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Abstract: Foodborne pathogens are microbes present in food that cause serious illness when the
contaminated food is consumed. Among these pathogens, Listeria monocytogenes is one of the
most serious bacterial pathogens, and causes severe illness. The techniques currently used for
L. monocytogenes detection are based on common molecular biology tools that are not easy to imple-
ment for field use in food production and distribution facilities. This work focuses on the efficacy of
an electrochemical biosensor in detecting L. monocytogenes in chicken broth. The sensor is based on a
nanostructured electrode modified with a bacteriophage as a bioreceptor which selectively detects
L. monocytogenes using electrochemical impedance spectroscopy. The biosensing platform was able to
reach a limit of detection of 55 CFU/mL in 1× PBS buffer and 10 CFU/mL in 1% diluted chicken
broth. The biosensor demonstrated 83–98% recovery rates in buffer and 87–96% in chicken broth.

Keywords: food safety; Listeria monocytogenes; bacteriophage; impedance; pathogen detection

1. Introduction

There are 17 different species of the Listeria genus. Among them, only two species are
pathogenic: Listeria ivanovii, found almost exclusively in ruminants, and Listeria monocyto-
genes (L. monocytogenes), which can infect humans and cause illnesses [1,2]. L. monocytogenes
is a facultative, anaerobic, Gram-positive, rod-shaped bacterium known since 1924. It is
a psychrophile pathogen capable of multiplying at refrigeration temperature (4 ◦C) and
surviving at temperatures as low as −17 ◦C, with an optimum growing temperature range
of 30 to 37 ◦C [3,4]. L. monocytogenes infection leads to illnesses such as listeriosis, sepsis,
myocarditis, meningitis, encephalitis, bacteremia, and intrauterine or cervical infections in
pregnant women that could lead to miscarriages or stillbirth [5]. The most common path of
L. monocytogenes infection is through the gastrointestinal tract, similar to other foodborne
pathogens. It can be found in various food products like poultry, pork, beef, dairy products,
bread, fish, ready-to-eat foods, and fresh produce [6]. Its ability to form biofilms facilitates
infection from surfaces, transport vehicles, and stainless-steel appliances [2,7]. Liquid and
semi-liquid products like broth, milk, or soft cheeses are suitable growing grounds for
Listeria detection. Chicken broth is made by cooking chicken and raw vegetables in water
and, therefore, can represent samples of chicken, vegetables, and liquid samples [7–11].

The detection of L. monocytogenes has been performed with various types of biosensors.
As their name suggests, optical biosensors provide an optical signal through luminescence,
fluorescence, or color. The optical approach is very sensitive and selective but requires
expensive optical equipment and is sensitive to environmental interference [12]. Ther-
mal biosensors measure the heat change due to bioreaction between the biorecognition
molecule and specific analytes that correspond with the target pathogen. The method is fast
and sensitive, but its selectivity is low due to non-target responses [13]. Electrochemical
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biosensors (ECBSs) measure the changes in electric parameters like the current, potential,
or impedance of a system due to biological interaction between the target analyte and
the biorecognition molecule on the working electrode. ECBSs are sensitive, selective, fast,
low cost, and do not require trained personnel. They require a small sample volume and
can be portable, which makes them optimal for home or field detection in buffer or food
samples [6,12,14,15].

In our previous work, we developed different phage-based approaches for separating
and detecting different pathogens [16–19]. A biosensor utilizing phage-immobilized quart-
ernized carbon nanotubes (q-CNTs) for the detection of L. monocytogenes in 1× phosphate-
buffered saline (PBS) with a limit of detection of 8.4 CFU/mL was also presented [3]. This
work presents an adaptation of our biosensor to a portable platform constructed from
commercially available screen-printed electrodes in order to detect L. monocytogenes in
chicken broth samples. This newly adapted platform, as seen in Figure 1a, offers the ability
to detect the pathogen without specialized lab equipment.
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The most common detection methods for L. monocytogenes include genomic and
antibody-based approaches. Electrochemical detection systems relying on antibodies for
L. monocytogenes have demonstrated a limit of detection (LOD) of 35 CFU/mL in
1× PBS buffer and 22 CFU/mL in spiked lettuce samples. Despite their high sensitiv-
ity, antibody-based systems are constrained by limitations in stability and cost compared
to bacteriophage-based alternatives [20,21]. Another detection strategy involves genomic
methods, utilizing DNA or RNA for L. monocytogenes detection, and achieving remarkably
low LODs on the order of 10−14 M. However, these methods have notable drawbacks,
including the necessity of high-temperature sample preparation for denaturation and pro-
longed sample preparation times ranging from 8 to 24 h at minimum [22–24]. Additionally,
nucleotide- or antibody-based methods are not capable of distinguishing living and dead
bacterial cells and therefore are not particularly attractive for food safety testing. The
phage-based method discussed in this work overcomes this drawback [25–31].

2. Materials and Methods
2.1. Materials Used

Carboxylic acid functionalized multiwalled carbon nanotubes (COOH-CNT) with a
30–50 nm outer diameter and a 10–20 µm length (from Cheap Tubes Inc., Cambridgeport,
Vermont, USA); 1-pyrenebutanoic acid succinimidyl ester (PBSE), bovine serum albumin
(BSA), Tween® 20, dichloromethane and chlorodimethylsilane (all four from Sigma-Aldrich,
St. Louis, MO, USA); dimethyl sulfoxide (DMSO) (Thermo-Scientific, Waltham, MA, USA);
disodium phosphate (Na2HPO4) (Research Products International Corp, Mt Prospect, IL,
USA); sodium chloride (NaCl) (EMD chemicals, Massachusetts, USA); magnesium sulfate
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heptahydrate (MgSO4·7H2O (J.T. Baker, Japan); thionyl chloride (SOCl2) and iodomethane
(CH3I) (both from Alfa Aesar, Haverhill, Massachusetts, USA); potassium phosphate dibasic
(KH2PO4) and potassium chloride (both from BDH, Solon, Ohio, USA); tris base, typtone,
and ethanol (all three from Fisher Scientific, Hampton, New Hampshire); yeast extract
and agar powder (both from Becton Dickinson and Company, Franklin Lakes, New Jersey,
USA); and chicken broth (GreenWise ®, Lakeland, Florida, USA) were purchased from the
respective commercial vendors and used as received.

Phosphate-buffered saline 10× (100 mL) was prepared by mixing 0.2 g of KCl, 8 g
of NaCl, 0.245 g of KH2PO4, and 1.4 g of Na2HPO4. PBS (1×) (pH 7.4) was prepared by
diluting the PBS 10× buffer. A quantity of 0.01% tween 20 solution was prepared by mixing
10 mL of PBS (1×), 85 mL deionized water (DIW), and 20 µL of Tween® 20. Luria Bertani
(L.B.) (100 mL) (pH 7.0) was prepared by mixing 1 g of tryptone, 0.5 g of yeast extract, and
1 g of NaCl. S.M. buffer (pH 7.5) was prepared by mixing 100 mM NaCl, 8 mM MgSO4.
7H2O, 50 mM Tris base, and 0.01% gelatin. Standard brain–heart infusion (BHI) media was
prepared by mixing 37 g of the BHI powder into 1 L of DIW using a magnetic stirrer until a
homogenized solution was formed. Chicken broth, 1% dilution, was prepared by diluting
1 mL chicken broth into 99 mL 1× PBS and vortex-mixing the resulting solution. DIW with
a resistivity of 18 MΩ.cm was used to prepare all the media and chemicals. All buffers and
media were sterilized before use.

Screen-printed electrodes (SPE) (Zensor, Taichung City, Taiwan) were purchased
from C.H. Instruments, Inc., Austin, TX, USA and used as working-, counter-, and quasi-
reference electrodes. All flow-based experiments were performed using a microfluidic flow
cell from Metrohm Dropsens, Oviedo, Asturias. All electrochemical impedimetric measure-
ments were performed using a CHI-920C model potentiostat (CH Instruments Inc., Austin,
TX, USA).

2.2. Methods Used
2.2.1. Microbiological Methods

Listeria monocytogenes Scott A, a pathogenic strain, was used as the target analyte,
whereas Salmonella enterica subsp. Enterica serovar Typhimurium 291RH (ser. Typhimurium-
291RH) and Escherichia coli O157:H7 (E. coli O157:H7) were used as the non-target pseudo-
analytes for specificity studies. Listex P100 bacteriophage (P100 Phage) was purchased
from Micreos Food Safety B.V, Wageningen, Netherlands. L. monocytogenes Scott A was
grown by inoculating a single colony in 3 mL of BHI media and incubating at 37 ◦C for 24 h
at 200 rpm. Both ser. Typhimurium-291RH and E. coli O157:H7 were grown by inoculating
a single colony in 3 mL of BHI and Luria Broth (LB) media, respectively. Both cultures were
incubated overnight for 18 h at 37 ◦C at 200 rpm. One mL of the mid-log phase bacterial
culture was centrifuged at 5000 rpm for 8 min. For detection experiments in buffer, the
supernatant was removed and washed twice with 1× PBS buffer to remove any media
residue, and the pellet was resuspended in 1× PBS buffer. Then, the dilution series was
prepared. For detection experiments in 1% diluted chicken broth, all supernatant was
removed and 1× PBS buffer was used to wash and remove any media residue, and the
pellet was resuspended in 1% diluted chicken broth. The dilution series was also prepared
with 1% chicken broth as the media used. Enumeration of bacteria was performed by
plate-count techniques and expressed in CFU/mL. A plaque assay was carried out with
P100 phage and L. monocytogenes to measure the phage titer and was expressed in PFU/mL.
A soft agar overlay technique was carried out to evaluate the specificity of the P100 phage
towards the target (L. monocytogenes) and non-target bacteria (ser. Typhimurium-291RH
and E. coli O157:H7), with the presence and absence of P100 phage.

2.2.2. Electrode Preparation

Quaternized carbon nanotubes (q-CNT) were prepared according to the protocol
presented by Zolti et al. [3]. Screen-printed electrodes (SPE) were rinsed with DIW and
dried at room temperature for 2 h prior to modification with q-CNT. Once the electrode
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dried, 8 µL of the 1 mg/mL q-CNT solution was drop-cast on the SPE working electrode
and then dried at room temperature. After that, PBSE as a molecular tethering agent
was used as a crosslinker to attach the P100 phage to the q-CNT modified electrode.
The modified SPE was rinsed with 1× PBS and placed in an ice container and 0.5 µL of
20 mM PBSE solution (in DMSO) was dropped onto it and allowed to self-assemble for
15 min. Excess PBSE was removed by rinsing twice with 1× PBS prior to phage attachment.
One µL of the 109 PFU/mL P100 phage solution was drop-cast on the working electrode and
kept overnight at 4 ◦C. The P100 phage contains negatively charged capsids and positively
charged tail fibers. The strong positive charge on the q-CNT created an oriented phage layer
chemically anchored to the surface, as presented by Zolti et al. [3]. After immobilization,
the electrode was rinsed with SM buffer and washed with 1× PBS buffer twice. Following
the wash, 0.5 µL of 0.1% BSA solution was deposited on the electrode for 30 min to block
areas that might not have been completely modified. Finally, the electrode was incubated in
1× PBS or with 1% diluted chicken broth for 15 min before use in electrochemical experiments.

The bacterial solution (100 µL) was drop-cast onto the SPE and incubated for 8 min
before the measurement. The impedimetric characterization was carried out using a CHI-
920C scanning electrochemical microscope. The electrochemical system was a 3-electrode
SPE, as shown in Figure 1a. Electrochemical impedance spectroscopy (EIS) measurements
were performed in 5 mM [Fe(CN)6]4−/[Fe(CN)6]3− as redox couple, with a frequency
range of 1 Hz to 100 kHz and an AC amplitude of 5 mV. All measurements were per-
formed at room temperature under standard conditions. The modified SPEs were tested in
1× PBS buffer and 1% diluted chicken broth matrices. The negative control contained no
bacteria, and the test samples contained different concentrations of L. monocytogenes. The
SPE was rinsed with 1× PBS after incubation with the tested solution. A 100 µL quantity of
5 mM [Fe(CN)6]4−/[Fe(CN)6]3− solution was dropped on the SPE to cover the working,
counter, and reference electrodes prior to impedimetric measurements. The negative con-
trol measurement was used as the baseline RCT for each set of measurements presented in
this section. Detection experiments under constant flow were performed using a syringe
pump connected to a microfluidic flow chamber, as shown in Figure 1b. The chicken broth
was diluted a hundred-fold to 1% in 1× PBS to produce a more homogenized sample. Due
to the dilution, the heterogenous nature of the chicken broth is negated, while the relevant
target bacteria concentration is not reduced below the limit of detection. The dilution was
performed according to practices common in the field [20,21].

3. Results and Discussion
3.1. Detection of L. monocytogenes in Buffer and Broth

Initial impedimetric measurements were performed with the L. monocytogenes sus-
pended in 1× PBS buffer at a concentration range of 102 CFU/mL to 106 CFU/mL. Measure-
ments in triplicate were performed to determine the errors. Figure 2a presents a Nyquist
plot with data collected from the 1× PBS buffer experiments. The calibration data with a
baseline boxplot within the inset are shown in Figure 2b, along with the linear confidence
limits, with a confidence level of 95%, showing that all points fall within the linear regime.
It is visible that at higher concentrations, a larger error is calculated in the buffer.

The reason for this error determination is that one of the biosensors has reached
saturation at lower analyte concentrations than the other two. In addition, the rate of signal
change from the concentration of 104 CFU/mL has slowed at different rates. Following the
buffer experiments, detection experiments were performed in which the negative control
and the bacterial solutions were suspended in chicken broth. The diluted broth was used to
reduce the effects of inconsistencies in broth composition. The results of these experiments
are shown in Figure 2c,d. The data suggest that exposure to the broth causes a significant
reduction in the overall values of the RCT, even after baseline adjustment, with respect to the
corresponding measurements in the buffer. Additionally, the chicken broth measurements
showed lower calculated error for all measurements. The lowest concentration measured
was 102 CFU/mL. In addition, two methods were used to calculate the limit of detection
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(LOD). The first involved use of a linear regression method, and resulted in 55 CFU/mL
in buffer and 10 CFU/mL in broth. The second method was 6σ. Here, the LOD is defined
as anything higher than three standard deviations from the baseline, with a confidence
level of α = 0.01. The values of three standard deviations from the baseline were 38.8 Ω in
broth and 126.2 Ω in buffer. When using these numbers to calculate the limit of detection
from the linear equation on the calibration curve, the value corresponds to 10 CFU/mL
in broth and 300 CFU/mL in buffer [22]. A possible explanation for the improvement
with broth samples is that the different salts and components reduce the charge transfer
resistance of the system, in turn lowering readings and making them easier to detect above
the noise level. Also, since the broth was diluted to 1%, the LOD in undiluted broth
samples would be 103 CFU/mL for both methods, which meets the requirements of most
Western countries and is on par with other biosensors [6]. In addition, the recovery rate is a
parameter that compares the concentration calculated from the calibration curves to the
actual concentration placed on the biosensor, as shown in Table 1, and this further proves
the predictability and accuracy of the biosensor [23].
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Table 1. Recovery rates in chicken broth and buffer.

Actual Concentration
Log10 (CFU/mL)

Buffer Chicken Broth

Calculated Concentration
Log10 (CFU/mL) Recovery Rate Calculated Concentration

Log10 (CFU/mL) Recovery Rate

2 1.97 98% 1.75 88%
3 2.87 96% 2.77 92%
4 3.39 85% 3.78 95%
5 4.44 89% 4.80 96%
6 4.99 83% 5.75 96%
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The sensor’s recovery rate in broth has increased with the concentration, and in some
concentrations, it has been better than when in a simple matrix, here, 1× PBS buffer. This
suggests that the biosensor can detect L. monocytogenes and produce a reliable measurement
of its concentration in the broth sample, with an accuracy of 88% to 96%. The recovery rate
is calculated using Equations (1) and (2).

Ccalculated
i =

∆RCT,i − intercept
slope

(1)

Recovery Rate =
Ccalculated

Cactual
(2)

Following these tests, the biosensor’s stability over time was tested. SPEs were
prepared simultaneously and submerged in 1× PBS at 4 ◦C until tested after 1 h, 1 day,
1 week, and 2 weeks. For each mentioned time, triplicate impedimetric measurements were
obtained with 102 CFU/mL L. monocytogenes in broth. The variation in impedance signal
from the initial value was calculated as the percentage change from the results obtained
after 1 h, as shown in Figure 3. Since all of the electrodes had been prepared simultaneously
under the same conditions, the results after 1 h were used as the reference initial value
(100%), and all other results were compared with this reference value. By doing so, it
is possible to compare the changes in the signal over time. The stability measurements
showed that the response was reduced by 10% after a day but maintained stability. After
a week, an overall 30% reduction was observed, and the error became larger, and after
2 weeks, the signal was only 40% of its original value. It can be reasonably concluded that
the biosensor exhibits stable performance for over a week after phage immobilization when
used to detect L. monocytogenes concentration around 102 CFU/mL.
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3.2. Role of Phage as Biorecognition Molecule

After testing the biosensor using varying concentrations of L. monocytogenes in broth,
the effectiveness of the P100 bacteriophage as a biorecognition molecule was tested to
ensure that the impedimetric signal for L. monocytogenes detection can be attributed to the
presence of the biorecognition molecule. Two sets of SPE were used, one unmodified and
the other immobilized with P100 bacteriophage, for the same duration. Figure 4 shows
the impedimetric response of the biosensor with and without the P100 bacteriophage. The
response showed that when modified with the phage, there was a significantly higher
impedance signal, which also increased with the analyte concentration, while the SPE
without the phage showed an almost constant response with little effect shown from the
varying analyte concentrations. The results indicate that the impedance signal can be
attributed to the selective binding of L. monocytogenes to P100 bacteriophage on the SPE.
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different L. monocytogenes concentrations in a chicken broth sample.

3.3. Specificity of the Biosensor

The specificity of the phage-modified biosensor was tested by exposing the SPE
with and without P100 bacteriophage to non-target pathogens E. coli O157:H7 and ser.
Typhimurium-291RH. These bacteria were chosen since both are rod-shaped and commonly
found in chicken products, alongside L. monocytogenes [32–34]. The first set of experiments
tested 102 CFU/mL of single pathogen in broth. The second set of experiments contained
a sample containing E. coli O157:H7 and ser. Typhimurium-291RH in concentrations of
103 CFU/mL each. In addition, L. monocytogenes was added at two different concentra-
tions, 102 and 103 CFU/mL. The impedimetric response to a single pseudo-analyte was
10–20 ohms above the response from the negative broth control, while the response to
L. monocytogenes was 75 ohms above it, as seen in Figure 5a; the response to pseudo-analytes
is 13–26% of the response to L. monocytogenes. This suggests that the biosensor is very
specific, and a positive response will only originate from bacteriophage-L. monocytogenes
interaction. The biosensor without the phage biorecognition molecule showed an 8–10-ohm
response from all test solutions and the control, demonstrating the effectiveness of the
phage. In the interference study, shown in Figure 5b, the biosensor’s responses to broth
samples with both pseudo-analytes, and with and without L. monocytogenes, are presented.
A clear signal was measured when L. monocytogenes was present, even when at lower
concentration than the pseudo-analytes. In these measurements, when the biosensor had
no phage, the response was almost constant, without any dependency on the concentration
of L. monocytogenes, which further emphasizes the specificity of the P100 bacteriophage,
even in a multi-contaminate environment.
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103 CFU/mL (EC = E. coli O157:H7 and Sal = ser. Typhimurium-291RH).
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3.4. Detection under Flow

The final step was to conduct L. monocytogenes measurements in broth at different flow
rates. The capability to detect L. monocytogenes in flow conditions is an important proof-
of-concept on the path to portable electrochemical biosensors and the ability to integrate
such a sensor into a production line. Initially, a 0.01% Tween® 20 solution was flowed
through the system. Then, an SPE was inserted into the flow cell, and the broth or bacterial
sample was flowed on the biosensor’s surface for 8 min at a flow rate of 0.1 mL/min. After
that, 5 mM [Fe(CN)6]4−/[Fe(CN)6]3− solution was flowed on the SPE surface at a rate of
either 0.5 mL/min, 1 mL/min, or 2 mL/min. By multiplexing 10 biosensors of this size
in parallel, it will be possible to process a liter of broth per hour. While the redox-couple
solution was flowing, impedimetric measurements were taken. A Nyquist plot with the
results of the 0.5 mL/min flow rate is shown in Figure 6a, and the responses from all flow
rates are presented in the bar chart in Figure 6b. The results show that without the phage,
the response is an increase of 1–5 ohm, and the flow rate did not move these values outside
of that range. With phage-modified SPE, the response shows a 10% decrease in signal
every time the flow rate doubles. Even though there was a decreased signal, the signals
all changed with the concentration of L. monocytogenes. These results demonstrate that the
whole detection process can be accomplished under flow after the SPE is prepared and
modified. These results show the capability of the system to work as a portable system.
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4. Conclusions

In this study, a highly sensitive electrochemical biosensor tailored for L. monocytogenes
detection was developed and evaluated. The biosensor exhibited exceptional efficacy,
demonstrating a remarkable LOD of 10 CFU/mL, surpassing the capabilities of most
existing devices and displaying a sensitivity two orders of magnitude superior to PCR.
Successful detection assays were conducted in chicken broth containing multiple pathogens
under continuous flow conditions. The selectivity of the P100 bacteriophage was effectively
demonstrated through exposure to a singular pathogen and interference studies. Moreover,
the integration of SPEs and microfluidic channels showcased the portability of the system.
With a demonstrated stability of up to one week, the biosensor proves suitable for various
food-pathogen testing applications. Furthermore, validation using chicken broth as a
representative food matrix underscored the robust performance of the biosensor platform.
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