
included in this study. Genes in these loci had genome-
wide significant eQTLs across a range of tissues, suggesting
that these genes might be functionally relevant in modi-
fying disease risk. For example, we identified the RPTOR
gene for SCZ, which has previously been found to be asso-
ciated with BMI*® and blood pressure.*’ This gene also has
significant eQTLs (smallest p = 4E—89) in blood tissue. This
and other examples highlight the potential utility of Spjeio
in identifying trait-associated loci and functionally rele-
vant genes.

In our theoretical study (supplement 2), we consider the
effect size of IVs to follow a normal distribution, represent-
ing a genomic random effect model.*® We observed that
increasing the sample size of GWAS often yields more
novel loci, hence more IVs with non-zero effects can be
used in a corresponding MR analysis. Therefore, in our
theoretical investigation, we allow the number of IVs m
to increase with the sample size n and examine the out-
comes of MRBEE and MV-IVW under different rates of m
and n. Our conclusion can be summarized as follows: for
scenarios like those in our myopia and CAD data, where
GWAS sample sizes for exposures are approximately half
a million or more, MRBEE and MV-IVW are equally effi-
cient (supplement 2, Theorem 1.3 (i)). In this case,
MRBEE’s inference is asymptotically valid, whereas MV-
IVW may lead to incorrect inferences. For the SCZ data
involving CUD, with GWAS sample sizes in the tens of
thousands, MRBEE is less efficient than MV-IVW, but the
inference made by MRBEE remains valid (supplement 2,
Theorem 1.3 (ii)-(iii)). In these cases, the confidence inter-
vals of MRBEE will be wider than MV-IVW but ensure the
95% coverage frequency. Although MRBEE can remove the
weak instrument bias in general, we still recommend
including the IVs with the association p values below a sig-
nificance threshold. The reason is that weak IVs still
require to be truly associated with an exposure although
their effect sizes can be extremely small. Variants with
the association p values above the threshold are likely to
be false positive and including false positive IVs will lead
to bias for MRBEE because of the violation of assumption
(IV1). The purpose of developing MRBEE is to enhance ex-
isting methods, making causal effect estimation and infer-
ence more robust to weak IVs.

The comparison between MRBEE and MRcML in terms of
statistical principle is as follows. MRBEE employs the unbi-

ased estimating function method which constructs its unbi-
ased score function from the score function of the MV-IVW
method. In contrast, the MRcML method is a conditional
score function method, characterized by first estimating
the sufficient statistic containing parameters to be estimated
and then estimating the parameter based on this sufficient
statistic through an iterative method.* Although Stefanski
and Carroll** demonstrated that the conditional score func-
tion possesses statistical efficiency, whether this conclusion
can be directly applied to the MRcML method requires
further investigation. In contrast, our investigation shows
that MRBEE reaches statistical efficiency if m/n,,;,, — 0 where
Npmin 1S the minimum GWAS sample size (supplement 2, The-
orem 1.3 (i)). Furthermore, our simulations in Section S1.3 of
supplement 1 suggest that MRcML-DP tends to overestimate
its SD (i.e., SE > SD), MRcML-BIC underestimates its SD (i.e.,
SE < SD), and MRBEE estimates its SD well in most cases, sug-
gesting MRBEE can achieve more efficiency than MRcML.
The exact reason that MRcML does not estimate SD well
warrants further investigation.

MRBEE also has some limitations. MRBEE is ineffective
in handling exposures associated with significantly weaker
IVs, such as CUD and LH in the SCZ data. This is also a
challenge inherited from the field of measurement error
analysis. In this case, MRBEE and analogous methods
such as MRcML tend to produce causal effect estimates
with relatively large SE. MRBEE is effective when the pro-
portion of pleiotropic variants is relatively low (e.g., below
30%). Incorporating a Gaussian mixture model with
MRBEE might improve the robustness for scenarios with
a high proportion of pleiotropic variants. Finally, MRBEE
is designed to handle a fixed number of exposures. Ex-
panding its capability to a high-dimensional MR model is
warranted in future research.*’

Last, it is worth offering guidance on how to perform
MVMR analysis from our perspective. First, rather than se-
lecting the optimal number of IVs such that the F-statistics
and conditional F-statistics are larger than 10,*** we sug-
gest including all independent IVs that are genome-wide
significantly associated with at least one exposure. The
main purpose of doing this is to reduce the winner’s curse.
Our simulations found that all methods, including
MRBEE, were affected by the winner’s curse, and the
only way to alleviate the winner’s curse was to include as
many causal variants as possible (supplement 1, and
Figure S10). Besides, our theory (supplement 2, Theorem
1.2 and 1.3) illustrates that the asymptotic variance of a
causal effect estimate is related to the cumulative variance
explained by all specified IVs instead of the average vari-
ance explained by each IV. Hence, including more IVs in
the MR model can reduce the variance of the related causal
effect estimate. Second, when performing MVMR analysis,
it is not necessary to remove variants that are pleiotropic
between the exposures. The reason why Wang et al.”’
found that LDL-C was not significant in European popula-
tions is likely caused by this procedure. In contrast, simul-
taneously including all the relevant exposures and their
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IVs is recommended because the multivariable regression
can automatically account for the pleiotropic variants
shared by the specified exposures. Third, we suggest con-
ducting a GWPT after performing the MR analysis, which
represents an effective multi-trait approach for discovering
loci with pleiotropy effect, beyond current methods such
as CPASSOC and MTAG. In statistical principle, GWPT is
likely to identify new loci associated with the outcome if
the effect directions of pleiotropy and exposure mediation
are opposite in these genome regions.

During the revision of this manuscript, we noted that a
recent preprint®® claimed that MRBEE was biased with
extremely large SD and SE for some of simulation sce-
narios. We observed that the reason was that the authors
of the preprint did not perform the standardization for
the instrument effects of both exposures and outcome,
which was documented in in the MRBEE software. We pre-
sent the reproduction of Table 1 in the preprint before and
after the standardization in Table S25 in supplement 1. The
result indicates MRBEE has reasonable SD and SE. We have
updated MRBEE software on GitHub and it does not need
the standardization now.

Material and methods

MR model

We describe MRBEE with details here. As in the main text,
let g, = (g1, g,-,,,)T be a vector of m independent genetic var-
iants where each variant is standardized with mean zero and
variance one, X; = (xil,A..,xip)T be a vector of p exposures,
and y; be an outcome. Consider the following linear structural
model:

x;=B'g +u, (Equation 1)

yi=0"x;+ v'g +vi
where B = (81,...,6,,)  is an (m xp) matrix of genetic effects
on exposures with 8; = (81, ...,ﬁ,»p)T being a vector of length p,
0 = (61, ...,HP)T is a vector of length p representing the causal
effects of the p exposures on the outcome, vy = (v1,...,v;) Tisavec-
tor of length m representing horizontal pleiotropy, which may
violate the (IV2) or (IV3) conditions, and u; and v; are noise terms.
Substituting for x; in (2), we obtain the reduced-form model:

(Equation 2)

vi=gla+w 0+ (Equation 3)

where

a = B0 +1. (Equation 4)

In practice, w; and v; are usually correlated, and hence traditional
linear regression between x; and y; cannot obtain a consistent es-
timate of 4. In contrast, the genetic variant vector g; is assumed to
be independent of the noise terms w; and v; because the genotypes
of individuals are randomly inherited from their parents and do
not change during their lifetime.” Hence, g; can be used as IVs
to remove the confounding effect of w; and v;.

We assume that the genetic effect §; (j = 1,...,m) is a p-dimen-
sional random vector with zero-mean, covariance matrix Zgg, and
cumulative covariance matrix ¥ gg:

Eﬁﬁ = E<‘3]‘3,T>71p55 = mEﬁﬁ.

The covariance matrix Zgg will vanish as m— «, but the cumu-
lative covariance matrix Wg; is still a constant matrix, represent-
ing the total genetic covariance contributed from the m IVs. The
genetic variantg; (i = 1,...,n,j = 1,...,m) is standardized so that
E(gj) = 0 and var(g;) = 1, and all IVs are assumed to be in link-
age equilibrium (LE), i.e., cov (gj,8i) = O for j#k. Next, the noise
terms w; and v; have zero-means and joint covariance matrix:

>
Suxy = COV((“;'T;V;‘)T) — < “T” Juv>.

o'm/ Oyy
Thus, the exposure x; and outcome y; have zero-means and joint
covariance matrix:

sy n(s7)) - (5 01

Xy

S = W+, oy = W0 +Zu0+o0,, and o, =
0T W50 + 607 2,0 + 20" 04y + 0yy. Note that o,y =0 means the
confounders affect both x; and y;.

Bias of multivariable IVW estimate

Since large individual-level data from GWAS are less publicly avail-
able, most of the current MR analyses are performed with sum-
mary statistics of IVs through the following linear regression:

a = @70 +v; +¢, (Equation 5)

where @; and E,- are respectively estimated from the outcome and
exposure GWASs, v; is the horizontal pleiotropy, ¢; represents the
residual of this regression model, and j = 1,...,m referring to the
m IVs. MV-IVW, which is the foundation of most existing MR
methods, estimates 6 by

Orw = argmin{(a — B9) V(@ — Bo)}
0 .
N N , (Equation 6)
=(B'V'B) B'V'a
where V is a diagonal matrix consisting of the variance of estima-
tion errors of a. In practice, it is routine to standardize @; and B
by @;/se(a;) and fjs/se(Bj) to remove the minor allele frequency
effect.'® With this standardization, the MV-IVW estimates 6 by
rvw = argmﬂin{H& - IAMHg} = (B'B)'BTa. (Equation 7)
However, the MV-IVW estimate ,éIVW is biased due to the estima-
tion errors of @; and §;:

Q= o+ W, (Equation 8)

B; = B+ wyg,. (Equation 9)

To see this, observe the estimating equation and Hessian matrix
of (91va

Sww(8) = BT (B — @),Hyw = B'B.

That is, Siyw(8) is the score function of Equation 7 and Oy is
estimated by solving Siyw(6ivw) = 0, and Hyyw is the 2nd deriv-
ative matrix of Equation 7. As shown in supplement 2, since
Oryw — 0 = — H 1, Sivw(0) , the bias of Orvw is approximately:
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E(glvw — 0) = — E(Hww) "E(Swvw(0))
== {Eﬁﬁ + EWﬂWﬁ}il{EWaWaa = OWw, T ‘767}7

(Equation 10)

where

by WeWs  TWsw,

.
cov((wg]_,wa,) ) = Swyxw = 7C0V<5;77,‘>

T
JWﬁWa Twowe

= OBy

Interpretation of weak instrument bias

Here, 345 can be regarded as the average information carried by
each 1V, while 2w, w, can be regarded as the information carried
by each estimation error. If 344 is not substantially larger than
Zw,w;, then the weak instrument will inflate the measurement er-
ror bias by the multiplier (Zgs + EWﬁWﬂ)’l. This is the primary
reason why violating assumption (IV1) introduces bias into causal
effect estimates in IVW and other MR approaches.*

The covariance between the estimation errors of SNP-exposure
and SNP-outcome associations ow,y, can be affected by the frac-
tion of overlapping samples of the exposures and outcome
GWAS. If the exposures and outcome GWAS are independent of
each other, then ow,y, = 0 and hence the measurement error
bias always shrinks /9\1vw toward the null. In contrast, if the expo-
sures GWAS and outcome GWAS are estimated from the same
cohorts, gyw,y, usually introduces bias toward the direction of
o, reflecting the degree of sample overlap between exposures
and outcome. This is the reason why in some empirical
studies,”**” IVW cannot completely remove the confounding
bias if the overlapping sample fraction is large.

If 04, #0, there is additional pleiotropy bias due to the horizon-
tal pleiotropy that violates the InSIDE assumption. In UVMR, it is
challenging to guarantee v; = 0 or cov(y;,6;) = Oforall1 < j <
m, resulting in a potentially biased IVW estimate. Traditional
solutions to horizontal pleiotropy bias require that only a small
proportion of IVs exhibit horizontally pleiotropic effects.>”-'?
However, for complex traits, it is plausible that a large portion of
IVs (even possibly > 50%) possess horizontally pleiotropic effects,
leading to the failure of UVMR methods. MVMR can balance these
pleiotropic effects shared by multiple exposures, significantly
reducing the number of IVs with horizontal pleiotropy evidence
when conditioned on specified exposures. In other words, it is
more likely to guarantee that only few IVs violate the InSIDE
assumption og, = 0 after accounting for multiple exposures,
which can be then detected and removed using the robust tools
such as a pleiotropy hypothesis test.

Reliability ratio
In practice, we suggest using the reliability ratio*’:

var (ﬂ,-k)
var (ﬁfk)

to measure the degree of bias in ﬁk,ww, which can be empirically
estimated by

wx = (Equation 11)

_jl (E;Zk - Var(wﬁik))

o =" T (Equation 12)
. B
j=1

Wk =

oy reflects the proportion of variability in the estimated effects
attributable to the underlying true genetic effects. For example, a
reliability ratio of 0.6 indicates that 60% of the variance of the esti-
mated effects is attributable to the true effects and the rest is attrib-
utable to their estimation errors. From the perspective of measure-
ment error theory, the IVW estimate glvw converges to wf in a
univariable MR analysis when there is no sample overlap, where
w is equal to var(g;)/var(B;)."" Here o is less than 1 and is viewed
as a shrinkage coefficient for fyw relative to the true effect 6.
We adopt this reliability ratio to much broader contexts, such as
multivariable MR and sample overlap. In our real data analysis,
we found this reliability ratio works reasonably well although
additional investigation is warranted. While the reliability ratio
and the F-statistics® are similar, the former has a simpler calcula-
tion and can more clearly reflect the proportion of weak IV bias
than the latter.

MR using bias-corrected estimating equation

We propose MRBEE, which estimates causal effects by solving a
new unbiased estimating equation of causal effects. The unbiased
estimating equation of 6 is

Seee(0) = Swvw(0) — m(zwﬂwgﬁ - UWL;W“)‘,

where Syw(6) = — BT(a — B6). Equation 13 states that the
MRBEE estimating function is equal to the IVW estimating equa-
tion minus its bias. Unbiasedness of the MRBEE estimating equa-
tion implies unbiasedness of the MRBEE estimator. The solution
93}5}3 such that SBEE(EBEE) = 0is

(Equation 13)

O = (BTB — mSy,w,) ' (BT@ — mow,,,). (Equation 14)
Note that unlike other optimizations such as generalized
linear model in measurement error,*® the Hessian matrix
Hyyw = BT B does not involve § and hence Sy (#) can be directly
obtained from Siyw(6) without any iterative approximation.

Bias-correction terms estimation

We estimate the bias-correction terms 2w,w, and ow,w, from the
insignificant and independent GWAS summary statistics.’” Let
&i*, B;fl, B;}, (j = 1,...,M) be M insignificant GWAS effect size es-
timates of outcome and exposures, where the insignificance
means that the p value of the genetic variants are larger than
0.05 for all exposures and outcome, and the independence means
that they are not in LD. Because a; and ﬁjk follow the same distri-
butions of w,, and wg,, Zw,xw, can be estimated by

S Tha a3 3 oo
EWgXW(x :Mg(ﬁ;pm:ﬁjwa,‘) (6,‘17"'7 ,'p7a,')'
i=
(Equation 15)

Here, iwg w, is the first (p Xp) sub-matrix of iwﬁan and Gw,w,
consists of the first p elements of the last column of iwﬁqu. The
intercept provided by LDSC® is also a consistent estimate of
cov(wy, wg, ). Each of these two estimators may be used by
MRBEE and experience with real data suggests that they generally
produce similar results. LDSC requires specification of an LD refer-
ence panel that is from an ancestrally similar population to that
under study in MR. Differences in genetic architecture between
the LD reference panel and the MR study population could intro-
duce bias. Use of Equation 15 does not require an LD reference
panel and so will not be biased for this reason. Additionally, use
of Equation 15 is computationally simpler.
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Algorithm 1. Pseudo-code of MRBEE -+ pleiotropy test

1. Input: Initial estimates §°
Full set of m* IVs

3. Pseudo- code

Initialize FO ={j: ey}

While ||<9f+1 §< H

1. Calculate S Spjeo (5 ) for all ] = ,m*,

2. Update Fi! A {j: plew( ) < F "1 - K)%’Hl)

3. Update [l ”1) using Equatlon 14 and1 IVs in Fg
End While

), Bias-correction terms s wsw; and G wiw,, Spleio, FDR g-value threshold «, Tolerance e,

2. Output: Causal effect estimates %EE, Set of m non-UHP/CHP 1Vs Fg

SE estimation
The covariance matrix of EBEE is yielded through the sandwich
formula:

Spee(0) = Frps Viee (0) Fagp, (Equation 16)

where the outer matrix Fggg is the Fisher information matrix, i.e.,
the expectation of the Hessian matrix of Sggg (), and the inner ma-
trix Vpgg () is the covariance matrix of Sppp(6). A consistent esti-
mate of Spgg(f) is

COV(EBEE) =

Seee(0) = Fyh Ve
B'B -
OBEE) =

(’éBEE ) /P\‘];EIE s (Equation 17)

Swwps Vth(ﬁﬁhh) it (t‘/’shh)s,
- (@ - HBEEie;)ﬁ - EWuW;BBEE‘i‘

where fB EE =
(fsex) ", and Sy
b\'wﬁwa .

When the number of IVs m is small, the standard sandwich for-
mula has been observed to underestimate the SE.°>' We apply the
MD correction®” to solve this problem. Consider the so-called
hat matrix:

H= ﬁ(ﬁTﬁ — miwﬂwﬁ)ilﬁ-r
and Hj; is its j th diagonal entries. The MD correction adjusts the
inner matrix as
m

ViR (Opex) = 1
i=1

— I’I],) - ng (b\BEE)gj (EBEE) T . (Equation 18)

Their theory shows that
E(S)(00ex)8;(Fnue) ') = (1 — Hy) Vs (6),

and hence it can obtain a more reliable covariance matrix by adjust-
ing (1 — Hy)~ % when estimating Vg (6) with the moment method.
When there is horizontal pleiotropy, we adjust Equation 18 as

m+ mpleiotropy

m

hy PP

Vit (One) = - ; (1 — Hy) " "S;(O5e)S; (Osex) "
(Equation 19)

where m is number of valid IVs and miorropy is the number of de-

tected pleiotropies. Section S1.3 of supplement 1 compares the

estimated and true standard errors of causal effect estimates for

MRBEE and other MVMR estimators. These results demonstrate

that the MD correction described above controls the Type I error

rate well. It is also worth noting that the standard errors of the

MRBEE causal estimates will generally become smaller as the de-

gree of weak instrument bias becomes smaller.

Horizontal pleiotropy detection

We illustrate how to remove specific IVs with evidence of UHP or
CHP effects with the pleiotropy test Speio Which tests the same null
hypothesis for each SNP as MR-PRESSO and IMRP. The null hy-
pothesis for the j th IV not having any horizontally pleiotropic ef-
fects on the outcome is

Hoj : v; = Ov.s. Hy; @ v;#0. (Equation 20)

The statistic Speio for the j th IV is defined as

(- 79)

- 7/ (Equation 21)
Var(&j -8/ 0)

Spleio/ (b\) =

which follows a x3 distribution under Hy;. The only assumption
here is that o; — B/.TE is asymptotically normal distributed. In fact,
this test examines whether the outcome effect can be explained by
the mediation effects through all exposures. In practice, we esti-
mate var(a; — E; ) using the delta method:

Vﬁ(ai —BT0) = 0% + 0" Sw,w,0+ B Sexeh; — 20 G,

Other methods such as empirical variance and robust variance
estimates of the residual can also be used here. We calculate
Spleio for all candidate IVs and remove IVs with large Syjeio values
in an iterative manner. Algorithm 1 uses an FDR Q-value threshold
to exclude IVs showing potential pleiotropy evidence. We suggest
a threshold Q-value <0.05 in general. Additional simulation re-
sults presented in Section S2.5 of supplement 1 show that FDR
correction generally performs well.

GWPT

Since Speio tests a very general null hypothesis, we can also calcu-
late Spjeio for all SNPs across the genome after obtaining the causal
effect estimates of p exposures on the outcome. Results from these
tests can be used to (1) find novel loci associated with the MR
outcome and (2) draw inferences about pathways of genetic asso-
ciation with the MR outcome. Specifically, when an SNP has a
negative effect on the exposure 8; and a positive pleiotropic effect
on the outcome v;, and simultaneously the causal effect 4 is posi-
tive, then the total effect of this variant on the outcome o; is
canceled and hence cannot be detected in the outcome GWAS.
In contrast, the pleiotropy test directly tests the effect v; and there-
fore can detect novel loci. For example, Zhu et al.'® successfully de-
tected many blood pressure loci missed previously by using this
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GWPT with IMRP as the estimator of the causal effect. The results
indicated that most detected pleiotropic variants influenced SBP
and DBP in opposite directions, providing support for the princi-
ple of the GWPT.

Joint x2-test for IVs selection

We applied the joint x2-test to select a set of IVs that are strongly
associated with multiple exposures. Let 8; = (81, ..., ﬁ,-,,)T be the
p-length vector of standardized associations between the jth SNP
and the p exposures. We performed the following hypothesis test:

Hy: 8y = = B = 0, v.s. Hy; : B, #0, or--0r §;, #0.
(Equation 22)

The test statistic is

t=6/ St B;, (Equation 23)

which follows a x2

» distribution when the null hypothesis holds,
where Sy, w, is the estimated matrix of covariances between esti-
mation errors. We only considered variants as IVs if they are

genome-wide significant in the joint x2-test.

Estimation of variance explained by instrument
variables

Assume that we intend to estimate the SNP heritability of a trait Y
using a set of m IVs in the m-length vector g = (G, ...,Gy,) | with
corresponding associations with Y in the vector 8 = (61, ..., ) -
If the variance of Y is 1 and E(G;) = 0, we can estimate the vari-
ance in Y explained by the m IVs using the following equation:

R = iﬁ%pﬁ(l - )
2

where p; is the minor allele frequency of G;. We used Equation 24
to produce the heritability estimates in Table 1.

(Equation 24)

Asymptotic results

We assume that both total number of IVs m and the minimum
sample size among the exposure and outcome GWAS #npin can
approach infinity, while the number of exposures p and the
p-dimensional causal effect vector 6 are fixed and bounded. Our
goal is to identify the scenarios when MV-IVW outperforms
MRBEE, when they perform equally well, and when MRBEE out-
performs MV-IVW in terms of unbiased estimation of causal ef-
fects and the asymptotic validity of causal inference. We demon-
strate the related theorems and the related regularity conditions
and lemmas in supplement 2.

Data and code availability

The data referenced in this study can be accessed through
the GWAS Catalog (https://www.ebi.ac.uk/gwas/home),
with the corresponding GWAS summary data available
for download in the “data availability” section of the
respective papers. Some of the GWAS summary data are
exclusive of the Million Veteran Program (MVP) summary
results, which are available through dbGAP under the
accession number phs001672.v3.p1.

The MRBEE R package generated during this study is
available at https://github.com/noahlorinczcomi/MRBEE.

Simulation codes generated during this study are available
at https://github.com/harryyiheyang/MRBEE.Simulation.
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Supplemental information can be found online at https://doi.org/
10.1016/j.xhgg.2024.100290.
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