
Citation: Fazzone, B.; Anderson, E.M.;

Rozowsky, J.M.; Yu, X.; O’Malley,

K.A.; Robinson, S.; Scali, S.T.; Cai, G.;

Berceli, S.A. Short-Term Dietary

Restriction Potentiates an

Anti-Inflammatory Circulating

Mucosal-Associated Invariant T-Cell

Response. Nutrients 2024, 16, 1245.

https://doi.org/10.3390/nu16081245

Academic Editor: Eva Untersmayr

Received: 17 March 2024

Revised: 18 April 2024

Accepted: 18 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Short-Term Dietary Restriction Potentiates an Anti-Inflammatory
Circulating Mucosal-Associated Invariant T-Cell Response
Brian Fazzone 1, Erik M. Anderson 1 , Jared M. Rozowsky 1, Xuanxuan Yu 2, Kerri A. O’Malley 1,3,
Scott Robinson 1,3, Salvatore T. Scali 1,3, Guoshuai Cai 4 and Scott A. Berceli 1,3,*

1 Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida,
Gainesville, FL 32611, USA; brian.fazzone@ufl.edu (B.F.); erik.anderson@surgery.ufl.edu (E.M.A.);
kerri.omalley@surgery.ufl.edu (K.A.O.); scott.robinson@surgery.ufl.edu (S.R.);
salvatore.scali@surgery.ufl.edu (S.T.S.)

2 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina,
Columbia, SC 29208, USA; xuanxuan@email.sc.edu

3 Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
4 Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,

Columbia, SC 29208, USA; guoshuai.cai@surgery.ufl.edu
* Correspondence: bercesa@surgery.ufl.edu; Tel.: +1-352-548-6441

Abstract: Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for
modulating postoperative inflammation. We have previously shown marked gut microbial activity
during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain
poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces
and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and
may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response
to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-
level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR
during which blood and stool samples were collected before, during, and after DR. MAITs composed
2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly
genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6,
IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-
inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of
multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates
an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling,
potentially secondary to gut microbial species-level changes.

Keywords: short-term dietary restriction; mucosal-associated invariant T-cells; MAITs; inflammation;
immune response

1. Introduction

Short-term dietary restriction (StDR) without malnutrition is an intriguing preop-
erative conditioning strategy for modulating the postoperative immune response [1–3].
Broadly, attenuation of proinflammatory signaling and production of anti-inflammatory
chemokines are proposed mechanisms for its benefits [1,4–6]. Multiple, small, randomized
controlled trials have demonstrated StDR safety and feasibility, yet mechanistic insights
into its modulation of the human immune system remain limited [7–9]. The gut microbiome
influences systemic immunity, and its modification represents an important area for trans-
lational therapeutic development [10–15]. Our group has previously shown a relative gut
microbial dysbiosis after 4 days of protein-calorie restriction with a rapid return to baseline
after resuming a normal diet [16]. However, characterization of the gut microbiome alone
after StDR does not describe its influence on systemic immunity.
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Mucosal-associated invariant T-cells (MAITs) are a subset of T-cells involved in early
immunity against infection, providing a more rapid response to pathogens than conven-
tional MHC-restricted T cells [17,18]. MAITs are defined by their invariant T-cell recep-
tor (TCR) complex, which is restricted to recognition of MHC class-I-related (“MR1”)
ligands [17–19]. Few MAIT TCR ligands are known, but the most potent ligands are
metabolites of bacterial riboflavin (vitamin B2) biosynthesis and folate (vitamin B9) degra-
dation [17–21]. Furthermore, riboflavin-producing bacteria belonging to the Bacteriodetes
and Proteobacteria phyla are the most potent MAIT stimulators in vitro [22]. MAITs are
activated in a TCR-dependent or -independent manner [20]. TCR-dependent signaling re-
quires ligand presentation to the MAIT TCR and co-stimulation by antigen-presenting cells
(APCs) (Figure 1), whereas TCR-independent stimulation relies upon multiple signaling
chemokines [20,23,24].
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Figure 1. TCR-dependent activation of MAIT cells. The APC uptakes the bacterium and presents a
riboflavin component on its MR1 complex. TCR-dependent activation requires APC co-stimulation
through CD40/CD40L and CD28/CD80 interactions. Activated MAITs upregulate CD69 expression
and produce TNF, IL17, IFNγ, and pro-apoptotic molecules.

Driven by their enrichment on mucosal surfaces and bacterial metabolite stimulations,
MAIT function is sensitive to alterations in gut microbial metabolites and represents
an important link between the microbiome and systemic immunity [21–25]. However,
the influence of diet on the functional phenotype of MAITs has not been described. We
hypothesized that StDR would induce an anti-inflammatory circulating MAIT phenotype
given that StDR rapidly affects the gut microbial composition and that antigenic MAIT
stimulation is sensitive to changes in bacterial metabolites.

2. Materials and Methods
2.1. Patient Selection, Dietary Restriction, and Sample Collection

Healthy, young adult males and females free of chronic medical conditions were re-
cruited to participate in this study. Informed consent was obtained from all subjects before
study participation, and this study was approved by the University of Florida’s institu-
tional review board (UF IRB#201900988). Participant demographics and medical histories
were self-reported. Blood and stool samples were collected prior to dietary intervention
(“Baseline”). A liquid diet was initiated targeting 30% caloric and 70% protein restriction,
assuming a pre-intervention protein caloric intake of 15%. The caloric allowance was
individualized based on participants’ total caloric requirements. The Paffenbarger physical
activity questionnaire was used to estimate each participant’s total caloric requirement
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based on their resting energy expenditure (REE) and daily activity [26,27]. The Mifflin St.
Jeor equation (Equation (1)) was used to calculate REE [28]:

REE = 9.99 × weight (kg) + 6.25 × height (cm) − 4.92 × age (yrs) + 166 × sex (male = 1, female = 0) − 161 (1)

No activity restrictions were imposed during the study period. Participants were
instructed to only consume powder shakes (Scandishake® Mix, Nutricia Advanced Med-
ical Nutrition, Utrecht, The Netherlands) mixed with almond milk for 4 days of dietary
restriction. Scandishake® Mix is a low-protein mixture containing 491 Kcal, 4% protein,
42% carbohydrates, and 44% fat. This mixture was chosen given its low protein content,
thus feasibility in achieving 70% protein restriction. Dietary adherence was monitored
during follow-up appointments and with a MealLogger mobile application shared with
the study staff. Participants were allowed to drink water ad libitum. Blood samples were
collected after two (“Day 2”) and four (“Day 4”) days of dietary restriction and three days
after resuming a normal diet (“Day 7”). Stool samples were collected on days 4 and 7.

2.2. Peripheral Blood Mononuclear Cell Isolation from Blood

At least 4 mL of blood was collected via venipuncture in EDTA-containing blood
tubes for each blood sample. Samples were processed within 30 min of collection. A 1×
lysing solution was prepared with a 10:1 mixture of double distilled water and 10× red
blood cell lysis solution (Miltenyl Biotec; Cologne, Germany). A total of 4 mL of whole
blood was added to the 1× lysing solution and incubated at room temperature for 10 min.
The homogenized solution was then centrifuged at 300× g for 10 min. The supernatant
was removed, and the pellet was resuspended in 10 mL of 1× lysing solution for a 2nd
lysis step. The solution was centrifuged again at 300× g for 10 min, and the resultant
pellet was then resuspended in 1× Hank’s Balanced Salt Solution (Thermo Fisher Scientific
corporation; Waltham, MA, USA). After washing, the solution was centrifuged at 300× g
for 10 min. The final pellet was resuspended in a frozen medium containing 5:1 fetal bovine
serum (Thermo Fisher Scientific corporation; Waltham, MA, USA) and Dimethyl Sulfoxide
[DMSO] (Thermo Fisher Scientific corporation; Waltham, MA, USA). The isolated cellular
solution was placed in a 2 mL cryotube and in liquid nitrogen for long-term storage.

2.3. Blood Sample Thawing for Single-Cell Workflow

Samples were rapidly thawed using a warm water bath set to 38 degrees Celsius.
Thawed samples were serially diluted with warm RPMI 1640 (Corning Incorporated; New
York, NY, USA) added in a drop-wise manner. The diluted samples were centrifuged at
300× g for 10 min. The supernatant was removed, and the pellet was resuspended in
a phosphate-buffered saline/0.05% BSA solution (Thermo Fisher Scientific corporation;
Waltham, MA, USA). The solution was filtered through a 70 um filter to remove large
debris and centrifuged at 300× g for 10 min. The supernatant was again removed, and the
pellet was resuspended in PBS/0.05% BSA. The solution was filtered through a 40 um cell
strainer (Thermo Fisher Scientific corporation; Waltham, MA, USA) to remove micro-debris.
Cellular viability was assessed using Trypan blue staining and a Countess II cell counter
(Thermo Fisher Scientific corporation; Waltham, MA, USA). Samples did not proceed to
library generation if cellular viability was <90%.

2.4. Library Generation and Sequencing

Libraries were generated per manufacturer instructions using the 10× Chromium
Single-Cell v3.1 protocol (10X Genomics; Pleasanton, CA, USA). Briefly, thawed cells were
loaded into the 10× chip targeting a cellular recovery of 3000 cells per sample. The chip
was loaded into the Chromium controller which utilizes microfluidics to capture individual
cells within gel beads in emulsion (GEMs) containing uniquely barcoded gel beads and
reagents for reverse transcription. Cells were lysed within GEMs, and full-length DNA
transcripts were created from mRNA transcripts. After purification, cDNA transcripts
were amplified through a series of PCR reactions. Quality analysis of the final library
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was performed before sequencing using the Agilent TapeStation (Agilent Technologies;
Santa Clara, CA, USA). Libraries were sent to Quick Biology Inc. (Pasadena, CA, USA) for
sequencing. Samples were sequenced using the NovaSeq 6000 system (Illumina; San Diego,
CA, USA) with paired-end reads and 100 million pairs per sample.

2.5. Data Preprocessing and Filtering

The raw data in the form of FASQC files were uploaded directly to the Cell Ranger
pipeline (10X Genomics; Pleasanton, CA, USA) for demultiplexing, genome alignment
(GRCh38), and quality analysis. The feature-unique molecular identifier (UMI) matrix
obtained from Cell Ranger was uploaded to R studio using the R statistical software
package (V 4.1.1., the R Foundation for Statistical Computer, Vienna, Austria) for down-
stream processing. Quality control, normalization, dimensional reduction, and cluster-
ing were performed using the Seurat package (V 4.3.0) for R. Cells with mitochondrial
percentages > 10% or features < 200 or >7500 were filtered out to exclude dead cells, empty
droplets, or multiplets. Log normalization was performed, and the top 2000 most variable
genes were used for principal component analysis (PCA). The top 20 principal components
were chosen for t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold
approximation and projection (UMAP).

2.6. Annotation and MAIT Identification

Individual clusters were identified using a combination of manual annotation and
automated annotation with ScType. ScType is an unsupervised, automated, reference-based
annotation tool used for cluster identification [29]. ScType relies on a large database of
established cell markers and utilizes positive and negative markers of gene expression to an-
notate cells. MAITs were identified using KLRB1 (encodes killer cell lectin-like receptor B1)
and SLC4A10 (encodes solute carrier family 4 member 10) [23,30,31] (Figure 2C). SLC4A10
is a highly specific marker for MAIT cells, having a Tau specificity score of 0.93 [32]. A new
Seurat object for differential expression analysis was created using the annotated MAITs.
The total number of MAITs, MAITs/condition, and MAITs/sample/condition was reported
as absolute values and percentages. Values are reported as means ± standard deviation. A
one-way ANOVA was used to compare MAITs/sample between conditions.
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2.7. Differential Expression and MAIT Activation

Differentially expressed genes (DEGs) between time points were detected by a linear
mixed model, which accounts for within-subject variability and within-group variability
(Equation (2)). In this model, the time point was modeled as a dummy variable and day 0
was treated as the baseline. Specifically, the linear mixed model for gene g, subject i, cell j
can be expressed as

yijg = β0 + β1 ∗ time2ij + β2 ∗ time4ij + β3 ∗ time7ij + αi + εijg

αi ∼ N
(
0, τ2), εijg ∼ N

(
0, ωijgσ2

g

) (2)

where β1, β2, β3 denote the mean changes in gene expression comparing day 2, day 4, and
day 7 to the baseline time point, respectively. αi represents the random effect corresponding
to subject i with τ2 measuring the variance of random subject effect. εijg is the random
error in gene g with variance σ2

g . To unlock linear model analysis for scRNA-seq data,
limma-voom precision weight for the mean–variance dependency [33] and ZINB-WaVE
weight for dropout probability [34] were multiplicatively introduced into the weight ωijg
in the model. The analysis was based on the limma framework [33], and its moderated
t-statistics were used for obtaining p-values. Further, false discovery rate (FDR) correction
was performed to adjust for multiple comparisons. An FDR-adjusted p-value < 0.01 was
considered statistically significant.

Differentially expressed genes were identified by the following criteria: expressed
in ≥5% of MAITs, an absolute log-fold change (LogFc) from baseline ≥ 0.4, and an FDR-
adjusted p-value < 0.01. Functional enrichment analysis was performed using differentially
expressed genes. Differential expression of the specific markers CD69 (encodes human
transmembrane C-type lectin protein), CD25 (encodes interleukin-2 receptor alpha chain),
and HLA-DR (encodes MHC class II cell surface receptor) was used to evaluate MAIT
activation. CD69 is considered the earliest marker of T-cell activation, is transcriptionally
expressed rapidly after MAIT cell activation, correlates well with patterns of inflammatory
disease, and may be an important regulator of the intestinal immune system [23,35,36].
CD25 and HLA-DR are well-characterized late lymphocyte activation markers that can be
upregulated specifically after MAIT cell activation [37–39].

2.8. Functional Enrichment Analysis

Functional enrichment analysis was performed using Qiagen Ingenuity Pathway
Analysis (IPA) software v.01.23.01 (Qiagen; Hilden, Germany) [40]. IPA utilizes statistical
analysis and computational modeling combined with an extensively curated database of
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genetic knowledge for functional pathways, upstream regulators, and network analyses.
The primary analysis was based on the criteria consistent with the above analysis, an
absolute LogFc cut-off of 0.4 to define down- and upregulated genes and false detection
rate (FDR) < 0.1. Both direct and indirect relationships were considered in the pathway
analysis. The Ingenuity Knowledge Base was used as a reference set. All comparisons were
made between the dietary condition (“Day 2”, “Day 4”, “Day 7”) and baseline.

Significant canonical pathways were identified using a Fisher’s exact test with an
FDR-corrected p-value of overlap threshold for significance set to <0.05. The Fisher’s
exact test tests overlap between the input genes from the experimental dataset and genes
associated with known signaling pathways expertly curated from the literature. Pathways
are considered enriched if the input genes have significant overlap with known pathway
genes. Pathways associated with apoptosis, cellular immune response, cellular stress and
injury, cytokine signaling, nuclear receptor signaling, and pathogen-influenced signaling
were evaluated. The Qiagen software calculates Z-scores to generate pathway activation
predictions based on which genes are upregulated or downregulated in the dataset. Neg-
ative Z-scores indicate pathway inhibition, whereas positive Z-scores indicate pathway
activation. Pathways were considered significantly inhibited or activated if their Z-score
was less than −2.0 or greater than 2.0.

Upstream regulator molecules were identified using the IPA software. Regulators are
any molecules known to drive the differential expression changes observed in the input
dataset. Statistical testing for regulator analysis is similar to the techniques performed
for canonical pathway analysis but focused on curated gene–regulator relationships. Sig-
nificance is based on the degree of overlap between differentially expressed genes in the
input dataset and known molecules within a particular regulatory network. Significant
regulators were identified by an FDR-adjusted p-value of overlap < 0.01. Regulators were
significantly activated (positive Z-score) or inhibited (negative Z-score) if their absolute
Z-score was greater than 2.0. All regulators associated with genes, RNA, and proteins
were evaluated.

2.9. Stool Sample Collection, Processing, Filtering, and Sequencing

Stool samples were collected by the patients using a fecal collection kit (Zymo Research,
Irvine, CA, USA), and samples were stored at −20 degrees Celsius until processing. As
previously described [16], the ZymoBiomics MagBead DNA kit (Zymo Research, Irvine,
CA, USA) was used to isolate DNA from thawed stool samples and shotgun metagenomic
sequencing (Zymo Research, Irvine, CA, USA) was performed. Whole-genome sequencing
libraries were created with the Nextera DNA Flex Library Prep Kit (Illumina, San Diego,
CA, USA), pooled in equal abundance, and sequenced with NovaSeq (Illumina, San Diego,
CA, USA). Low-quality reads were removed, and metagenomic compositional profiling
and abundance analysis was performed with Centrifuge [41] and functional profiling was
performed using HUMAnN2.

2.10. Microbiome Taxonomic and Functional Pathway Analysis

We have previously described our methods for taxonomic and functional pathway
analysis [16]. Briefly, low-prevalence species were filtered from the dataset using a machine
learning algorithm to identify an ideal prevalence filtering cutoff. Species present in at
least 60% of the samples were included in downstream analysis. Conditional variance
was assessed using principal component analysis, and species-level differential abundance
analysis was performed using ALDEx2. Specifically, Monte Carlo sampling from a Dirichlet
distribution, followed by center-log-ratio transformation and Kruskal–Wallis significance
testing with false discovery rate (FDR) correction, was used to analyze species differences
between all three conditions, followed by Welch t-testing with correction and effect size
calculations to assess directional changes between baseline and day 4 conditions. Heatmaps
were created with hierarchical clustering based on Euclidean distances with center-log-ratio
transformation. Like taxonomic analysis, prevalence filtering was performed for functional
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pathways, using 80% as the ideal prevalence threshold. Conditional differences were again
evaluated using principal component analysis, followed by individual pathway analysis.
Normalized reads were compared between the three conditions using ANOVA testing
controlled for FDR. Heatmaps were similarly created for pathway functional categories.

3. Results
3.1. Participant Demographics

Seven participants completed the dietary intervention and provided samples for
analysis. Table 1 depicts their characteristics. All participants were healthy nonsmokers.
Four participants were male, and three were female. Five were White, one was Hispanic,
and one was Asian. The average age was 25.3 (±3.8) years, and their average BMI was
25.7 (±4.0). All participants provided blood samples for each time point (n = 28 samples).
All provided baseline and day 7 stool samples. Two were unable to produce a day 4 stool
sample (n = 19 samples).

Table 1. Participant characteristics.

Subject Sex Race/Ethnicity Age BMI Medications Tobacco Use Daily Energy Requirement (kcal)

1 F Asian 22 23.4 Oral Contraceptive No 1940

2 M White 30 28.9 No 3267

3 M White 26 26.9 Magnesium, Krill Oil No 2983

4 M White 28 22.4 No 2884

5 F Hispanic 23 32.2 Oral Contraceptive No 2116

6 F White 19 18.9 Oral Contraceptive No 2221

7 M White 29 27.1 No 3118

3.2. Filtering and Annotation

A total of 65,372 cells were isolated across all samples with a mean of 85,595 reads
per cell. A total of 57,064 cells remained after applying filtering cut-offs. A total of 16 cell
clusters were identified. Figure 2A shows the annotated UMAP of cell clusters. MAITs
represented 1351 (2.4%) of isolated circulating PBMCs, and MAIT proportions remained
consistent throughout the study period (Figure 2D). The average number of MAITs per
sample was 48.2 ± 26.6. A total of 342 (2.4%) MAITs were present at baseline compared to
322 (2.3%) on day 2, 350 (2.3%) on day 4, and 337 (2.4%) on day 7. We did not observe a
significant difference between the number of MAITs/sample by condition (p = 0.991).

3.3. Differential Expression and MAIT Activation

Compared to the baseline, 232, 172, and 145 genes were differentially expressed on
days 2, 4, and 7 of the diet, respectively. A total of 93 genes were upregulated on day
2, 24 on day 4, and 85 on day 7. A total of 139 genes were downregulated on day 2,
148 on day 4, and 60 on day 7. Figure 3 shows volcano plots for the most differentially
expressed genes by condition. A total of 60% and 84% of the genes were significantly
disproportionally downregulated on days 2 and 4 compared to 40% on day 7 (Chi-square-
test p < 0.001). The top 10 most downregulated and upregulated genes per condition are
shown in Supplementary Table S1. The late activation-specific genes CD25 (LogFc 0.17,
0.04, 0.15 on days 2, 4, and 7, respectively) and HLA-DR (LogFc 0.01, 0.18, 0.06 on days
2, 4, and 7, respectively) were not differentially expressed at any time point. CD69 was
differentially downregulated on days 2 (LogFc = −0.66, p < 0.001) and 4 (LogFc = −0.49,
p < 0.001) compared to baseline, but not on day 7 (LogFc = −0.38).
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Figure 3. Differentially expressed genes (DEGs) compared to baseline after 2 (A), 4 (B), and 7 (C) days
of dietary intervention. Red dots represent DEGs with an absolute LogFc ≥ 0.4 with FDR-adjusted
p-value < 0.05.

3.4. Canonical Pathways

A total of 176 and 160 pathways were functionally enriched on days 2 and 4 of the
diet. A total of 11 pathways were enriched on day 7 (Supplementary Figure S1). A total of
71 (40%) and 64 (40%) pathways were significantly (absolute Z-score ≥ 2.0) inhibited or
activated on days 2 and 4, respectively. Of the significantly changed pathways, sixty-seven
(94%) were inhibited and four (6%) were activated on day 2, and fifty-seven (89%) were
inhibited and seven (11%) were activated on day 4. There was considerable overlap in
enriched pathways and pathway activation states between days 2 and 4. A total of 39/64
(61%) of the significantly inhibited or activated pathways day 4 pathways overlapped with
day 2.

Figure 4 depicts select enriched canonical pathways on days 2 and 4 compared to
baseline. TNFR1 and TNFR2 signaling were among the most enriched pathways on days
2 and 4. Both had evidence of inhibition on both days, with TNFR1 being significantly
inhibited on day 2 (Z = −2.131). Acute phase response (Z = −2.236, −2.000), IL6 (Z = −2.236,
−2.449), iNOS (Z = −2.000, −2.000), and IL1 (Z = −2.000, −2.236) signaling pathways were
enriched and significantly inhibited on days 2 and 4. IL17 signaling was enriched and



Nutrients 2024, 16, 1245 9 of 16

significantly inhibited on day 4 (Z = −2.000). IL10 signaling was enriched on days 2 and 4
and was the most activated pathway on day 2 (Z = 2.530). It remained activated on day 4
(Z = 1.890). The pathogenic induced cytokine storm signaling pathway was among the most
inhibited on day 4 (−3.000). Multiple T-cell costimulatory pathways were enriched, and
all showed evidence of inhibition during dietary intervention (CD28 and CD40 signaling
on day 2 [Z = −1.342 and −0.447], CD40 signaling on day 4 [Z = −0.447]). TCR signaling
was enriched on day 2 with evidence of inhibition (Z = −1.897). Immunogenic cell death
(Z = −2.000) and death receptor signaling (Z = −1.414) pathways were inhibited on both
days, but apoptosis signaling had evidence of activation on day 4 (Z = 0.816).
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Figure 4. Select enriched canonical pathways on days 2 (a) and 4 (b) of dietary restriction. Threshold
(1.3) indicates a -log Benjamini–Hochberg-corrected p-value of <0.05. Blue shading indicates the
predicted inhibition (negative Z-score) of the pathway based on the input dataset. Orange shading
indicates activation (positive Z-score). White shading indicates no conclusive evidence for activation
or inhibition. Darker blue or orange hues indicate more significant inhibition or activation.

PPAR signaling was enriched and had evidence of activation on days 2 and 4 (Z = 1.633
and 2.000, respectively). PPAR/RXRα activation signaling was enriched with evidence of
activation on day 2 (Z = 1.342). No day 7 pathways were significantly activated or inhibited.
Death receptor signaling was the only pathway with evidence of activation (Z = 1.000).
There were minimal changes in pathways associated with MAIT TCR-independent sig-
naling on any day. There was no enrichment of IL18 signaling on days 2 and 4, IL15
signaling on day 2, or IL7 signaling on day 4. IL12 signaling was enriched on days 2 and 4
with evidence of inhibition (Z = −0.333 and −0.816, respectively). IL15 production was
the only TCR-independent associated pathway with a significant functional change on
day 4 (Z = −2.000). Generally, pathway activation states on day 2 of the diet were like
day 4 (Figure 4). Directional changes were 100% congruent among significantly changed
pathways (absolute Z-score ≥ 2.0) between days 2 and 4.

3.5. Regulators

Seventy-one, one hundred nineteen, and six genes, RNA, or protein regulators with
a significantly changed activation state were identified. A total of 55% (n = 39) of day
2 regulators were also identified on day 4. A total of 57 (80%) and 101 (85%) of day 2
and 4 regulators were inhibited. There was 100% congruence in activation states among
overlapping regulators on days 2 and 4. CD3 (encodes T-cell receptor) and the costim-
ulatory regulators CD40 and CD40LG were inhibited on days 2 and 4. Multiple major
pro-inflammatory regulators (TNF, IL1, IL6) and IL2 were inhibited on days 2 and 4. IFNγ

was significantly inhibited on day 4 (−2.469). Table 2 depicts the top 10 most significant
regulatory cytokines and complexes on days 2 and 4 and each regulator’s functional signifi-
cance. The most inhibited regulators were involved in the TCR complex, antigen-presenting
cell co-stimulation, and proinflammatory signaling. The entire list of significant regulators
for each condition is provided in the Supplementary Materials File.
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Table 2. Top 10 most significantly affected regulatory chemokines and complexes after 2 and 4
days of StDR. All depicted regulators were significant based on Fisher’s exact test with a Benjamini–
Hochberg-corrected p-value of overlap set to <0.01. The function describes the general action or
purpose of each regulator. A negative Z-score < −2.0 predicts significant regulator inhibition. All of
the most significant regulators were inhibited. Day 7 is not depicted, as no functionally significant
regulators were identified compared to the baseline.

Day 2 Day 4

Regulator Function Z-Score Regulator Function Z-Score

CD3 TCR co-receptor −2.1 CD3 −3.3

NFκB Complex Cell stress response −3.7 NFκB Complex −4.4

CD40LG Costimulation −2.7 CD40LG −3.2

GM-CSF Proinflammatory cytokine −2.2 GM-CSF −3.4

IL2 T-cell growth −3.0 IL2 −2.6

KLF6 Tumor suppressor gene −3.1 KLF6 −3.1

TNF Proinflammatory cytokine −3.9 TCR TCR complex −2.5

IL1B Proinflammatory cytokine protein −3.6 RELA NFκB complex subunit −3.6

CD40 Costimulation −2.2 CD28 Costimulation −2.8

EPHA2 Protein kinase −2.1 IFNγ Proinflammatory cytokine −2.5

3.6. Species Abundance Analysis

A total of 758 total species were identified in participant stool samples. A total of 168
(22.1%) were present after using the 60% prevalence filtering cut-off. A total of 22 total
species were significantly changed between conditions (FDR-adjusted p < 0.10). Species-
level abundances are most similar between the baseline and day 7 conditions compared to
day 4, with unsupervised clustering showing grouping by condition rather than participant
(Supplementary Figure S2). Figure 5 depicts the significant species with an absolute effect
size > 1.0 between baseline and day 4. StDR decreased the relative abundances of multiple
Bacteroides species: B. stercoris (Effect size = −4.03), B. dorei (Effect size = −2.95), B. fragilis
(Effect size = −1.34), B. galacturonicus (Effect size = −1.29), and increased the abundances of
multiple Ruminococcus and Firmicutes species: R. torques (Effect size = 6.32), R. faecis (Effect
size = 2.14), Firmicutes bacterium CAG83 (Effect size = 4.89), and Firmicutes bacterium
CAG145 (Effect size = 1.73).
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3.7. Microbial Functional Pathway Analysis

A total of 345 unique MetaCyc pathways were identified. A total of 177 (51.3%) pathways
remained after using a prevalence cut-off of 80%. A total of 34 pathways were significantly
changed between conditions (FDR-adjusted p < 0.05). Like the abundance analysis, base-
line and day 7 functional pathways were more like each other than day 4 (Supplementary
Figure S3) and functional pathways grouped well by condition after unsupervised clustering.
MetaCyc pathways are subcategorized based on their metabolic function and associated
metabolites. Of the significantly changed pathways between conditions, nineteen (56%) were
biosynthetic pathways, twelve (35%) were degradation pathways, and three (9%) were precur-
sor metabolites and energy pathways (Figure 6). A total of 29/34 (85%) species changed by
day 4 compared to baseline had reciprocal changes by day 7. A total of 11 (58%) biosynthetic
pathways decreased at day 4 compared to baseline. Notably, the pathway for bacterial flavin
biosynthesis was decreased and the super pathways for tetrahydrofolate biosynthesis and
salvage were both increased on day 4.
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4. Discussion

StDR potentiated an anti-inflammatory MAIT immunophenotype characterized by de-
creased pro-inflammatory TNFα, IL1, IL6, IL17, and IFNγ and increased anti-inflammatory
IL10 signaling. Inhibition of the TCR complex, inhibition of APC co-stimulation, and
downregulation of the CD69 activation marker suggests modulation of TCR-dependent
signaling during StDR as a potential mechanism for the observed effects. This is further
supported by gut microbial analysis, which showed multiple Bacteroides species among
the most decreased species during StDR and favorable changes in bacterial biosynthetic
pathways known to produce MAIT-modulating metabolites. Lastly, PPAR signaling was
activated during dietary restriction, providing another possible mechanistic link between
dietary alteration and the systemic immune response. This is the first study to characterize
MAIT transcriptomic responses to StDR in concert with gut microbial changes, identify
MAITs as a potential therapeutic target for preoperative StDR preconditioning, and provide
transcriptomic evidence for the beneficial immune effects of StDR.

MAITs exhibit a pro-inflammatory response to riboflavin-producing bacteria dom-
inated by IL17, IFNγ, and TNFα secretion. Circulating MAITs in obesity and metabolic
disease are characterized by increased IL2, granzyme B, IL17, IFNγ, and TNFα, and less
IL10 compared to healthy controls [17,42–44]. Caloric restriction in mouse models has
shown a MAIT response characterized by TReg polarization with downregulation of TH17
signaling, resulting in improved stroke outcomes through attenuation of neuroinflamma-
tion [45,46]. We observed a similar trend in the MAIT response to StDR characterized
by decreased TNFα and increased IL10 signaling with strong inhibition of the major pro-
inflammatory IL1, IL6, and iNOS signaling pathways. This trend was consistent throughout
the intervention, returning to baseline after diet cessation. Overall, we show a rapid and
sustained effect of StDR on systemic MAITs. The clinical benefits of these short-term
changes require further exploration; however, long-term dietary restriction in patients
with non-alcoholic fatty liver disease resulted in a decrease in intrahepatic MAIT CD69
expression and improvements in inflammatory-mediated hepatic steatosis [47].

MAITs are activated in a TCR-dependent manner by byproducts of bacterial riboflavin
biosynthesis presented on MR1 ligands by APCs. APCs co-stimulate MAITs through
CD28/CD80 and CD40/CD40L interactions, synergistically increasing the TCR-dependent
response and rapidly increasing CD69 expression [38]. TCR-independent activation relies
on IL7, IL12, IL15, and IL18 cytokine binding to MAIT receptors and is generally preceded
by viral or general inflammatory stimuli [17]. There was no pattern to suggest a coordinated
TCR-independent response to StDR; however, we observed decreased activity of CD40,
T Cell Receptor, and CD28 signaling during StDR. Regulator analysis further identified
CD40, CD28, and the TCR among the most inhibited regulatory complexes. It is unclear
whether these trends are secondary to inhibition of the MAIT TCR complex, decreased
antigenic MAIT stimulation, or a combination of both; however, we suspect StDR may have
the altered the microbiome, potentially producing favorable MAIT modulating metabolites.

Bacteria belonging to the Bacteroidetes and Proteobacteria phyla are among the most
potent MAIT stimulators in vitro [22]. Our previous work showed that 4 days of StDR
induced species-level abundance changes that returned to a predietary state 3 days after
dietary cessation [16]. Well-established relationships between gut microbial composition
and dietary restriction remain elusive given variations in study design, diet selection, and
duration of intervention [48]. Caloric restriction models in mice ranging from 2 weeks to
45 days have shown increases in the Bacteroidetes phylum, whereas a 3-week hypocaloric
hyperproteic diet in humans decreased multiple Bacteroides species [49,50]. Our previous
work showed a decrease in multiple Bacteroides species during 4 days of dietary restriction
and this observation was redemonstrated herein. We showed that StDR rapidly alters
the gut microbiome, suggesting utility as a perioperative intervention. However, the
species-specific effects, ideal dietary intervention, and duration of intervention require
further study.
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MAIT TCR-dependent activation relies exclusively on metabolites of bacterial ri-
boflavin biosynthesis [17–21]. Transcriptomic profiling of E. coli-activated MAITs has
revealed distinct pathway changes associated with increased IL1, IL6, TNFR1/R2, IL2,
CD40, CD28, and Th1/Th17 signaling pathways [51]. We further observed decreased bacte-
rial ribofvain biosynthesis and increased activity in folate degradation pathways during
StDR, potentially resulting in the production of MAIT-inhibiting byproducts [17–21]. It is
possible that the observed species-level changes resulted in favorable microbiome metabo-
lite profiles, thereby modulating MAIT behavior. However, a high-resolution analysis of
stool metabolites via mass spectroscopy has not been performed and should be the work of
future research.

PPAR signaling, particularly PPARα, was one of the few activated pathways during
dietary restriction. PPAR receptors are widely expressed on T-cells and have been shown to
regulate T-cell activation and differentiation states in response to fatty acid metabolites [52].
PPARα target genes are important regulators of fatty acid oxidation and ketogenesis that
downregulate many pro-inflammatory and acute phase response signaling pathways upon
activation [53]. Indeed, caloric restriction induces the production of PPARα ligands, leading
to a favorable immunoprofile and translating to numerous health benefits [54]. MAIT
responses to PPAR agonism are not well-characterized, but this study highlights PPAR
modulation as a potentially important mechanism for diet-induced MAIT modulation.

5. Limitations

This study has several limitations. The diet was chosen for its low protein content and
thus feasibility in achieving 70% protein and 30% caloric restriction. This specific diet is
not supplemented with essential amino acids and is relatively high in carbohydrates. The
ideal diet for StDR is unknown, but likely involves not only protein and caloric restriction,
but also supplementation of essential amino acids and vitamins to promote an ideal gut
microbiota composition. Moreover, the observations herein could be secondary to the diet
itself and not necessarily from protein or calorie restriction. This study lacks a description
of other peripheral immune cell responses to StDR. For example, understanding APC
response to StDR could provide support for the mechanistic benefits of StDR on MAIT
expression. A comprehensive profiling of the entire PBMC immunophenotype to StDR
is the target of future works. The study population was homogenous and the results in
healthy, young participants may not be generalizable to other patients, particularly those
with multiple confounding comorbidities. Lastly, many of the findings in this study require
further validation with cell culture, animal, or translational models.

6. Conclusions

StDR induced an anti-inflammatory immunophenotype in circulating MAITs. The
MAIT response was rapid and returned to baseline after three days of a normal diet. Cy-
tokine profiling of MAITs during StDR indicated polarization towards an anti-inflammatory
TReg-like phenotype and away from the proinflammatory TH1/TH17-like phenotype.
Analysis of key pathways and regulators indicates that StDR may modulate systemic
MAITs through alterations in TCR-dependent signaling, potentially as a result of micro-
biome compositional changes during dietary restriction.
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mdpi.com/article/10.3390/nu16081245/s1, Figure S1: All enriched canonical pathways on day 7
compared to baseline; Figure S2: Principal component analysis and heatmap of species abundance
after prevalence filtering; Figure S3: Principal component analysis of metabolic pathway changes after
prevalence filtering; Table S1: The top 20 differentially expressed genes for each condition compared
to baseline; File S1: All significant genes; File S2: Day 2 canonical pathways; File S3: Day 2 regulators.
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