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Accumulating evidence over the past decades has revealed an intricate relationship between 

dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. 

However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic 

cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, 

we (1) summarize recent advances concerning the role of metabolic dysregulation during 

atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle 

cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these 

lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects 

of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored 

metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas 

with a potential new generation of cardiovascular therapeutics.

Atherosclerotic cardiovascular disease (ASCVD) progressively develops over decades and 

is characterized by chronic, non-resolving inflammation initiated by the accumulation of 

ApoB-containing lipoproteins1. Among the leading metabolic pathways driving ASCVD 

progression are imbalances in lipid metabolism, glucose utilization and amino acid 

metabolism2–4 (Fig. 1). Dysregulations in these pathways elicit a panoply of pro-atherogenic 

responses arising from an intricate interplay between endothelial cells (ECs), vascular 

smooth muscle cells (vSMCs) and innate and adaptive immune cells (for example, 

monocyte-derived macrophages and lymphocytes)5. As the disease progresses, the lipid-rich 

plaque expands and eventually becomes prone to rupture or superficial erosion, resulting 

in thromboembolic events, such as myocardial infarction and stroke6,7. Despite optimal 

lipid-lowering treatment with statins and PCSK9-blocking antibodies8, ASCVD remains 

the leading cause of morbidity and mortality worldwide9. Dysregulation of metabolic 

pathways in lesional cells that augment inflammation and hamper its resolution contribute 

substantially to this residual risk10–13. This Review explores recently identified cellular 

and metabolic pathways that contribute to atherosclerosis, their associated molecular 

mechanisms and the consequences thereof. We further highlight critical gaps in the field 

being addressed with emerging technologies and newly identified preclinical strategies 

aimed at optimizing cellular metabolism.

ECs

EC activation as an initiating factor in atherosclerosis

Before the appearance of foam cells and the formation of fatty streaks, disturbed ‘fluid 

shear stress’ (FSS), characterized by low magnitudes in blood flow with complex changes 

in direction at curvatures, branch-points and bifurcations, drives EC activation14,15. ECs in 

these regions exhibit increased inflammatory gene expression (for example, intercellular 

adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1)), 

enhanced leukocyte recruitment, and paracellular permeability16 (Fig. 1). ApoB-containing 

lipoproteins accumulate in areas of paracellular pores or are transported across ECs at 

sites of disturbed flow via transcytosis17–19. These positively charged lipoproteins are 

retained within the negatively charged, proteoglycan-rich subendothelial matrix, where they 

undergo various modifications (for example, oxidation, glycation and aggregation)20,21. 

Subsequently, recruited monocyte-derived macrophages take up these modified lipoproteins 
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and transform into foam cells (Fig. 1). Notably, foam cell formation compromises their 

beneficial immune functions, hampers their ability to clear dying cells and enhances their 

susceptibility to cell death22–24.

EC metabolism in atherosclerosis

The vasculature responds to tissue metabolic demands through homeostatic processes 

predominantly orchestrated by the endothelium. This regulation determines vascular 

network formation during embryonic development and adult angiogenesis, vessel diameter 

and tone, transendothelial transport of macromolecules and micro-molecules, and 

inflammation25. ECs possess relatively low mitochondrial mass and generate most of their 

ATP via glycolysis26, converting glucose to lactate (Fig. 2). However, most of these studies 

were conducted under static conditions, not considering the role of FSS that ECs experience 

continuously in vivo. Therefore, a comprehensive understanding of EC metabolism requires 

studying the effects of FSS.

Mechanical forces and EC metabolism.—Atherosclerosis preferentially forms at 

sites of disturbed FSS, as noted above. Recent evidence links disturbed FSS with 

early EC activation and metabolic dysregulation, enhanced oxidative stress, paracellular 

permeability and impaired nutrient trafficking. Disturbed FSS promotes aerobic glycolysis, 

whereby glucose is broken down in the presence of oxygen to produce lactate (Fig. 2), 

modulating mechanosensitive Yes-associated protein (YAP)/transcriptional coactivator with 

PDZ-binding motif (TAZ) complex activation27 (Fig. 3a), which reciprocally perpetuates 

glycolysis28. Consistently, inhibiting YAP/TAZ mitigates atherosclerosis progression29. 

Additionally, disturbed FSS promotes glycolysis through the hypoxia-inducing factor-1α 
(HIF1α)-mediated upregulation of glycolysis-related genes, contributing to EC activation30 

(Fig. 3a). Mechanistically, HIF1α expression is mediated by disturbed FSS-induced 

AMP-activated protein kinase (AMPK) activation31 (Fig. 3a). Surprisingly, EC deletion 

of AMPK increases endothelial permeability and inflammatory responses and augments 

atherosclerosis progression31, underscoring the complexity between mechanical forces and 

cellular metabolism.

Conversely, in straight regions of arteries where FSS caused by blood flow is high and 

unidirectional, termed ‘unilaminar FSS’, pro-inflammatory, prothrombotic and oxidative 

stress-inducing pathways are suppressed. Unilaminar FSS induces the transcription factors 

Kruppel-like factor (KLF) 2 and 4, which have a major role in preventing atherosclerosis 

at these sites32. KLF2 and KLF4 drive the expression of endothelial nitric oxide 

synthase (eNOS) to generate nitric oxide (NO)32 (Fig. 2), induce thrombomodulin to 

limit thrombosis, and suppress nuclear factor κ-light-chain-enhanced of activated B 

cells (NF-κB) activation. Mechanistically, unilaminar FSS induces KLF2/KLF4 through 

the MEKK2/MEKK3–MEK5–ERK5 signalling cascade that mediates the binding of 

myocyte enhancer factor 2 (MEF2) to KLF2/KLF4 gene regulatory elements32 (Fig. 3a). 

Interestingly, transcriptomic profiling revealed that unilaminar FSS reduces the expression 

of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

(PFKFB3), phosphofructokinase-1 (PFKM) and hexokinase 2 (HK2), and inhibits glycolysis 

in a KLF2-dependent manner33. Unilaminar FSS also stimulates mitochondrial oxidative 
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phosphorylation (OXPHOS), leading to a moderate increase in reactive oxygen species 

production34. This rise in reactive oxygen species initiates mitophagy, which, in turn, 

facilitates the assembly of a protein complex that scaffolds the ERK5 signalling axis 

to amplify KLF2-mediated eNOS expression34 (Fig. 3a). These insights linking the 

mechanosensitive and metabolic responses of ECs are crucial in developing targeted 

therapies for atherosclerosis.

Lipids and EC activation.—The endothelium also contributes to atherosclerosis through 

fatty acid uptake following hydrolysis of circulating lipoproteins by endothelial lipase35. 

Rate-limiting steps in fatty acid uptake include mitochondrial ATP production and activity 

of fatty acid transport proteins 3 and 4 (FATP3 and FATP4)36,37. Acyl-CoA synthetase long-

chain 1 (ACSL1) subsequently converts long-chain fatty acids into fatty acyl-CoA esters 

that are either subjected to β-oxidation or stored in lipid droplets38. Low-density lipoprotein 

(LDL) particles are internalized by the LDL receptor (LDLR), cluster of differentiation 

36 (CD36), activin receptor-like kinase 1 (ALK1) and scavenger receptor class B type 

1 (SR-B1)19,37,39. Interestingly, uptake via LDLR favours utilization, whereas uptake via 

ALK1 or SR-B1 is coupled with transcytosis and subendothelial LDL accumulation19,39. 

Modification of subendothelial LDL promotes EC activation in the oxidative plaque 

microenvironment40. Mechanistically, bioactive lysophosphatidic acid, a cleavage product 

of lysophosphatidylcholine derived from oxidized LDL (oxLDL), binds the endothelial 

receptors LPA1 and LPA3 and drives CXCL1-mediated monocyte recruitment41, further 

linking metabolic pathways and plaque inflammation.

Metabolism controls EndMT.—The transition of ECs to mesenchymal cells, termed the 

‘endothelial-to-mesenchymal transition’ (EndMT), contributes to atherosclerosis progression 

and plaque instability42,43. Suppression of transforming growth factor-β receptor 1 and 

2 (TGFBR1 and TGFBR2) signalling, essential for EndMT (Fig. 3a), not only halts 

the progression of atherosclerosis but also induces its regression44. Recent studies have 

demonstrated that metabolic reprogramming drives EndMT45. In this setting, acetate is 

increased via its atypical production from glucose and then converted into cytosolic acetyl-

CoA by ACSS2 (ref. 45). This leads to SMAD2, SMAD4 and ALK5 acetylation, prolonging 

their half-life and sustaining TGFβ signalling and EndMT45. Importantly, EC-specific 

deletion of ACSS2 hampers EndMT and reduces atherosclerosis in male and female mice45.

vSMCs

vSMCs in plaque stability

vSMCs have a crucial role in plaque stability by forming the collagen-rich fibrous cap 

that overlies clinically dangerous necrotic cores46–48 (Fig. 1). Emerging evidence using 

fate-mapping and single-cell transcriptomics has demonstrated that neointimal vSMCs arise 

from either ECs undergoing EndMT or the dedifferentiation and selective expansion of 

medial vSMCs49–51. Dedifferentiation of vSMCs requires the downregulation of myocardin-

mediated expression of contractile and other vSMC-related genes (for example, MYH11 
and ACTA2)52, which are strongly diminished in the vast majority of vSMCs present in 

atherosclerotic plaques53,54. However, these dedifferentiated vSMCs can simultaneously 
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acquire genes resembling myofibroblasts55,56 and macrophages53,56,57. Additionally, 

vSMCs also contribute to vascular calcification due to their transition to chondrocyte-like 

and osteoblast-like cells58,59. Notably, the presence of vascular calcification has emerged as 

a superior predictor of cardiovascular events and cardiovascular-related mortality, surpassing 

all other factors or risk equations to date60,61.

Cellular metabolism guides phenotypic modulation of vSMCs Glucose 
utilization controls vSMC phenotype.—Recent studies interrogating the complex 

metabolic interactions within atherosclerotic plaques have uncovered a critical role for 

glucose uptake and glycolysis in controlling vSMC dedifferentiation62. The soluble 

mediators platelet-derived growth factor increase GLUT1-mediated glucose uptake and 

glycolysis in vSMCs63, leading to their dedifferentiation, proliferation and migration 

(Fig. 3b)63. Enhancing glycolysis via GLUT1 overexpression in vSMCs accelerates 

atherosclerosis in male and female mice that exhibit features resembling metabolic 

syndrome in humans64. Furthermore, deletion of pyruvate kinase muscle isozyme M2 

(PKM2), which catalyses the final step in glycolysis, inhibited platelet-derived growth 

factor-induced vSMC proliferation and migration and hampered neointimal hyperplasia65,66. 

Single-cell RNA sequencing (scRNA-seq) revealed that vSMC dedifferentiation during 

atherosclerosis requires metabolic reprogramming towards glycolysis67. This was supported 

by unbiased network preservation analysis using vSMCs isolated from a multi-ethnic cohort 

of 151 heart transplant donors68. Also, mass spectrometry imaging (MSI) revealed elevated 

lactate in unstable human atheromas compared to stable plaques69. This is particularly 

interesting considering that vSMCs residing in a microenvironment rich in lactate show a 

more synthetic phenotype70. Although these studies point to a critical role for glycolysis 

in vSMC phenotypic modulation, a shift in glucose utilization towards the hexosamine 

biosynthesis pathway and the pentose phosphate pathway (PPP) is also observed (Fig. 

2)71. The PPP has a crucial role in maintaining cellular redox balance via the production 

of nicotinamide adenine dinucleotide phosphate (NADPH)72,73. Activation of glucose-6-

phosphate dehydrogenase, the rate-limiting enzyme of the PPP (Fig. 2), mitigates vSMC 

apoptosis by maintaining redox homeostasis72,73 (Fig. 3b). Given that vSMC apoptosis 

accelerates features of plaque instability74, enhancing glucose-6-phosphate dehydrogenase-

mediated flux through the PPP may offer a novel strategy for stabilizing rupture-prone 

atheromas.

The mammalian target of rapamycin complex 1 (mTORC1) is a pivotal regulator of nutrient 

sensing and metabolism and has a central role in vSMC phenotypic modulation75. This 

complex comprises the core catalytic subunit, mTOR, and the regulatory associated subunit, 

Raptor75. Conditional deletion of Raptor in vSMCs, essential for mTORC1 activation, 

impairs relaxation and contractility in the aorta accompanied by alterations in autophagic 

signalling76. mTORC1 activation is suppressed by the tuberous sclerosis complex (TSC), 

and deletion of TSC1 leads to chronic mTORC1 hyperactivation. Interestingly, chronic 

mTORC1 activation in vSMCs achieved by vSMC-specific TSC1 deletion diminished 

vSMC contractile genes and led to a degradative vSMC phenotype that caused extracellular 

matrix proteolysis and progressive aortic disease77. These studies highlight the critical role 

of mTORC1 in vascular health and disease.
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vSMC amino acid metabolism in plaque stability.—Arginine metabolism has a 

central role in vSMC phenotypic modulation and plaque stability. Through the NOS family 

of enzymes, including nNOS, iNOS and eNOS, arginine metabolism leads to the generation 

of citrulline and NO78 (Fig. 2). EC-generated NO stimulates vasodilation via cyclic 

GMP-mediated activation of soluble guanylate cyclase in vSMCs, and vSMC-generated 

NO operates as a free radical that inhibits proliferation and migration and promotes 

apoptosis79,80 (Fig. 3b). NOS enzymes and arginases compete for available arginine. 

Thus, flux through arginase 1 (ARG1) limits NO production and promotes survival, 

proliferation and collagen synthesis while inhibiting lipopolysaccharide (LPS)-induced 

inflammation79–81 (Figs. 2 and 3b). Furthermore, ARG1 overexpression in vivo, which 

substantially increases lesional polyamines (small, positively charged molecules integral 

to crucial cellular processes), enhances vSMC proliferation, drives the production of pro-

resolving cytokines and promotes features associated with plaque stability82. Treatment 

with the polyamine spermidine mitigates necrotic core expansion by stimulating vSMC 

autophagy and preventing lipid accumulation, supporting polyamine synthesis as an 

important mediator83.

In addition to altered arginine metabolism, dysregulated tryptophan metabolism in vSMCs 

affects vascular calcification and atherosclerosis (Fig. 3b). Importantly, individuals with 

coronary artery calcification show evidence of altered tryptophan metabolism84. Because 

lesional vSMCs adopt osteoblast-like properties during atherosclerosis, dysregulation in 

tryptophan metabolism probably contributes to vSMC-mediated vascular calcification. 

Indeed, vSMC-specific deletion of the tryptophan-catabolizing enzyme, indoleamine 2,3-

dioxygenase 1 (IDO1), increases runt-related transcription factor 2 (RUNX2) expression and 

exacerbates vascular calcification, which can be reversed by administering the IDO1 product 

kynurenine84 (Fig. 3b). By activating the aryl hydrocarbon receptor, kynurenine limits 

the transition of vSMCs to chondrocytes and preserves the integrity of the fibrous cap85. 

However, observational studies in humans have demonstrated inconsistent correlations 

between the tryptophan–kynurenine pathway to ASCVD and stroke86–88. Additionally, 

the tryptophan metabolite 3-hydroxyanthranilic acid activates NF-κB and increases MMP2 

expression in vSMCs89. Furthermore, 3-hydroxyanthranilic acid treatment in mice augments 

the formation of abdominal aortic aneurysms89. Although these insights into the metabolic 

reprogramming of vSMCs highlight their role in atherosclerosis, the exact implications of 

tryptophan metabolism remain to be fully resolved.

Macrophage immunometabolism

Macrophages show remarkable plasticity in their function and occupy a range of phenotypes 

that extend from pro-inflammatory to pro-resolving states90,91. This plasticity is essential 

as certain phenotypes are adapted for combating acute infections, and others aid in tissue 

repair. A plethora of studies have established a link between the metabolic activities of 

macrophages and their phenotypic states. For instance, pro-inflammatory macrophages 

display increased aerobic glycolysis, flux through the PPP, and iNOS-mediated NO 

production92–95 (Fig. 2). By contrast, pro-resolving macrophages are characterized by 

sustained tricarboxylic acid (TCA) cycle flux, elevated fatty acid β-oxidation (FAO), 

increased oxygen consumption, enhanced glutaminolysis and polyamine biosynthesis92,93,96 
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(Fig. 2). Importantly, the balance between pro-inflammatory and pro-resolving macrophages 

in atherosclerotic plaques has important consequences in their clinical manifestations, as 

they can either drive plaque instability or stabilize rupture-prone atheromas. As discussed 

below, metabolic reprogramming of lesional macrophages is highly dynamic, and emerging 

studies suggest that correcting dysregulated macrophage metabolism is a promising 

therapeutic approach.

Cholesterol metabolism in foam cell formation

Dysregulated cholesterol metabolism in macrophages is intricately linked to the 

pathogenesis of atherosclerosis. The cell-surface lipid-sensing triggering receptor expressed 

on myeloid cells 2 (TREM2), identified in foamy plaque macrophages97, upregulates 

the expression of the scavenger receptor CD36 (ref. 98). Uptake of modified LDLs 

through scavenger receptors, such as CD36 or SR-B1, bypasses the regulatory feedback 

that normally limits cholesterol accumulation. Internalized cholesterol is esterified by acyl-

CoA:cholesterol acyltransferase (ACAT) to store cholesterol as cholesterol esters in lipid 

droplets, transforming macrophages into foam cells99. However, dysregulations in sterol 

metabolism prevent the safe disposition of cholesterol into lipid droplets and promote the 

formation of membrane-damaging cholesterol crystals100,101. This is further exacerbated 

as normal cholesterol efflux through the transporters ABCA1 and ABCG1 becomes 

compromised during atherosclerosis. Although these foam cells are not inflammatory, their 

diminished migratory capability and the constant barrage of atherogenic stimuli eventually 

lead to their death through apoptosis102–106. If these apoptotic foam cells are not rapidly 

cleared, they further proceed into post-apoptotic necrosis, spilling their contents into the 

plaque microenvironment102,103,107. The uptake of cholesterol crystals activates the NLRP3 

inflammasome108,109. Activation of this multiprotein complex leads to caspase-1-mediated 

secretion of the pro-inflammatory and pyrogenic cytokines, interleukin (IL)-1β and IL-18 

(refs. 110,111). Notably, suppression of the inflammasome via enhancing cholesterol efflux 

or by inhibiting NLRP3 assembly blunts atherosclerosis progression and enhances features 

of plaque stability101,112–114.

Glycolysis and OXPHOS in inflammation and its resolution

Inflammatory stimuli have been shown to enhance the expression of the key glycolytic 

enzymes GLUT1 (encoded by SLC2A1)115, hexokinase 3 (HK3)116, 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3)116,117 and PKM2 (refs. 118–120). This 

glycolytic shift is further driven by atherogenic factors, such as cytokines, oxLDL 

and cholesterol crystals, which increases their polarization towards an inflammatory 

phenotype121. The concept that pro-inflammatory lesional macrophages readily take up 

glucose has been leveraged in positron emission tomography using the glucose analogue 

[18F]-fluoro-2-deoxy-D glucose (18F-FDG) to detect advancing atheromas in humans122,123.

Enhanced glycolysis in pro-inflammatory macrophages breaks the TCA cycle, leading 

to the accumulation of the TCA cycle intermediates, succinate and citrate124,125. These 

intermediates drive reactive oxygen species-mediated IL-1β production and tumour necrosis 

factor (TNF) translation124,125 (Fig. 3c). Moreover, pro-inflammatory macrophages exposed 

to bioactive components of modified LDL increase citrate production. This is subsequently 
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converted into oxaloacetate by ATP citrate lyase (ACLY), promoting HIF1α-mediated 

IL-1β production126. Although likely due to modulation of fatty acid and cholesterol 

metabolism rather than glycolysis, deleting ACLY in myeloid cells enhances fibrous cap 

formation and decreases necrotic core size127. Despite these clear connections between 

glycolysis and pro-inflammatory responses, the role of glycolysis in macrophages during 

atherosclerosis is complex. For instance, mice heterozygous for the Slc2a1 gene in their 

haematopoietic cells showed reductions in monocyte recruitment to plaques and attenuations 

in atherosclerosis128. By contrast, myeloid-specific GLUT1 deletion augmented features of 

plaque instability129. Also, transgenic overexpression of GLUT1 in CD68+ cells enhanced 

glucose uptake and increased glycolysis, but atherosclerosis progression or features of 

plaque stability were unaffected116. These data suggest a difference between limiting versus 

abolishing glucose flux in macrophages. As discussed later, this may be partly due to the 

recently discovered effects of lactate stimulating inflammation resolution.

Although pro-resolving macrophages show enhanced FAO-mediated oxygen consumption, 

FAO is dispensable for their polarization130,131. Interestingly, inhibiting macrophage FAO 

by deleting CPT1α and CPT2 enhanced CD36 expression and increased foam cell formation 

(Fig. 3c), ultimately driving atherosclerosis progression132. This process is influenced 

by oxLDL/CD36 signalling, which stimulates the NLRP3 inflammasome and cytokine 

production, shifting the metabolic balance in macrophages from OXPHOS to glycolysis133. 

The potent anti-inflammatory cytokine IL-10 suppresses LPS-induced glycolysis and drives 

OXPHOS, which blunts inflammasome-mediated IL-1β secretion134. The establishment 

of FAO driving IL-10 and, reciprocally, IL-10 promoting FAO, highlights the existence 

of a feed-forward loop that augments resolution135. Peroxisome proliferator-activated 

receptor gamma (PPARγ) critically regulates this pathway as its deletion reduces oxygen 

consumption and exacerbates atherosclerosis136,137. PPARγ deletion lowers the expression 

of isocitrate dehydrogenase 1 (IDH1) and increases the expression of immune-responsive 

gene 1 (IRG1, encoded by ACOD1), resulting in itaconate accumulation136,138. This 

metabolite inhibits succinate dehydrogenase and subsequently leads to increased succinate 

levels, which block macrophage polarization towards a pro-resolving phenotype119,138,139 

(Fig. 3c). Although manipulating these pathways is an attractive therapeutic strategy, 

the risk of unintended consequences, such as heightened susceptibility to infections 

and tumorigenesis140, cannot be ignored. This delicate interplay between metabolism, 

inflammation and resolution in atherosclerosis highlights the need for precise and carefully 

considered therapeutic interventions.

Amino acid metabolism in macrophages

Accumulating evidence over the past two decades has increasingly highlighted a critical 

role for amino acid metabolism in macrophages. The amino acids glutamine, arginine, 

tryptophan, serine and glycine have been shown to have important roles in macrophage 

function, particularly during atherosclerosis. As an example, glutamine can be transaminated 

by glutaminase 1 (GLS1) into glutamate141 (Fig. 2). This is then channelled by the malate–

aspartate shuttle via aspartate aminotransferase (GOT; Fig. 3c). Macrophages deficient in 

GLS1 show deficiencies in OXPHOS and are unable to meet the high-energy demand for 

cytoskeletal rearrangement required for efferocytosis. Mice with myeloid-specific deletion 
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of GLS1 manifest large necrotic cores during atherosclerosis141. As another example, 

macrophages can metabolize arginine through the NO pathway, in which iNOS converts 

arginine to NO, or the polyamine pathway, in which arginine is converted to ornithine 

and then into polyamines (Fig. 2). The temporal features of arginine metabolism through 

these routes have been demonstrated in models of inflammation and its resolution. 

iNOS-mediated NO production is high during acute inflammation142, which is useful 

when eliminating pathogens. At later phases, arginase mediated ornithine formation and 

polyamine biosynthesis dominates142. As mentioned earlier, macrophages exist among 

a spectrum of phenotypes and often express iNOS and ARG1 simultaneously in vivo. 

However, the metabolism of arginine by one pathway often suppresses the other. For 

instance, NO-mediated nitrosylation on ornithine decarboxylase (ODC1) suppresses its 

activity and prevents polyamine synthesis143. Conversely, NO production is restricted by 

ARG1-mediated polyamine synthesis, as polyamines suppress iNOS translation144–146. 

Interestingly, low expression of ARG1 in macrophages is associated with susceptibility to 

atherosclerosis147, and deletion of ARG1 in myeloid cells blunts atherosclerosis regression 

in male mice, where ARG1+ macrophages are abundant148.

The degradation of tryptophan into kynurenine by IDO1 (Fig. 2) contributes to 

the non-inflammatory property of efferocytosis149. Furthermore, kynurenine possesses 

diagnostic and prognostic value for atherosclerosis, and a deviation in this pathway, 

particularly a downregulation of kynurenic acid branch enzymes, is associated with 

unstable atherosclerosis150,151. Tryptophan degradation through this pathway exerts 

anti-inflammatory effects due to the subsequent accumulation of uncharged tRNAs 

that activate the serine/threonine kinase general control nonderepressible 2 (GCN2). 

Consequently, GCN2 activation modulates ribosome assembly and induces a repertoire 

of transcription factors that promote Il10 and Tgfb expression while simultaneously 

suppressing Il12 production149. Treating macrophages with the tryptophan metabolite 

3-hydroxyanthralinic acid blocks inflammasome activation, lowers oxLDL uptake and 

decreases atherosclerosis progression152,153. These pathways probably account for the 

finding that deleting or inhibiting IDO1 in apolipoprotein-E-deficient (Apoe−/−) male mice 

enhances atherosclerosis, increases necrotic core area and augments the expression of pro-

inflammatory cytokines154,155. Additionally, treating atheroprone male mice with the IDO1 

inhibitor 1-methyl-DL-tryptophan (1-MT) blocked atherosclerosis regression elicited by the 

oral administration of eicosapentaenoic acid156. Furthermore, preclinical and clinical studies 

demonstrate that the synthetic tryptophan metabolite 3,4-dimethoxycinnamoyl anthranilic 

acid (3,4-DAA, also known as ‘Tranilast’) reduced atherosclerosis progression in mice, 

lowered the restenosis rate in patients with ASCVD after transluminal angioplasty and 

lowered myocardial infarction rates in humans in the Prevention of REStenosis with 

Tranilast and its Outcomes (PRESTO) trial154,157–159. However, other studies suggest 

a more complicated role of IDO1 in atherosclerosis. For instance, inhibiting IDO1 

using 1-MT or deleting IDO1 in haematopoietic cells enhanced high-density lipoprotein 

(HDL) and increased IL-10 production160,161. Moreover, MSI studies revealed that the 

tryptophan metabolite 5-hydroxyindoleacetic acid, associated with metabolic syndrome and 

inflammation162, is enriched in the fibrous cap of unstable human plaques69. Additionally, 
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tryptophan metabolism, as assessed by the ratio of kynurenine to tryptophan, was positively 

correlated with stroke severity163.

Serine supports a complex network of metabolic pathways that contribute to cell 

proliferation and synthesis of nucleotides, NADPH and S-adenosyl-methionine (SAM) 

through one-carbon metabolism164,165 (Fig. 2). Additionally, serine has a crucial 

role in maintaining redox homeostasis by its conversion to glycine via serine 

hydroxymethyltransferases 1 and 2 and subsequently into the potent anti-oxidant glutathione 

(GSH; Figs. 2 and 3c). Despite the role of GSH in suppressing oxidant stress and 

inflammation, reducing GSH synthesis by serine deprivation decreases LPS-induced IL-1β 
production166. Another study corroborated this finding yet suggested that serine has a 

role in IL-1β production through SAM-mediated epigenetic reprogramming by histone 

methylation rather than by reducing GSH167. Nonetheless, GSH is among the metabolites 

most decreased in pro-inflammatory macrophages, and in vivo strategies that enhance 

GSH production decrease atherosclerosis168–170. Furthermore, glycine, a GSH precursor, 

is negatively associated with ASCVD in humans171,172, and glycine-based treatments reduce 

atherosclerosis through de novo GSH biosynthesis in macrophages173.

Mechanistic insights into efferotabolism

Macrophage-mediated clearance of apoptotic cells (ACs), termed ‘efferocytosis’, is vital 

to tissue homeostasis107. Monocyte-derived macrophages in early atherosclerotic lesions 

display intact AC clearance107 (Fig. 1). However, as atherosclerosis advances, efferocytosis 

becomes defective, which drives the formation of large necrotic cores that are intimately 

linked to clinically dangerous unstable atheromas23,174–177. Preclinical studies aimed at 

restoring efferocytosis in mouse models of atherosclerosis demonstrated that enhancing the 

clearance of ACs diminishes necrotic core area and increases the size of the protective 

fibrous cap178–181. Emerging evidence indicates that the efficient clearance of ACs in vivo 

requires successive rounds of phagocytosis148,182,183, which is metabolically distinct from 

single phagocytic events. After the internalization of an AC, phagocytes degrade and process 

the AC-derived macromolecules through a process requiring microtubule-associated protein 

1A/1B light chain 3 (refs. 184–186). This metabolically demanding process, which we 

have termed ‘efferotabolism’187, describes the process by which phagocytes break down, 

metabolize and respond to AC-derived products (Fig. 4). Efferotabolism is necessary to 

trigger a resolution response and has been associated with features of plaque stability. 

Conversely, impaired processing of AC-derived macromolecules sustains inflammation and 

is now considered a hallmark of advanced atherosclerosis188.

After AC degradation in phagolysosomes, intracellular cholesterol levels rise, especially 

when digesting cholesterol-rich apoptotic foam cells189. To manage this, macrophages 

direct AC-derived cholesterol to ACAT in the endoplasmic reticulum (ER)190 (Fig. 4). 

Concurrently, AC-derived sterols stimulate LXRs and PPARs, enhancing the expression of 

cholesterol transporters ABCA1 and ABCG1 (refs. 191–193; Fig. 4). Cholesterol efflux 

through these transporters has a vital role in macrophage survival after efferocytosis189,194. 

Furthermore, TREM2 deficiency leads to a failure of LXR-mediated cholesterol efflux 

and efferocytosis as well as increasing ER stress responses. Despite these pro-atherogenic 
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responses, TREM2 deletion in monocytes reduced atherosclerosis195. However, this 

initial benefit diminishes as the disease progresses196. In addition to cholesterol, 

intracellular arginine levels also increase after efferocytosis148. Pro-resolving macrophages 

expressing high levels of ARG1 hydrolyse arginine into ornithine, which is subsequently 

decarboxylated by ODC1 to generate putrescine. Putrescine biosynthesis leads to Rac1-

mediated cytoskeletal remodelling that permits the internalization of multiple ACs (Figs. 

3c and 4). Deletion of ARG1 from myeloid cells or silencing ODC1 in lesional 

macrophages using macrophage-targeting nanoparticles leads to a selective defect in 

continual efferocytosis, lowers IL-10 production and blunts atherosclerosis regression in 

male mice148,197.

The binding of an AC with a macrophage triggers CD36-dependent ERK1/ERK2 activation, 

leading to prostaglandin E2 biosynthesis and TGFβ1 expression198. However, CD36-

mediated ERK1/ERK2 activation is insufficient to surmount the repression imposed by 

dual specificity phosphatase 4 (DUSP4). This regulatory feedback is overcome through 

a methionine salvage pathway originating from the phagolysosomal degradation of 

an AC198. AC-derived methionine is enzymatically converted to SAM by methionine 

adenosyltransferase 2A198. SAM is then utilized by DNA methyltransferase 3A (DNMT3A) 

to repress DUSP4 expression via DNA methylation, permitting ERK1/ERK2–PGE2-

mediated TGFβ1 upregulation198. Haematopoietic deletion of DNMT3A impairs this 

ERK1/ERK2–PGE2–TGFβ1 signalling axis in mice and drives features of plaque 

instability198 (Figs. 3c and 4). In parallel, nucleotides salvaged from AC degradation 

potentiate macrophage proliferation via a process termed ‘efferocytosis-induced macrophage 

proliferation’ (EIMP)199 (Figs. 3c and 4). Similarly to CD36, AC binding with a 

macrophage activates MerTK to stimulate ERK1/ERK2. Simultaneously, mTORC2 is 

stimulated by DNA-PK-mediated Rictor activation. These pathways converge on the 

transcriptional repressor BHLEH40, which represses c-Maf-mediated suppression of cell 

cycle progression, a process contingent on Myc. Importantly, mTORC2 deletion in 

macrophages lowered IL-1β production during atherosclerosis progression and impaired 

proliferation of efferocytosis-competent macrophages during regression199,200.

Interestingly, macrophage ingestion of an AC stimulates both glycolysis and 

OXPHOS135,182. Unbiased metabolomics revealed that macrophages use fatty acids 

from ACs to fuel mitochondrial β-oxidation, increasing NAD+ levels135. Inhibiting 

complex III of the electron transport chain limited IL-10 production, which can be 

restored by supplying NAD+ precursors. Additionally, RNA-seq of efferocytes revealed 

upregulation of GLUT1, enhancing glucose uptake and stimulating a transient increase 

in glycolysis dependent on PFKFB2 activation182,201. Efferocytosis-mediated glycolysis 

promotes cytoskeleton remodelling and enhances the expression of AC receptors to drive 

continual efferocytosis182,201 (Fig. 4). Furthermore, lactate generated in macrophages after 

efferocytosis is exported via MCT1 into the surrounding microenvironment182,202. Lactate 

also promotes inflammation resolution through epigenetic modifications whereby lactate 

moieties are covalently attached to lysine residues on histone proteins203. Histone lactylation 

in macrophages enhances ARG1 expression, increases their phagocytic capacity and 

redirects macrophage polarization towards a pro-resolving phenotype204,205. Interestingly, 
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histone lactylation is tightly coupled to mitochondrial dynamics as mitochondrial fission, an 

early event in efferocytosis206, drives histone lactylation205 (Fig. 4).

A recent integrative study combining transcriptomic and proteomic approaches identified 

two distinct states in macrophages under chronic physiological hypoxia (~1% oxygen)

—the ‘primed’ and ‘poised’ states207—that are associated with enhanced conversion of 

glucose into a noncanonical PPP loop. This increases the production of NADPH that 

drives phagolysosomal acidification and maintains cellular redox homeostasis, which are 

necessary for continual efferocytosis. These findings are particularly interesting because 

advanced human atheromas that are stable show signs of inflammation resolution and may 

involve metabolic reprogramming of lesional macrophages208. Gaining a comprehensive 

understanding of the interplay between various metabolic pathways in macrophages during 

efferocytosis will provide valuable insights into the progression of ASCVD and offers 

potential avenues for therapeutic interventions.

T cell metabolism in atherosclerosis

T cell function in atherosclerosis

T cells are critical modulators of atherogenesis. Regulatory T (Treg) cells, which express 

the transcription factor FOXP3 and the high-affinity IL-2 receptor CD25, exert anti-

inflammatory and pro-resolving effects209. By enhancing efferocytosis and stimulating the 

production of pro-resolving mediators that promote atherosclerosis regression, Treg cells 

have been repeatedly shown to be atheroprotective210–212. Alternatively, specific CD4+ 

helper T cells are associated with pro-atherogenic responses. This is most clear for the TH1 

subset of helper T cells210. Type 2 helper T (TH2) cells, although probably having a minor 

impact on atherosclerosis210, warrant further investigation. Moreover, the intricate interplay 

between T cell metabolism and features of autoimmunity adds another layer of complexity 

that needs to be elucidated for a more comprehensive understanding of atherosclerosis 

pathogenesis.

T cell-mediated autoimmunity in atherosclerosis

Clonal expansion of T cells and B cells in atherosclerosis provides increasing evidence 

for the essential role of autoimmunity in atherosclerosis213. Individuals with autoimmune 

disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory 

bowel disease and systemic sclerosis, exhibit an increased risk for ASCVD214. Cancer 

immunotherapies increase the risk of ASCVD, which is assumed to be mediated by 

disinhibition of autoreactive T cells215. Accordingly, growing evidence has revealed the 

critical role of CD4+ T cell-mediated autoimmunity in atherosclerosis216–221. Recent 

single-cell T cell antigen receptor sequencing has revealed a break in tolerance in 

atherosclerosis, whereby adaptive immune cells no longer distinguish self-antigens from 

non-self-antigens218,219. Treg cells and effector T (Teff) cells recognize epitopes in plaque-

associated autoantigens210. The most studied atherosclerosis-related autoantigen is ApoB, 

the core protein of LDL, chylomicrons and other lipoproteins. In the 1990s, Hansson 

and colleagues isolated CD4+ T cells responding to oxLDL from human atherosclerotic 

plaques222. Whereas this T cell response was suggested to rely on the formation of LDL-
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neoepitopes through oxidation222, subsequent work identified CD4+ T cells that recognize 

epitopes in the native ApoB protein, restricted by binding to major histocompatibility 

complex (MHC). CD4+ T cells recognize peptides bound to MHC class II, and CD8+ T 

cells recognize peptides bound to MHC class I. Many MHC class II-restricted epitopes 

have been discovered in the native ApoB protein in mice216,220,223 and humans217,220, 

and vaccine-based strategies using ApoB peptides substantially decrease atherosclerosis in 

animal models224. Phenotyping by flow cytometry and RNA-seq has revealed that ApoB-

reactive (ApoB+) CD4+ T cells predominantly exhibit Treg cell-like signatures in healthy 

mice and humans216,221.

Treg cells can become unstable during atherosclerosis and convert into exTreg cells216, 

described as TH1-like, TFH-like, TH17-like or cytotoxic216,220,225–227. ApoB+ T cells are 

particularly susceptible to adopting TH1/TH17 effector cell characteristics with minimal 

Treg cell signatures and to switching into exTreg cells216,221. Conversely, exTreg cells 

upregulate Teff cell markers216. Notably, exTreg cells are highly pro-inflammatory and 

pro-atherogenic221, and recent lineage tracing studies have shown that some exTreg cells 

are a cytotoxic type of CD4+ T cells228. The switch from antigen-specific Treg cells to 

exTreg cells may participate in the break in tolerance to self during atherogenesis. To date, 

the mechanisms responsible for this switch are unknown210,229. Cellular metabolic changes 

might have a critical role in governing this process as the conversion from Treg cells to 

exTreg cells is accelerated in mice fed a Western diet216.

Metabolic reprogramming determines the function and fate of T cells

Accumulating evidence suggests that T cell responses are dynamically regulated by 

metabolic signals230. Following activation, quiescent and naive CD4+ T cells reprogramme 

their cellular metabolism to meet the increased energy demand required for proliferation 

and differentiation230. Specific metabolic programmes are required for differentiation into 

pro-inflammatory effector CD4+ T cells (for example, TH1, TH2 and TH17 cells) or anti-

inflammatory Treg cells. Whereas Teff cells are highly glycolytic, Treg cells predominantly 

utilize mitochondrial OXPHOS of fatty acids or pyruvate for energy production231,232. The 

PI3K–Akt–mTORC1 signalling pathway is one of the central regulators of pro-glycolytic 

metabolism in CD4+ T cells, which is characterized by GLUT1 upregulation233. GLUT1 

expression is essential for the activation and proliferation of Teff cells but not required 

for the functionality of Treg cells 233. Additionally, pyruvate dehydrogenase kinase 1 

(PDK1)232, which inhibits the conversion of pyruvate into acetyl-CoA and thereby prevents 

subsequent OXPHOS, or the glycolysis-promoting transcription factor HIF1α234, are both 

highly expressed in Teff cells but low in Treg cells. CD4+ T cell-specific deletion and/or 

pharmacological depletion of GLUT1, GLUT3, PDK1 or HIF1α all protect mice from 

experimental autoimmune diseases by attenuating Teff cell differentiation and activation232–

235. In Apoe−/− mice, PDK1 inhibition by dichloroacetate reduced plaque infiltration by 

CD4+ T cells, induced a shift from pro-inflammatory to anti-inflammatory T cell responses, 

and conferred atheroprotection236. By contrast, Treg cell-specific deletion of the metabolic 

sensor liver kinase B1, critical for maintaining OXPHOS, reduces Treg cell number and 

impairs their function, thereby inducing a fatal autoimmune disorder in mice237.
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Besides affecting T cell differentiation and functions, metabolic alterations can shift pre-

existing lineage decisions. Specifically, uncontrolled glycolysis impairs Treg cell stability 

(Fig. 3d) and induces spontaneous autoimmunity in mice238–240. Treg cells lacking the 

phosphatase PTEN, which reduces the pro-glycolytic activity of mTORC2 by inhibiting 

PI3K–Akt signalling, lose their suppressive capacity as well as their expression of 

FOXP3 and give rise to autoimmunity in mice238,239. Accordingly, Treg cells expressing 

constitutively active GLUT1 have diminished suppressive capacity and lose FOXP3 

expression240. Although the effects of energy metabolism and intermediate metabolites on T 

cells in the context of atherosclerosis remain largely unexplored, it is likely that metabolic 

reprogramming contributes to these responses.

A recent study demonstrated that CD4+ T cells are susceptible to metabolic exhaustion 

in advanced atherosclerosis. Prolonged Western diet feeding to Apoe−/− male mice 

reduced glycolysis in naive CD4+ T cells, which led to increased apoptosis and a 

diminished proliferative capacity241 (Fig. 3d). Moreover, compelling evidence suggests that 

hypercholesterolaemia also contributes to the instability of Treg cells during atherogenesis 

(Fig. 3d). A shift from high to normal cholesterol intake reduces the loss of lesional 

Treg cells and plaque progression in male and female Ldlr−/− mice242. In a related study, 

treating Apoe−/− mice with ApoAI, the core protein of HDL, diminished Western diet-

related intracellular cholesterol accumulation in Treg cells and prevented their conversion 

into exTreg cells 227. By contrast, exaggerated cholesterol accumulation in T cells 

induced apoptosis and impaired T cell functionality (Fig. 3d), which was associated 

with reduced atherosclerosis in aged Ldlr−/− mice243. Because unrestrained glycolysis 

renders Treg cells unstable in autoimmune disease models238–240, hypercholesterolaemia-

driven Treg cell instability might involve a similar mechanism. However, the specific 

impact of hypercholesterolaemia on metabolic reprogramming of T cells in the context of 

atherosclerosis must be determined by future studies.

Nutrients modulate T cell responses in autoimmunity

The typical Western diet of the 21st century, characterized by an excess intake of refined 

sugars, saturated fats, animal protein, salt and cholesterol, is known to increase the risk of 

ASCVD244,245. Although the effects of diet on T cell-mediated immunity in atherosclerosis 

remain largely unexplored, emerging evidence strongly suggests that specific nutrients, 

mainly glucose and amino acids, directly influence T cell fate and function. For example, 

glucose restriction leads to AMPK-mediated inhibition of mTORC1 signalling, suppressing 

Teff cell responses and promoting Treg cell differentiation246 (Fig. 3d). Consistently, high 

glucose intake exacerbates experimental autoimmunity by induction of TH17 cells247. 

Notably, increased mTORC1 signalling has also been implicated in Treg cell lineage 

instability. Leucine-induced mTORC1 activation drives CD4+ T cell differentiation into 

TH1 and TH17 cells, but Treg cell differentiation remains unaffected248. α-Ketoglutarate, 

a cell-permeable metabolite of glutamine, impairs Treg cell differentiation and induces the 

generation of pro-inflammatory T cells249. In line with this, glutamine deprivation shifts 

the differentiation of naive CD4+ T cells under TH1 polarizing conditions towards a Treg 

cell phenotype by attenuating mTORC1 activation250. Interestingly, transient inhibition of 

glutaminase, which catalyses the first step of glutaminolysis, induces differentiation towards 
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a TH1 phenotype by increasing histone methylation and thereby enhancing mTORC1 

signalling251.

In addition to leucine, other amino acids also regulate T cell responses. Serine fuels 

proliferating T cells with glycine and one-carbon units for de novo purine nucleotide 

synthesis (Figs. 2 and 3d), independent of glucose252. Methionine, found in meat, fish and 

dairy products, is a critical substrate for the methyl donor SAM (Fig. 2), which is needed for 

histone methylation in activated T cells, and thus regulates the expression of genes involved 

in Teff cell proliferation and cytokine production253. Furthermore, dietary methionine 

restriction reduces the expansion of pathogenic TH17 cells253. Tryptophan metabolism also 

has a notable role in T cell behaviour. IDO1-mediated tryptophan depletion and biosynthesis 

of kynurenine and its downstream metabolites drives Treg cell differentiation and blunts 

inflammatory responses254,255. Consistently, IDO1 deletion in dendritic cells stimulates IL-6 

production and differentiation of T cells towards TH17 cells256. IDO1 expression by vSMCs 

has been shown to inhibit T cell infiltration into the arterial media, a phenomenon that 

is called the ‘medial immunoprivilege’257. Tregcells induce IDO1 expression in vSMCs, 

ECs and macrophages through their co-inhibitory surface receptor CTLA4. Notably, the 

induction of the ‘Treg–IDO axis’ in the vessel wall is atheroprotective258.

Future research investigating the following aspects will further elucidate the role of 

dysregulated T cell metabolism in atherosclerosis: (1) whether and how T cells, especially 

those responding to disease-mediating autoantigens such as ApoB, are metabolically 

reprogrammed during atherogenesis; (2) the impact of metabolic adaptations on lineage 

stability of Treg cells; and (3) whether atheroprotective immunity can be enhanced by 

experimental targeting of distinct metabolic pathways. Ultimately, understanding the causes 

and consequences of metabolic adaptations in T cells during atherosclerosis could be pivotal 

in development of novel immunotherapies.

Intercellular metabolic cross-talk in atherosclerosis

Studies exploring the molecular mechanisms of dysregulated metabolism in atherosclerosis 

often either use purified cell types in vitro or involve the deletion of critical metabolic 

enzymes in specific cells in vivo. However, these approaches may overlook vital intercellular 

communications that involve various cell types and multiple enzymes, potentially missing 

important connections that occur during atherosclerosis in humans. Additionally, metabolites 

can act as communicative factors between lesional cells. The soluble factors they produce 

can also influence the metabolism in distant cells, governing their fate and function. This 

interplay between ECs, vSMCs and immune cells can either accelerate atherosclerosis and 

enhance plaque instability or attenuate atherosclerosis progression and drive regression or 

stabilization. Additionally, alterations in metabolic pathways may be pro-atherogenic in 

one cell type or anti-atherogenic in others. Furthermore, due to the epidemic of obesity, 

dyslipidaemia and insulin resistance, the common use of medications treating these diseases 

is creating a new population of individuals experiencing long-term metabolic alterations. 

This warrants careful consideration in the design of preclinical models of atherosclerosis 

and the development of novel therapies thereof. The following sections highlight the 
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mechanisms driving pathological metabolic cross-talk during atherosclerosis and cover the 

pleiotropic effects of commonly used metabolism-based drugs.

Intercellular metabolic communication between lesional cells

Glycolysis promotes atherosclerosis by driving EC activation and vSMC dedifferentiation 

while limiting the differentiation of CD4+ T cells towards Treg cells30,67,70 (Fig. 3). 

ECs in regions of disturbed FSS probably experience a persistent state of glycolysis30, 

suggesting that low levels of lactate may be released into the subendothelial space. This 

scenario merits exploration owing to its potential implications in vSMC dedifferentiation, 

proliferation, migration and calcification70,259. However, glycolysis simultaneously exerts 

anti-atherogenic properties by promoting efferocytosis and stimulating the production of 

pro-resolving mediators by macrophages182,201.

The processing of AC-derived cargo in the context of efferotabolism is metabolically 

demanding as evidenced by the simultaneous stimulation of glycolysis, FAO glutaminolysis 

and the PPP135,141,182,201,260. These changes in cellular metabolism following efferocytosis 

have a key role in their cross-talk with vSMCs261. Additionally, the ACs themselves 

release polyamines and nucleotides that directly serve as tissue messengers262. Secreted 

metabolites from ACs or macrophages following efferocytosis act in an autocrine or 

paracrine manner to further increase the successive clearance of dying cells and promote 

the expression of IL-10 and TGFβ261,262. However, disparate responses by other cell types 

may antagonize these atheroma-stabilizing properties. For example, TGFβ secreted from 

efferocytes may also promote EndMT, which has a central role in plaque instability43. In 

addition, efferocytes secrete the potent angiogenic factor vascular endothelial growth factor 

A, which may inadvertently enhance intraplaque angiogenesis263, which has been shown to 

permit haemorrhage and promote plaque instability264–266.

In addition, the mechanisms necessary to process the metabolic burden following 

efferocytosis are only partially understood but may involve novel and unexpected pathways. 

Mitochondria from an ingested AC may escape phagolysosomal degradation and fuse with 

the phagocyte mitochondria to increase mitochondrial mass and enhance respiration, as was 

seen for endosymbiosis. The exchange of respiring mitochondria between adipocytes and 

macrophages has also been observed267–269. Transfer of endocytic organelles via nanotubes 

may also occur, an emerging and exciting field of research that raises questions about how 

cells cope with metabolic stress270. Organelle transfer becomes particularly intriguing when 

considering a hypothetical scenario where non-phagocytic cells residing in atheromas could 

share the metabolic burden of processing ingested ACs.

The modulation of T cell metabolic reprogramming and regulation of immune responses 

hinge on the actions of EC-secreted metabolites271. NO and sphingosine-1-phosphate 

primarily shape T cell metabolism and its subsets (Fig. 3). NO, a potent messenger 

molecule derived from ECs, influences various physiological and pathological conditions 

by stimulating glycolysis and concurrently impairing mitochondrial reserve capacity272. 

Furthermore, NO-mediated nitrosylation of very long-chain acyl-CoA dehydrogenase273, 

which catalyses the first step in FAO, potentially alters T cell subset differentiation. This 

implies its critical role in dictating lipid metabolism and mitochondrial respiration and, 
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thus, indirectly forming T cell subsets. By contrast, sphingosine-1-phosphate, an important 

EC metabolite, promotes the survival of naive T cells by maintaining mitochondrial 

content274,275, adding a new facet to the dynamic regulation of T cell differentiation and 

survival. In addition, IDO1 manages tryptophan catabolism and curbs excessive immune 

responses, with elevations in IDO1 activity by ECs indirectly determining immune cell 

apoptosis, thereby steering T cell polarization and overall inflammation276,277. These 

intersecting metabolic pathways form a complex network of EC–T cell cross-talk extending 

beyond basic cell function to dictate broader immune and inflammatory responses that could 

be relevant to ASCVD.

In the complex microenvironment of atherosclerotic plaques, a variety of metabolite-sensing 

G-protein-coupled receptors (GPCRs) have a critical role in orchestrating intercellular 

communication278. These GPCRs enable cross-talk between different cell types, with 

metabolites produced by one cell acting as extracellular signals for receptors on others. 

As an example, succinate, often released by hypoxic cells within atherosclerotic plaques, 

activates SUCNR1/GPR91 on ECs and immune cells279,280. This interaction triggers 

Gq/11, leading to phospholipase C-mediated signalling, calcium mobilization, NF-κB 

activation and inflammasome-mediated IL-1β secretion236,279,280. GPR35, responsive to 

kynurenic acid from the kynurenine pathway, acts conversely by dampening inflammatory 

responses281. However, consistent with the currently unresolved role of tryptophan 

metabolism in ASCVD, deleting the GPR35 receptor in haematopoietic cells does not 

affect atherosclerosis282. Binding of medium-chain fatty acids to GPR84 on macrophages 

promotes pro-inflammatory cytokine production283. Additionally, short-chain fatty acids, 

such as acetate and propionate, activate OLFR78 on vSMCs, altering vascular tone 

and blood pressure284,285. These GPCRs highlight the dynamic and multifaceted role of 

metabolites in governing intercellular communication within atherosclerotic lesions.

Effects of metabolism-altering therapeutics on lesional cells Statins.—Statins 

are best known for lowering cholesterol but exhibit atheroprotective pleiotropic effects 

even in normocholesterolaemic settings286. One such benefit is the inhibition of leukocyte–

endothelial interactions due to decreased adhesion molecule presentation on ECs287. 

Additionally, inhibiting HMG-CoA reductase by statins prevents isoprenylation, lowers 

membrane levels of small GTPases, increases NO production by ECs and enhances vascular 

reactivity288,289. These effects probably involve statin-induced increases in KLF2 driving the 

expression of anti-inflammatory genes, including eNOS, which decreases pro-inflammatory 

signalling by inhibiting NF-κB and YAP/TAZ29,290–292. Despite these benefits, nearly 

50% of individuals treated with statins still experience recurrent cardiovascular events293. 

Notably, the rate of statin use among the global population is increasing, coinciding 

with a shift in the prevalence of acute clinical events towards superficial plaque erosion 

rather than plaque rupture294,295. Plaque erosion has been mechanistically linked to the 

formation of neutrophil extracellular traps (NETs)296. EC-targeting nanoparticles carrying 

inhibitors to peptidyl arginine deiminase-4, which mediates histone citrullination necessary 

for NETosis297, mitigate the formation of NETs and preserves endothelial integrity298.
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ACLY inhibitors.—ACLY has emerged as a crucial enzyme linking carbohydrate 

and lipid metabolism. By converting citrate to acetyl-CoA, ACLY has a vital role in 

fatty acid and cholesterol biosynthesis299, processes central to the pathophysiology of 

ASCVD. Bempedoic acid (ETC-1002) is a first-in-class inhibitor of ACLY, offering a 

unique approach to modulating lipid metabolism300. By inhibiting ACLY, bempedoic acid 

increases hepatic LDLR expression and lowers circulating cholesterol300. In statin-intolerant 

patients, bempedoic acid reduced the risk of major adverse cardiovascular events301. 

Interestingly, the use of bempedoic acid extends beyond its primary application as a lipid-

lowering agent, potentially exerting anti-atherogenic effects by modulating macrophage-

mediated inflammation within atherosclerotic lesions. As an example, ACLY is activated 

in inflammatory macrophages and its deletion from macrophages enhances collagen cap 

thickness and decreases necrotic core area127.

Thiazolidinediones.—Thiazolidinediones have been lauded for their ability to lower 

blood glucose in type 2 diabetes, primarily by enhancing insulin sensitivity in peripheral 

tissues, leading to improved glucose utilization and reduced insulin resistance302. 

Additionally, pioglitazone has demonstrated beneficial effects on lipid profiles, increasing 

HDL cholesterol and reducing triglyceride levels303, with evidence of reduced 

atherosclerosis304. However, pioglitazone also results in weight gain, a bona fide risk 

factor for atherosclerosis305. Its tendency to cause fluid retention leading to oedema 

could also exacerbate heart failure in susceptible patients. Moreover, while enhancing 

macrophage apoptosis in a PPARγ-independent manner, pioglitazone and rosiglitazone 

increase AC clearance by macrophages, albeit with a net effect of increasing ACs and 

plaque necrosis306. Thus, the above risks highlight the importance of individualizing 

therapy, weighing the beneficial glucose-lowering and possible cardiovascular benefits 

against potential complications.

Metformin.—Metformin, primarily used for type 2 diabetes management, benefits ASCVD 

beyond its glucose-lowering capability307,308. For instance, metformin increases eNOS-

mediated NO production in ECs309–311. Through a similar mechanism, metformin also 

suppresses vascular calcification and vSMC senescence312,313. As another example, 

metformin drives macrophage polarization towards a pro-resolving phenotype via 

regulating an AMPK–mTOR–NLRP3 signalling axis that accelerates wound healing314. 

As discussed below, metformin, in combination with drug-eluting stents (DESs), delays 

re-endothelialization and, potentially, heightens the risk for in-stent thrombosis315.

Insulin.—Whereas metformin exerts multiple beneficial effects beyond its glucose-

lowering capability, insulin therapy has a more intricate relationship with respect to 

ASCVD. Insulin is an irreplaceable component in managing type 1 diabetes and frequently 

becomes necessary in the later stages of type 2 diabetes316. Its potent glucose-lowering 

abilities improve glycaemic control, which limits microvascular complications such as 

nephropathy, retinopathy and neuropathy317. Nonetheless, insulin therapy carries challenges. 

Using exogenous insulin can lead to weight gain, potentially exacerbating insulin resistance 

and the risk of atherosclerosis318. High-dose insulin therapy has also been implicated 

in cardiovascular concerns, promoting sodium retention, vasoconstriction and vSMC 
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proliferation, migration and inflammation, factors that contribute to atherosclerosis319–321. 

The relationship between insulin therapy and atherosclerosis is complex and influenced by 

factors such as the patient’s underlying metabolic status and concurrent therapies322.

mTOR inhibitors.—The advent of first-generation DESs coated with the potent mTOR 

inhibitor rapamycin (for example, sirolimus) marked an important advance in interventional 

cardiology. This was primarily due to its superior ability to maintain vessel patency 

compared to its bare-metal counterparts323. Acting as a central regulator of nutrient sensing 

and metabolism, mTOR has a pivotal role in the proliferation and migration of vSMCs. 

Inhibiting the mTOR pathway using rapamycin induces CNN1, ACTA2 and TAGLN gene 

expression, all associated with a quiescent vSMC phenotype324–326. This inhibition also 

blocks nutrient sensing, impeding cell cycle progression and subsequent proliferation. This, 

in turn, reduces restenosis, offering a compelling advantage over bare-metal stents323. 

However, these first-generation DESs also delay re-endothelialization, thereby heightening 

the risk of stent thrombosis327–329. As a result, patients receiving first-generation DESs 

require an extended period of anticoagulation therapy. Interestingly, newer-generation DESs, 

which still contain rapamycin or its derivatives, are overcoming this hurdle due to improved 

drug release mechanisms, polymer coatings and stent design330–332. Thus, the success of 

mTOR inhibitors in DESs underscores the potential of exploiting metabolic pathways for 

therapeutic purposes.

Conclusions and future directions

Our understanding of ASCVD has evolved beyond the simplistic notion of lipid 

accumulation, embracing the intricate interplay of dysregulated cellular metabolism and 

complex interactions between cell types that drive disease progression. To optimize cellular 

metabolism and address the persistent cardiovascular risk despite existing therapies, we must 

prioritize critical areas for exploration. Understanding the complex links between metabolic 

pathways, cellular activities and cell differentiation within the plaque microenvironment is 

essential. This knowledge will drive the development of targeted therapeutics that address 

specific metabolic pathways. In this regard, the explosion of new metabolomic technologies, 

such as single-cell metabolomics, MSI, spatial transcriptomics and cytometry by time of 

flight (CyTOF), has begun to reveal the complexity of cell metabolism in atherosclerosis 

(Box 1).

Although these technologies have provided invaluable insights into atherosclerosis, they also 

open new avenues for exploration and highlight gaps in our understanding. The complexity 

of cellular interactions within plaques, particularly in metabolic processes, remains a 

challenge. Advances in single-cell metabolomics, such as SCENITH and SpaceM333,334, 

promises to unravel this complexity. As an example, a recent study combining RNA-seq 

and MSI in human atheromas uncovered previously unrecognized metabolic pathways 

involved in plaque instability69. Future explorations integrating MSI with mass-tagged 

antibodies could offer profound insights by merging single-cell, spatial metabolomics with 

spatial transcriptomics. Nonetheless, integration of data from genomics, transcriptomics, 

proteomics and metabolomics in a broader approach will require continued advances in 

computational methods, machine learning and imaging techniques.
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Additionally, methods to target metabolic pathways for treating ASCVD, including the 

exploration of cell-type-specific, nanoparticle-based strategies for delivering inhibitors, 

mRNA and RNAi, hold great promise. Although isolated metabolic pathways are 

relatively well understood, further exploration is needed to comprehensively characterize 

the contribution of noncanonical pathways, dysregulation within these pathways and the 

mechanisms underlying intercellular cross-talk. Innovation in these areas is set to provide 

a more comprehensive understanding of atherosclerosis at both the molecular and cellular 

levels, ultimately revealing potential biomarkers and novel therapeutic strategies to treat 

ASCVD.

One area deserving further investigation is the protective role of efferotabolism in 

atherosclerosis, which remains understudied. Strategies that increase lesional efferocytosis 

have been repeatedly shown to mitigate atherosclerosis progression and even enhance its 

regression. However, macrophages must undergo metabolic reprogramming to effectively 

take up and process multiple ACs. Thus, gaining a deeper understanding of the interplay 

among various metabolic processes in efferotabolism will not only shed light on the 

progression of ASCVD but also reveal strategies for therapeutic intervention. Moreover, 

because most research interrogating EC metabolism has been predominantly conducted 

under static conditions, the metabolism of ECs under pathophysiological conditions in the 

setting of FSS warrants attention. A comprehensive understanding of EC metabolism is 

critical, given their role on leukocyte adhesion and phenotypic transition to mesenchymal 

cells. Similarly, insights from T cell studies in autoimmune diseases could deepen our 

understanding of their metabolism in atherosclerosis. This is particularly important as 

recent studies have clearly demonstrated that alterations in T cell specification rely on 

metabolic reprogramming. Bridging knowledge gaps between interconnected metabolic 

pathways within lesional cells could open new avenues for therapeutic manipulation. By 

focusing on these underexplored aspects of dysregulated cellular metabolism and their 

interdependencies, we can unlock a new era of effective interventions to mitigate ASCVD 

(Boxes 1 and 2).
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Box 1

Single-cell technologies reveal novel insights into atherosclerosis

Unbiased single-cell technologies, such as scRNA-seq, single-cell assay for transposase-

accessible chromatin with high-throughput sequencing, CITE sequencing and single-

cell mass cytometry, are powerful platforms that have ushered in a new age for 

understanding cellular dynamics while also revealing molecular signatures of newly 

identified cell types in atherosclerotic plaques335–339. Specifically, these technologies 

have permitted cellular indexing of transcriptomes (scRNA-seq), allowed for the analysis 

of genetically open regions of chromatin that are available for active transcription (single-

cell assay for transposase-accessible chromatin with high-throughput sequencing), 

elucidated cell-surface markers and epitopes (CITE sequencing) and profiled single-

cell proteomics in heterogeneous samples using metal isotopes (CyTOF). Furthermore, 

advancements in computational modelling have allowed for the deconstruction of plaques 

to reveal cell–cell communications through specific ligand–receptor interactions. These 

approaches have revealed inflammatory Il1b+Nlrp3+ macrophages in plaques97. The 

clinical relevance of these findings was highlighted by the CANTOS trial where blocking 

IL-1β signalling reduced cardiovascular events12. CyTOF uncovered the expansion of 

monocytes, plasmacytoid dendritic cells and CD11c+ immune cells with a simultaneous 

diminishment of CD206+CD169+ macrophages and type 2 conventional cells during 

atherosclerosis340. In the non-immune cell compartment, single-cell omics platforms 

confirmed the plasticity of vSMCs and revealed a new vSMC-derived population, 

termed the ‘SEM’, which can either maintain vSMC properties or differentiate into 

macrophage-like or fibrochondrocyte-like cells56. Additionally, spatial transcriptomics 

using MERFISH identified a new population of dedifferentiated vSMCs in males 

dominated by the abundance of CARTPT341. Profiling the transcriptional landscape 

of human atheromas revealed genes in vSMCs commonly associated with bone 

mineralization, vascular calcification and matrix remodelling in the necrotic cores of 

plaques. Lineage tracing coupled to scRNA-seq further identified Tcf21 as a critical 

component of vSMC dedifferentiation and their trajectory resembling other cell types55. 

Interestingly, stem cell antigen 1+ vSMCs, which show a loss of expression in 

differentiated vSMC markers50, were found in the core of atherosclerotic plaques but 

were absent in the fibrous cap53.
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Box 2

From lipids to proteins and amino acids: a paradigm shift in nutrient 
metabolism and atherosclerosis

The critical role of lipid/lipoprotein metabolism in ASCVD has been extensively 

studied, leading to the development of effective therapeutics that reduce LDL cholesterol 

and cardiovascular risk342,343. Despite this, numerous individuals with normal LDL 

cholesterol levels still suffer from major cardiovascular events344,345, emphasizing the 

importance of other metabolic pathways. Over the past decades, a growing body of 

evidence uncovered essential roles for protein and amino acids in ASCVD pathogenesis. 

In Apoe−/− mice, high-protein diets enhance the size and complexity of atherosclerotic 

plaques346,347. In humans, however, high-protein intake can either increase or decrease 

the cardiovascular risk348–350, highlighting the importance of understanding the roles of 

specific amino acids, rather than total protein intake.

Among 79,838 participants, a higher intake of essential amino acids (for example, 

branched-chained amino acids (BCAAs)) was associated with increased cardiovascular 

mortality, whereas a higher intake of non-essential amino acids (for example, glycine) 

was associated with a lower risk351. Individuals with ASCVD show a distinct 

pattern of circulating amino acids, where BCAAs are increased, and glycine is 

decreased in association with disease severity171–173,352,353. Although it was shown 

that increased BCAAs drive glycine depletion through activation of the pyruvate–

alanine cycle354, recent isotope tracing studies revealed that increased synthesis of 

serine through reversed serine hydroxymethyltransferase activity drives glycine depletion 

independent of BCAAs355. Consistent with its lower levels in coronary artery disease, 

glycine depletion enhances, whereas glycine-based treatment reduces, atherosclerosis 

in Apoe−/− mice through lipid-lowering effects and inducing de novo GSH 

biosynthesis in macrophages173,356. The role of BCAAs, however, is controversial357,358. 

Supplementation of BCAAs or leucine alone lowers atherosclerosis in Apoe−/− mice 

by reducing LDL cholesterol and pro-atherogenic/inflammatory chemokines359,360. In 

lipid-laden macrophages, leucine reduces intracellular cholesterol and triglycerides by 

increasing cholesterol efflux and inhibiting very-low-density lipoprotein uptake361,362. 

By contrast, leucine activates mTORC1 in macrophages and synergizes with atherogenic 

lipids to enhance mitochondrial dysfunction and apoptosis347. Thus, although higher 

circulating BCAAs are linked with ASCVD, dysregulated BCAA metabolism and the 

effects of specific BCAAs on different cell types of the atherosclerotic plaque warrant 

further research.
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Fig. 1 |. Cellular events leading to the inception, progression and manifestation of cardiovascular 
events.
Top, Metabolic pathways upregulated in atheroresistant/stable disease areas are in blue, and 

pathways enriched in atheroprone/unstable disease areas are in red. Bottom, Circulating 

monocytes bind to adhesion molecules presented on the surface of activated ECs and 

transmigrate into the vessel wall. Monocytes then mature into macrophages and become 

foam cells, which can later become apoptotic due to uncontrolled uptake of modified LDL. 

In early atherosclerosis, these dead cells are efficiently cleared by macrophages. However, 

as atherosclerosis advances, the capacity for AC removal becomes impaired and promotes 

necrotic core formation. T cells similarly extravasate into the vessel wall and differentiate 

into subsets that influence the function of lesional cells. Upon a variety of atherogenic 

insults, medial vSMCs dedifferentiate and migrate towards the intima, where they initially 

assemble extracellular matrix in the fibrous cap. In addition, vSMCs can also derive from 

ECs that have undergone a mesenchymal transition. At later phases of atherosclerosis, 

vSMCs can adopt multiple cellular phenotypes that can destabilize the fibrous cap and drive 

the formation of rupture-prone atheromas.
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Fig. 2 |. Metabolic pathways in lesional cells relevant to atherosclerosis.
Glucose is transported through the GLUT1 transporter and then proceeds down the 

glycolysis pathway. This pathway can give rise to lactate or feed into the TCA cycle. 

Pyruvate, a product of glycolysis, can enter the mitochondria through MPC1 or MPC2 

and be converted to acetyl-CoA, which then enters the TCA cycle. Simultaneously, acyl-

CoA can be transported into the mitochondria through the carnitine palmitoyltransferase 

(CPT) 1A and 2 enzymes and enter β-oxidation, generating acetyl-CoA that also 

feed into the TCA cycle. By-products of these pathways also fuel electron transport 

chain activity. Glutaminolysis occurs through the enzymes GLS1 and GLUD1, which 

generate α-ketoglutarate. Additionally, arginine can be converted into NO through the 

NOS enzymes (eNOS, nNOS or iNOS) or into the polyamine biosynthetic pathway, 

which also relies on methionine metabolism. Tryptophan is degraded by IDO1 into 

kynurenine and generates kynurenic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic 

Stroope et al. Page 41

Nat Metab. Author manuscript; available in PMC 2024 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acid or quinolinic acid. Serine is converted to glycine by SHMT1 or SHMT2 and 

gives rise the formation of the potent anti-oxidant GSH. GLUT1, glucose transporter 

1; HK2, hexokinase 2; GPI, glucose-6-phosphate isomerase; PFKFB, 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatases; PFK1, phosphofructokinase-1; TPI1, triosephosphate 

isomerase 1; ALDO, aldolase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

PGK1, phosphoglycerate kinase 1; PGM1, phosphoglycerate mutase 1; ENO1, enolase 

1; PKM, pyruvate kinase isozymes M1/M2; LDH, lactate dehydrogenase; MPC1/MPC2, 

mitochondrial pyruvate carriers 1 and 2; SHMT, serine hydroxymethyltransferase; IDO1, 

indoleamine 2,3-dioxygenase 1; ODC1, ornithine decarboxylase; SRM, spermidine 

synthase; SRM, spermine synthase; MAT2A, methionine adenosyltransferase 2A; AMD1, 

adenosylmethionine decarboxylase 1; GLUD1, glutamate dehydrogenase 1.
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Fig. 3 |. Metabolic pathways in lesional cells and their consequences.
a, Unilaminar FSS induces the expression of transcription factors KLF2 and KLF4, which 

promote eNOS-mediated NO production, suppressing NF-κB activation and endothelial 

permeability. Mechanistically, FSS induces KLF2/KLF4 through the MEKK2/MEKK3–

MEK5–ERK5 signalling cascade. FSS also decreases glycolysis in a KLF2-dependent 

manner, supporting mitochondrial metabolism, NADPH production and redox homeostasis. 

By contrast, disturbed FSS enhances glycolysis through HIF1α, contributing to EC 

activation. However, some reports indicate a complicated role for glycolysis in EC 

activation (dashed line). b, Growth factors and cytokines stimulate glucose uptake and 

promote glycolysis, resulting in dedifferentiation and phenotypic switching. Additionally, 

the PPP helps to maintain redox balance and inhibits apoptosis, which is counteracted 

by NOS-mediated NO. Alternatively, arginine metabolism into the polyamine biosynthetic 

pathway drives proliferation, migration and collagen deposition. IDO1-mediated kynurenine 

synthesis suppresses osteogenic reprogramming of vSMCs by stimulating the degradation 

of RUNX2, thereby restraining vascular calcification. c, Glycolysis stimulates pro-

Stroope et al. Page 43

Nat Metab. Author manuscript; available in PMC 2024 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory cytokine secretion. However, lactate simultaneously drives a robust pro-

resolving response—stimulating both IL-10 and continual efferocytosis. FAO prevents foam 

cell formation by suppressing CD36 expression and reducing foam cell formation. GSH 

synthesis drives continual efferocytosis and lowers superoxide levels. Efferotabolism of 

AC-derived cargo further stimulates continual efferocytosis, drives TGFβ production, and 

expands pro-resolving macrophages through the process known as ‘EIMP’. d, mTORC1-

mediated glycolysis, serine metabolism into glycine and one-carbon units, and methionine-

mediated histone methylation support the differentiation and expansion of Teff cells. 

Additionally, cholesterol accumulation destabilizes Treg cell differentiation and promotes T 

cell exhaustion and exTreg cell expansion. OXPHOS stimulates AMPK-mediated repression 

of glycolysis and drives Treg cell differentiation and stability. Cross-talk pathways driven by 

metabolites and soluble factors are shown in red.
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Fig. 4 |. Current understanding of efferocytosis, the metabolism of AC-derived cargo and 
consequences thereof.
Binding of an AC to a macrophage activates cell-surface receptors that drive ERK1/ERK2 

activation and DRP1-mediated mitochondrial fission. Free cholesterol from a degraded AC 

is either esterified by ACAT in the ER or exported by the cholesterol transporters ABCA1 

and ABCG1. Methionine from a degraded AC is converted to SAM, which is used for 

DNA methylation that subsequently suppresses DUSP4 expression. This lifts repression of 

ERK1/ERK2 activation. ERK1/ERK2 signalling drives MYC expression, PGE2-mediated 

TGFβ production and AP1-mediated IL-10 secretion. AC-derived arginine is converted into 

putrescine and triggers cytoskeleton remodelling and continual efferocytosis. Recycling of 

AC-derived nucleotides mediates EIMP through a DNA-PK–mTORC2 signalling cascade. 

Fatty acids derived from ACs are used for FAO that promotes NAD+–SIRT1–PBX1 

signalling that drives IL-10 expression. Concurrently, GLUT1-mediated glucose uptake 

promotes glycolysis and lactate production. Lactate is secreted from the macrophage via 

MCT1 to prime a pro-resolving microenvironment. Guided by mitochondrial fission, lactate 

is utilized for histone lactylation, which drives an epigenetic programme that promotes 

ARG1 expression.
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