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1  |  INTRODUC TION

Regulation of the activation of transient receptor potential (TRP) 
channels could lead to the development of new treatments for 

numerous sleep and circadian rhythm disorders. A lot of scientific 
evidence has shown the molecular role of TRP channels in regulating 
neuronal networks, peripheral nerves and communication between 
various regions of the brain that regulate sleep and circadian rhythm. 
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Abstract
TRP channels, are non-specific cationic channels that are involved in multiple physi-
ological processes that include salivation, cellular secretions, memory extinction and 
consolidation, temperature, pain, store-operated calcium entry, thermosensation and 
functionality of the nervous system. Here we choose to look at the evidence that 
decisively shows how TRP channels modulate human neuron plasticity as it relates 
to the molecular neurobiology of sleep/circadian rhythm. There are numerous model 
organisms of sleep and circadian rhythm that are the results of the absence or ge-
netic manipulation of the non-specific cationic TRP channels. Drosophila and mice that 
have had their TRP channels genetically ablated or manipulated show strong evidence 
of changes in sleep duration, sleep activity, circadian rhythm and response to tem-
perature, noxious odours and pattern of activity during both sleep and wakefulness 
along with cardiovascular and respiratory function during sleep. Indeed the role of 
TRP channels in regulating sleep and circadian rhythm is very interesting consider-
ing the parallel roles of TRP channels in thermoregulation and thermal response with 
concomitant responses in growth and degradation of neurites, peripheral nerves and 
neuronal brain networks. TRP channels provide evidence of an ability to create, regu-
late and modify our sleep and circadian rhythm in a wide array of physiological and 
pathophysiological conditions. In the current review, we summarize previous results 
and novel recent advances in the understanding of calcium ion entry via TRP channels 
in different sleep and circadian rhythm conditions. We discuss the role of TRP chan-
nels in sleep and circadian disorders.
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Combined, TRP channels play a regulatory role that is controlled by 
the environmental factors that effect TRP channels. Regulatory con-
trol of sleep and circadian rhythm through TRP channels shows how 
the brain is dynamically modified on a cellular level based on envi-
ronmental experiences that can then again be reshaped for better 
or for worse. Here we look at various sleep and circadian disorders 
and how they are regulated on a cellular and molecular level by TRP 
channels. These findings, in turn, reinforce neuroscientists to per-
ceive efficacious therapeutics that support these biological explana-
tions of how sleep and circadian rhythm is regulated.

2  |  OVERVIE W OF THE MAMMALIAN TRP 
CHANNEL FAMILY

TRP proteins are six transmembrane domain-containing subunits 
that form homo- or heterotetrameric non-selective cation channels. 
The TRP superfamily includes at least 28 related channels that play 
an important role in several cellular functions ranging from sen-
sory transduction (including invertebrate vision, temperature, pain 
and gustatory and osmolarity detection) to development. The first 
member of the TRP superfamily was identified as a protein involved 
in phototransduction in Drosophila.1 The trp gene was named on 
the basis of the transient, rather than sustained, receptor potential 
observed in response to light in mutant flies. From the beginning 
a relationship between TRP proteins and ionic currents across the 
membrane was suggested since TRP mutants displayed a defect in 
light-induced Ca2+ influx, which together with the predicted struc-
ture of TRP and the related protein, TRPL, raised the possibility that 
these proteins were Ca2+ influx channels.2,3

TRP proteins are present in yeast, Drosophila, Caenorhabditis ele-
gans, fish and mammals. TRP channels are widely expressed in both 
excitable and non-excitable cells, where they have been reported to 
mediate Ca2+ entry. Although all TRP proteins form cation channels, 
they differ significantly in their cation permeability and activation 
mechanisms, although most members of the TRP superfamily share 
significant sequence homology.

TRP channels can be grouped into six subfamilies: those most 
closely related to Drosophila TRP (TRPC, TRPV and TRPM), two sub-
families that are more distantly related to Drosophila TRP (TRPP and 
TRPML), and a less related TRPN group that is absent in mammals 
but expressed in flies and worms and includes the mechanosensory 
channel NOMPC.2,3 The TRPC subfamily groups the mammalian 
proteins that display the greatest similarity to Drosophila TRP, shar-
ing between 32% and 47% amino acid homology over the N-terminal 
region. TRPC proteins show the prototypical structure, including 
three or four ankyrin repeats, the six transmembrane domains, and 
a highly conserved 25 amino acid sequence known as the TRP box, 
a hydrophobic region located just C-terminal to the sixth transmem-
brane domain. TRPV proteins also include three or four ankyrin 
domains as well as the TRP box, and TRPM proteins contain a TRP 
box, but no ankyrin repeats, and some members, such as TRPM6 and 
TRPM7 exhibit a C-terminal kinase domain.3

Most TRP channels are non-selective for monovalent and di-
valent cations with wide range of Ca2+ to Na+ permeability ratios. 
Especially relevant are TRPM4 and TRPM5, which are selective for 
monovalent cations, as well as the Ca2+-selective members TRPV5 
and TRPV6 that exhibit a Ca2+ to Na+ permeability ratio over 100. 
Ca2+ and Na+ influx through TRP channels leads to membrane de-
polarization while increasing cytosolic Ca2+ and/or Na+ concentra-
tions,4 thus reducing the driving force to Ca2+ influx to other Ca2+ 
channels. This article presents an overview of what is currently 
know of the molecular relationship between TRP channels and their 
role in physiological cell processes that regulate sleep and circadian 
rhythm.

3  |  TRP CHANNEL S REGUL ATE SLEEP 
AND CIRC ADIAN RHY THM BY SENSING 
LIGHT AND HE AT

Temperature and light modulate our circadian rhythm by a 
mechanism involving TRP channels and clock genes.5,6 The light 
information recorded through the retina is translated into the 
physiological circadian response,7–10 thus, the organism is able 
to respond to differences in environment light and temperature 
to maximize cellular energy and metabolic resources efficiently 
throughout the day.11,12 It was shown that temperature plays a 
highly significant role in regulating our sleep and circadian rhythm 
through multiple clock genes and TRP channels.13 The modulation 
of the circadian rhythm by temperature is mediated by a mecha-
nism involving the activation of rhodopsin and TRP channels.14 
This is a molecular mechanism whereby external light and tem-
perature are able to communicate sleep and wakefulness through 
multiple clock genes15 and TRP channels located throughout the 
body including muscle cells, neuronal cells and peripheral nerves 
sending cues as to time of day.16,17 The molecular signalling mech-
anism of circadian rhythm and sleep in mammals works through 
light (photons) activating photoreceptors (rhodopsin) that in turn 
connect with the central nervous system activating multiple 
synapses.18–26 Meanwhile, temperature information allows TRP 
channels to make modifications in the response of clock genes in 
the human body.18,24,26–31 Indeed, light sensing retina expresses 
TRPC610,32–34 and TRPC7,33,34 whereas, changes in heat are sensed 
by TRPV135–42 and changes in cold are sensed by TRPM8.12,36,43 
The physiological response to heat and light is often referred to as 
entrainment that derives from the French word entrainer, mean-
ing to ‘bring on as a consequence’ or to ‘drag in’.44–49 Our physi-
ological response of sleep and wakefulness are a direct response 
to our environmental conditions of light and temperature.50–52 
Changes in heat, that are similar to changes found in human body 
temperature were able to switch the Per2 and Clock genes on and 
off in NIH3T3 fibroblasts in culture.53–56 The suprachiasmatic nu-
cleus, located in the hypothalamus, is responsible for regulating 
the effects of temperature change upon sleep and the circadian 
rhythm.57 Despite suprachiasmatic nucleus-projecting retinal 
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ganglion cells act independently and separately from photorecep-
tors, the retinal ganglion cells express TRP channels which behave 
similarly as in photoreceptors upon light stimulation.58 Indeed, 
it has been hypothesized that the modulation of the circadian 
rhythm is not solely delegated to photoreceptors. The period (Per) 
and timeless (tim) genes have been shown to regulate circadian 
rhythm and sleep in Drosophila.59 NinaE fruit flies that genetically 
lack the gene and protein (rh1) for the rhodopsin receptors was 
able to show sleep, wakefulness and circadian rhythm behaviour 
in the absence of photoreceptors.59 In addition, when Drosophila 
flies were mutated for trp and trpl genes their visual transduction 
cascade was impaired, which attenuated the tim gene response to 
light, but circadian rhythm behaviour was only partially disturbed, 
thus suggesting that the circadian rhythm does not rely on the 
visual system but has its own independently dedicated system for 
photoreception.59

4  |  TRP CHANNEL S REGUL ATING 
METABOLISM PL AY A ROLE IN SLEEP AND 
CIRC ADIAN RHY THM

Orexins, particularly Orexin A and Orexin B, have been shown to be 
involved not only in insulin secretion and energy metabolism, but 
also in the sleep–wake circadian rhythm cycle. It has been reported 
that blockade of TRP channel-mediated calcium release by lantha-
num abrogates orexin activity, thus suggesting that TRP channels 
are involved in the mediation of orexin functions.60 Indeed, fat me-
tabolism has been shown to play a role in regulating the circadian 
rhythm. TRP channels have been shown to regulate the circadian 
rhythm, sleep wake cycle, along with fat and energy metabolism 
in brown adipose tissue.12 TRPM8, known as a cold temperature 
sensing receptor, was found to regulate the clock circadian rhythm 
genes in brown adipose tissue along with the circadian rhythm gene 
Per1. Clock and Per1 genes amplitude and oscillation were found to 
be reduced both in the eyes and brown adipose tissue of TRPM8 
knockout mice. Similarly, UCP1, a mitochondrial membrane protein 
essential in brown fat metabolism was greatly reduced.12 Heat sen-
sitive TRPV1 receptors were shown to alter matrix metalloprotein 
expression independent of clock genes in the eye.36 TRPA1 was 
found to regulate sleep and circadian rhythm in response to envi-
ronmental temperature.61 TRPA1 was the first thermosensing TRP 
channel to be described in invertebrates associated to the regulation 
of the rhythmic sleep–wake changes in body temperature: cooler 
when sleeping and warmer when awake.61 Melanopsin receptors, 
that regulate the duration of the sleep–wake cycle in response to 
light in certain organisms, have been shown to mediate their effects 
on the sleep–wake cycle through TRP channels activation, particu-
larly in amphioxus.62 Temperature sensing TRP channels have been 
shown to environmentally synchronize the cold-warm body tem-
perature changes that correspond with the sleep–wake circadian 
rhythm cycle. Drosophila flies lacking the Pyrexia gene, a TRP channel 
found in the fruit fly, have been found to be unable to synchronize 

their behaviour to temperature cycles in the lower range (between 
16 and 20°C), which provide further evidence for the involvement 
of TRP channels in the synchronization of the circadian rhythm by 
temperature.63

5  |  TRP CHANNEL S A SSOCIATION WITH 
SLEEP AND CIRC ADIAN RHY THM GENES

The TRP channel, TRPA1, was shown to control arousal from sleep 
as TRPA1 knockout mice lack of arousal from sleep when exposed to 
noxious formalin odours.64 The circadian rhythm in Drosophila regu-
lates colour discrimination and preference with TRPA1 controlling 
the preference of dim light over the colour green during the mid-
day and avoidance of blue light during the day, which is controlled 
through rhodopsin 7 and the Drosophila TRP channel Painless found 
in multi-dendritic neurons.65

A role for TRP channels in bladder function has also been de-
scribed to be regulated by clock genes. An increase in gene ex-
pression for TRPV1, TRPV4, Piezo1, and VNUT in the spontaneously 
hypertensive rat (SHR) was attributed to having a regulatory role 
over circadian genes Cry2 and Clock in the SHR bladder resulting in 
greater number of urination times during day and night cycles but 
a lower urination volume.66 Bladder function, including frequency 
of urination, day or night occurrence of urination and volume, are 
all regulated by circadian clock genes such as Per2. One interesting 
study looked at the circadian gene regulation of bladder function 
under conditions of stress. A drug that inhibits Per2 phosphoryla-
tion, PF670462 (PF), was able to correct irregular stress-induced 
clock gene expression along with sensory bladder fullness genes, 
such as TRPV4, Piezo1 and Connexin26 in restoring normal circa-
dian gene control of bladder function.67 Another study has reported 
that the expression of mechanosensory, such as Piezo1 and TRPV4, 
and main ATP release pathways, including Connexin26 and vesicu-
lar nucleotide transporter (VNUT), are regulated by clock genes in 
the bladder mucosa, thus, the expression of these genes is low in 
the sleep phase and modulating the frequency of urination during 
sleep.68

It has been reported that surgical removal of the mutant tem-
perature sensing TRPA1 gene called Pyrexia or Pyx, from the 
antennae of Drosophila restores normal circadian rhythm of mech-
anosensory neurological function of body positioning (propriocep-
tion) and hearing through the circadian protein called PERIOD.69 
Drosophila fruit fly has 13 different TRP channels, 9 that are directly 
involved in regulating the circadian rhythm cycle. Among them, TRP, 
TRPL, Inactive, Brivido-1, Brivido-2, Brivido-3 are all Drosophila 
TRP channels that play a circadian rhythm role in thermotaxis and 
locomotion in direct reaction to cool temperatures, whereas, the 
dTRPA1 provides circadian rhythm locomotion response to warmer 
temperatures, fluctuation in temperature and avoiding toxic or nox-
ious heat. Finally, Painless and Pyrexia TRP channels are involved in 
noxious heat avoidance and regulating the circadian rhythm cycle in 
response to fluctuations in temperature.70 Drosophila neurons that 
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express the heat sensing TRP channel, dTRPA1 have been shown 
to regulate motor activity of the sleep/wake cycle corresponding 
to light, day/night cycle, in fruit flies.71 The diurnal/daily intestinal 
motor activity found in gastrointestinal reflux disease was shown 
to be regulated both by TRPV1 channels along with the circadian 
rhythm genes Per1, Per2, BMAL1 and CRY2, TRPV1, along with NGF.72 
Recently, it was discovered that during the afternoon, not just morn-
ing or evening (siesta behaviour), locomotive behaviour such as 
seeking a shaded location from the warm sun, is also regulated by 
the Drosophila heat thermosensing dTRPA1 channel.73 Neonatal rats 
that were treated with capsaicin had TRPV1 receptors desensitized 
to heat but had an inverse to normal circadian rhythm body tempera-
ture cycle and circadian, Hsf1 and Per2, gene expression.37 Mutant 
TRPA1 Drosophila were shown to have shorter morning activity with 
evening activity occurring later than normal under circadian cycle 
light conditions and at 18 degrees centigrade.74 The thermosensing 
TRP receptor Pyrexia was found in peripheral sensing chordotonal 
organs of Drosophila where they synchronize temperature with the 
circadian rhythm clock genes period (Per) and timeless (tim) forming 
a negatively regulated feedback loop with circadian transcription 
factors clock (clk) and cycle (cyc).63 Drosophila TRP channel, TRPA1 
is found in the pacemaker neurons of the Drosophila brain where 
it is found to regulate the 2–3°C decline in temperature during the 
circadian sleep/wake cycle of the fruit fly.75 Similar to TRP chan-
nels, another calcium permeable ion channel located in the supra-
chiasmatic nucleus of the brain are the hyperpolarization-activated 
cyclic nucleotide-gated (HCN) channels that have also been shown 
to regulate the circadian rhythm gene Per2.76 The cytokine IL-15 in 
the hypothalamus has been reported to regulate both metabolism 
and temperature in a circadian rhythm fashion in participation with 
TRPV4.38 Likewise, somatostatin has been shown to alter the func-
tion of nucleotide gated ion channels in their response to circadian 
rhythm genes and light.77

6  |  THE ROLE OF TRP CHANNEL S IN 
SLEEP APNE A

TRP channels have also been found to be involved in sleep apnea. 
TRPC5 has been found to be highly elevated in obstructive sleep 
apnea suggesting that calcium entry through this channel might play 
a role in the myocardial damage that occurs in obstructive sleep 
apnea.78 Inflammatory mediator regulation of TRP channels by cir-
culating exosomal miRNAs has been shown to play an important role 
in abnormal circadian regulation of blood pressure and could also 
serve as an indicator of the risk of cardiovascular disease associated 
with obstructive sleep apnea.79 Sleep deprivation has been shown to 
cause dry eye by producing unusual microvilli formation in superficial 
corneal epithelial cells that has been linked to low levels of TRPV6 
expression.80 External environmental temperature has been shown 
to play a large role in regulating sleep duration and sleep circadian 
rhythm behaviour through the Drosophila TRPA1 channels located 
in the neuronal circuits.61 N-acyltaurine is a fatty acid amide that 

activates and acts as an agonist for TRP channels. Fatty acid amide 
hydrolase (FAHH) is an enzyme that hydrolyses fatty acid amides. 
N-arachidonoyl-serotonin (AA-5-HT) is a TRPV1 channel blocker 
that is shown to alter the sleep and circadian rhythm cycle when 
administered at the start of the dark period resulting in a lack of 
wakefulness and heightened slow wave sleep along with an increase 
in the rapid eye movement sleep phase.81 TRP channels have been 
shown to be upregulated in the tobacco hornworm, Manduca sexta 
during the quiescent state characteristic of the moult.82 Obstructive 
sleep apnea was shown to increase the sensitivity of posterior cer-
ebral arteries to the vasoconstrictor endothelin-1 through elevated 
endothelin-B receptor activity, and increased activation of TRPC re-
ceptors and Rho kinase. Excessive vasoconstriction of posterior cer-
ebral arteries associated to obstructive sleep apnea was alleviated 
through use of the TRPC receptor antagonist SKF96365.83 Likewise, 
elevated expression of ion channel proteins was found in chronic 
obstructive sleep apnea with remodelling of the cardiac atrium.84

7  |  ROLE OF TRP CHANNEL S IN 
CONTROLLING ALERTNESS AND 
PRE VENTING SLEEP

TRPA1 knockout mice were found to be unresponsive in the fight 
or flight response noxious formalin odours. In fact, these mice were 
shown to sleep completely through exposure to toxin odours that 
were found to have caused massive effect on the brain as measured 
by c-fos expression64 Spinal D-amino acid oxidase was shown to in-
duce sleep derived mechanical pain sensitivity through production 
of hydrogen peroxide, a direct pain inducing agonist of the TRPA1 
nociceptive receptor.85 Studies expressing the temperature-gated 
TRPA1 in Drosophila neurons to induce sleep on demand have re-
ported that sleep facilitate consolidate memory in Drosophila.86 
Recently it was shown that peripheral sensory organs contribute 
to temperature synchronization of the circadian clock in a cell au-
tonomous mechanism that involves TRP channels87 TRPM4 chan-
nels were found to be expressed in circadian associated pacemaker 
LC and SCN neurons, and that TRPM4 contributes to subthreshold 
oscillations observed in those cells in neonatal mouse brainstem 
slices.88

TRP channels, as described in this review, play a significant role in 
regulating activity revolved around the quality and duration of sleep 
corresponding to the circadian rhythm cycle. TRP channels likewise 
form a systemic neurosensory chain orchestrating the relationship 
between sleep and circadian rhythm. TRP channels clearly show that 
sleep is important for long-term memory and that even memory and 
control of temperature regulation during sleep along with memory 
of pain that effects sleep and wakefulness all intricately depend on 
coordination with TRP channels.
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