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Abstract 
Motivation: Over the past decade, single-cell transcriptomic technologies have experienced remarkable advancements, enabling the 
simultaneous profiling of gene expressions across thousands of individual cells. Cell type identification plays an essential role in 
exploring tissue heterogeneity and characterizing cell state differences. With more and more well-annotated reference data becoming 
available, massive automatic identification methods have sprung up to simplify the annotation process on unlabeled target data by 
transferring the cell type knowledge. However, in practice, the target data often include some novel cell types that are not in the reference 
data. Most existing works usually classify these private cells as one generic ‘unassigned’ group and learn the features of known and novel 
cell types in a coupled way. They are susceptible to the potential batch effects and fail to explore the fine-grained semantic knowledge 
of novel cell types, thus hurting the model’s discrimination ability. Additionally, emerging spatial transcriptomic technologies, such as 
in situ hybridization, sequencing and multiplexed imaging, present a novel challenge to current cell type identification strategies that 
predominantly neglect spatial organization. Consequently, it is imperative to develop a versatile method that can proficiently annotate 
single-cell transcriptomics data, encompassing both spatial and non-spatial dimensions. 
Results: To address these issues, we propose a new, challenging yet realistic task called universal cell type identification for single-
cell and spatial transcriptomics data. In this task, we aim to give semantic labels to target cells from known cell types and cluster 
labels to those from novel ones. To tackle this problem, instead of designing a suboptimal two-stage approach, we propose an end-
to-end algorithm called scBOL from the perspective of Bipartite prototype alignment. Firstly, we identify the mutual nearest clusters 
in reference and target data as their potential common cell types. On this basis, we mine the cycle-consistent semantic anchor cells 
to build the intrinsic structure association between two data. Secondly, we design a neighbor-aware prototypical learning paradigm to 
strengthen the inter-cluster separability and intra-cluster compactness within each data, thereby inspiring the discriminative feature 
representations. Thirdly, driven by the semantic-aware prototypical learning framework, we can align the known cell types and separate 
the private cell types from them among reference and target data. Such an algorithm can be seamlessly applied to various data types 
modeled by different foundation models that can generate the embedding features for cells. Specifically, for non-spatial single-cell 
transcriptomics data, we use the autoencoder neural network to learn latent low-dimensional cell representations, and for spatial 
single-cell transcriptomics data, we apply the graph convolution network to capture molecular and spatial similarities of cells jointly. 
Extensive results on our carefully designed evaluation benchmarks demonstrate the superiority of scBOL over various state-of-the-
art cell type identification methods. To our knowledge, we are the pioneers in presenting this pragmatic annotation task, as well as in 
devising a comprehensive algorithmic framework aimed at resolving this challenge across varied types of single-cell data. Finally, scBOL 
is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/aimeeyaoyao/ 
scBOL. 
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INTRODUCTION 
The capability to perform high-throughput assays for determin-
ing gene expression profiles at the resolution of individual neu-
ral cells has only been realized within the preceding decade. 
This advancement has emanated from the confluence of next-
generation sequencing technologies, the refinement of molecular 
biology techniques for subnanomolar quantities of starting mate-
rial and the expansion of computational analyses to manage the 
increased dataset sizes from numerous samples [1, 2]. Currently, 
the most developed technique for single-cell investigations, which 

has been integrated with genome-scale analysis, is single-cell 
RNA sequencing (scRNA-seq) [3]. Despite confronting challenges 
such as data sparsity and lower detection efficiency, scRNA-seq 
has proven invaluable, affording the quantification of several 
thousand transcripts across thousands of individual cells within 
a solitary experimental framework [4]. The swift advancement in 
scRNA-seq technologies has precipitated a plethora of discoveries 
within a remarkably brief period. These discoveries encompass 
the identification of elusive cell populations [5], the elucida-
tion of intricate gene regulatory networks in action [6] and  the
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detailed delineation of cellular transitions throughout organismal 
development [7]. Additionally, emergent spatial transcriptomics 
techniques, such as in situ hybridization-based [8, 9], sequencing-
based [10, 11] and imaging-based [12, 13], are now layering these 
genetic data with a crucial spatial dimension. These technolo-
gies differ in terms of cell resolution, spatial dimension and 
sequencing throughput. Such spatially resolved transcriptomics 
data reveal the interplay between cellular spatial arrangement 
and functionality, an aspect pivotal for delving into the aber-
rant cellular networks located adjacent to pathological features 
[14, 15]. By amalgamating high-fidelity gene expression snap-
shots with spatial context, we stand on the verge of significantly 
enhancing our understanding of single-cell biology, potentially 
revolutionizing the field [16, 17]. 

Cell type identification is a fundamental procedure in ana-
lyzing single-cell and spatial transcriptomics data since many 
subsequent downstream explorations are based on the specific 
cell types, such as cell–cell communications and gene–gene inter-
actions [18, 19]. The traditional cell type identification procedure 
first clusters the cell population and then finds the marker genes 
specific to each cluster, finally manually annotating the cells 
according to the ontological functions of their marker genes [20, 
21]. For example, Seurat uses the community discovery algo-
rithm Louvain to cluster the shared neighbor graph between 
cells and performs differential expression analysis based on the 
non-parametric Wilcoxon rank sum test [22]. STAGATE adopts 
an attention mechanism to adaptively learn the similarity of 
neighboring cells/spots, and an optional cell type-aware module 
to integrate the pre-clustering of gene expressions [23]. GraphST 
applies graph self-supervised contrastive learning to learn infor-
mative and discriminative cell representations by minimizing the 
embedding distance between spatially adjacent cells [24]. How-
ever, on the one hand, the use of marker genes differs greatly in 
various experiments, making it difficult for us to directly compare 
associated cell types. On the other hand, with the increasing size 
of the genetic data [25], the manual task of finding marker genes 
to annotate cells becomes increasingly burdensome and time-
consuming. Moreover, for non-experts, it is not a trivial matter 
to understand the functional biology of marker genes, because 
ample knowledge of these genes usually requires a large amount 
of literature review and long-term accumulation [26, 27]. 

As the Human Cell Atlas and Mouse Organogenesis Cell Atlas 
projects move forward, more and more well-established large-
scale annotated datasets have emerged in the single-cell commu-
nity [28, 29]. For example, Tabula Muris [30] serves as an extensive 
repository of single-cell transcriptomic data derived from the 
model organism, Mus musculus. This collection encompasses 
approximately 100 000 cells sourced from 20 different organs and 
tissues. Using these well-labeled datasets as the reference data, 
researchers turn to develop automatic cell type identification 
algorithms based on cell classification techniques to annotate 
cell types in the unlabeled target data [31, 32]. They transfer the 
cell type label knowledge learned from the reference data to the 
target data. Specifically, when a laboratory needs to annotate 
a newly acquired dataset from pancreatic tissue sequenced by 
10x Genomics, they could search for another existing labeled 
dataset from the same tissue yet different sequencing techniques 
like Smart-seq2 to facilitate the cell type annotation process. 
Moreover, in the common scenario where only a minority of cells 
in a dataset can be readily annotated in advance due to the 
availability of clear markers or prior characteristics, we could 
also use them as a reference to guide the remaining annotation 
process for the entire cell population. In general, this automatic 

annotation strategy through label transfer makes the original 
time-consuming process much more convenient and effective. 

Assume that Cr and Ct represent the label sets of reference 
and target data, respectively. Earlier developed methods are based 
on the close-set assumption, i.e. Ct ⊆ Cr [33–35]. For example, 
scSemiCluster utilizes structure similarity regularization on the 
reference data to restrict the clustering solutions of the target 
data [36]. To be honest, this assumption is difficult to satisfy for 
data in the real scenario, because the target data usually contain 
extra cell types absent from the reference data in practical appli-
cations [32, 37, 38]. For ease of writing, the cell types shared by 
reference and target data are called common cell types, while the 
cell types only in target data are called novel or private cell types. 
To cover a more realistic situation, the partial overlap scenario is 
introduced, i.e. Cr\Ct /= ∅, Ct\Cr /= ∅, Ct ∩ Cr /= ∅, and  several  
methods are proposed to adapt this task [39–44]. For example, 
MARS introduces a meta-learning framework to obtain cell-type 
knowledge by identifying commonalities in the meta-dataset [40]. 
scArches uses transfer learning and parameter optimization to 
enable reference building and contextualization of target data 
[45]. scNym applies semi-supervised learning and adversarial 
learning techniques to integrate gene expression knowledge from 
different datasets [46]. SpaGCN aggregates gene expression of 
each spot from its neighboring spots to enable the identification 
of spatial domains with coherent expression and histology [47]. 
Spatial-ID combines the existing knowledge of reference scRNA-
seq data and the spatial information of spatial transcriptomics 
data to achieve supervised cell typing [48–50]. However, one major 
drawback of these methods is that they annotate target cells from 
novel cell types using a generic ‘unassigned’ label, without further 
fine-grained procedure for them. It might be argued that we could 
use these methods to first find ‘unassigned’ cells and then apply 
clustering techniques to divide them into groups. Unfortunately, 
our experiments would show that such a two-stage approach 
does not work well. Recently, STELLAR, a geometric deep learning 
method for spatial transcriptomics datasets, was proposed to 
automatically assign cells to cell types present in the reference 
data and discover novel cell types and cell states in the target 
data [51]. Although it shows some promising results, STELLAR 
takes little effort to align the common cell types and separate the 
novel cell types from them in the feature space. Besides, the lack 
of label supervision for novel cell types will cause the model to 
be biased toward the known cell types, thus further generating 
an imbalanced prediction state. More importantly, few algorithms 
in the community are available for unified cell annotation and 
clustering on both single-cell and spatial transcriptomics data. 

Given the analysis presented, the motivation for developing our 
universal annotation framework is 3-fold: Firstly, the challenges 
inherent in conventional manual annotation methodologies, 
which rely heavily on marker gene identification, coupled with the 
rich repository of thoroughly annotated databases, underscore 
the necessity for automated annotation solutions. Secondly, there 
is an evident demand not only for the assignment of known 
cell type labels in reference data but also for a more nuanced 
partition of unidentified cell types in the target data. This calls 
for a sophisticated, integrated algorithm capable of fulfilling both 
substantive requirements. Thirdly, the limitation of prevailing 
annotation strategies to single data types severely constrains 
their utility in broader practical applications. A model competent 
in concurrently analyzing diverse data forms would substantially 
economize resources and enhance user-friendliness. Therefore, 
here we propose an end-to-end algorithm called scBOL, a flexible 
deep-learning tool for universal cell type identification for both



scBOL | 3

single-cell and spatial transcriptomics data. Using the well-
labeled reference data, scBOL transfers its annotations to the 
part of the aligned target data and clusters the cells of novel 
cell types that only existed in the target data. The reference and 
target data can belong to different dissection regions, different 
donors or different tissue types. Specifically, scBOL offers a 
flexible annotation framework that is adaptable to both non-
spatial scRNA-seq data and spatially resolved transcriptomics 
data through the construction of varied network architectures. For 
non-spatial scRNA-seq data, we apply the denoising autoencoder 
to extract the cell representation by compressing gene expression 
profiles, while for spatial transcriptomics data, we employ the 
graph convolutional neural network (GCN) to simultaneously 
leverage molecular information and additional spatial context 
of cells. 

Our algorithm consists of three main parts. First, inspired by 
the inductive bias of class-wise closeness, we mine the mutual 
nearest clusters as the underlying common cell types across refer-
ence and target data. Then we detect the cycle-consistent anchor 
cells from the matched clusters to uncover the data intrinsic 
structure connection at both the semantic level and sample level. 
Indeed, we show that this strategy can align the cell types in the 
reference dataset with the same cell types in the target dataset 
accurately and can effectively solve the batch effect problem. 
Secondly, to improve the compact and discriminative ability of 
the learned feature space, we design a neighbor-aware proto-
typical learning paradigm by encouraging the cell type assign-
ment consistency between samples and their nearest neighbors. 
At the same time, we transfer the cell type-specific knowledge 
through a semantic-aware anchor-prototype alignment regular-
izer to improve the model’s generalization ability on known cell 
types. Lastly, for the challenging target cluster number estimation 
problem, instead of artificially specifying or directly giving a 
relatively large value, we introduce a cross-data consensus score 
to tackle it from the perspective of anchor agreement degree. 

To thoroughly assess scBOL’s performance, we selected a 
diverse range of comparison baselines and established both intra-
data and inter-data benchmarks utilizing an extensive collection 
of highly imbalanced scRNA-seq and spatial transcriptomics 
datasets. Our comprehensive experimental results confirm 
scBOL’s utility relative to other leading cell type identification 
algorithms. Moreover, detailed ablation studies reveal the 
contributions of scBOL’s components to its overall effectiveness. 
From a practical perspective, the efficacy of scBOL is crucial in 
utilizing reference datasets produced under varying conditions, 
which might not encompass the complete spectrum of cell types 
present in the target condition. 

METHOD 
We first give some notations. In our cell type identification task, 
we are provided with some labeled reference data Dr = {(xr 

i , yr 
i )

nr 
i=1} 

and unlabeled target data Dt = {(xt 
i )

nt 
i=1}. For spatial transcrip-

tomics data, the spatial coordinates of cells are {sr 
i }nr 

i=1 and {st 
i }nt 

i=1 
for reference and target data, respectively. Furthermore, the ref-
erence and target data can be drawn from the same or different 
datasets. So there may exist gene expression distribution differ-
ences between Dr and Dt. We  use Cr to denote the annotated cell 
type set which contains the known cell types of labeled data and 
employ Ct to represent the unannotated cell type set consisting of 
the cell types in unlabeled data. Note that in our setting, we do 
not know the exact relationship between Cr and Ct. Particularly, 
we use Cs = Cr ∩ Ct to denote the common cell types shared by Dr 

and Dt, and use C̄r = Cr \ Cs and C̄t = Ct \ Cs to denote the cell type 
sets private to the labeled and unlabeled data, respectively. Our 
goal is to annotate the target cells with either one of the known 
labels in Cs or the clustering labels in C̄t. We train the model on 
Dr ∪ Dt and evaluate on Dt. 

It is necessary to pre-process the transcriptome data profil-
ing before further analysis. To ensure methodological rigor, the 
datasets employed in this study were subjected to stringent qual-
ity control measures and structured as count matrices. Unifor-
mity across raw cell type annotations was achieved by lever-
aging the Cell Ontology framework [52], a meticulously curated 
and structured vocabulary for cell types. Subsequently, genes 
expressed in less than one cell were excluded, alongside cells 
exhibiting no gene expression, to refine the dataset. To address 
the challenges associated with the numerical optimization of 
neural networks, it is imperative to convert discrete datasets into a 
continuum of smooth data. This transformation process involves 
a two-step normalization procedure. Initially, the total expression 
level of each cell is normalized to its median value. Following this, 
a natural logarithm transformation is applied to these normalized 
expression values to stabilize variance across the dataset. Given 
that the majority of genes provide limited utility in distinguishing 
and characterizing cell types, a selection criterion was imposed to 
distill the dataset further. This was achieved by isolating the top 
genes exhibiting the most significant variability, determined by 
their rank in normalized dispersion values. After the log transfor-
mation, the data were standardized to z-scores, enabling each of 
the chosen genes to have a mean of zero and a unit variance. The 
entire preprocessing pipeline was executed utilizing the Scanpy 
software package [25]. For the subsequent analysis, the refined 
dataset, now suitably preprocessed, served as the input for neural 
network modeling. Moreover, the corresponding original count 
data were employed alongside the preprocessed data to enhance 
the robustness of the modeling approach. 

For scRNA-seq data, considering their discrete and sparse 
traits, we assume that {xi}nr+nt 

i=1 follows a zero-inflated negative 
binomial distribution and use an autoencoder model to denoise 
data [53]. Inspired by the self-supervised learning [54, 55], we use a 
mask-based data augmentation strategy to generate another view 
{x̃i}nr+nt 

i=1 of gene expression, which can capture the correlations 
across genes better, which can be seen in the supplementary 
materials. For spatial transcriptomics data, given the spatial cell 
coordinates, we can construct a reference cell graph Gr and a 
target cell graph Gt, where the nodes represent the cells and the 
edges connect the spatially close cells. Given these two graphs, 
we use a GCN to map the cells into a joint embedding space that 
captures spatial and molecular similarities between the cells [56] 
(see Figure 1). The specific graph construction procedure can be 
seen in the supplementary materials. 

To assign an annotation label for each cell, existing works 
usually use both Dr and Dt to learn a unified classifier on the 
latent embedding feature space z and then generate the predicted 
labels for Dt. However, such a transfer strategy may be susceptible 
to batch effects and has a potential risk of damaging the intrinsic 
structure discrimination on Dt. Besides, since the novel cell types 
exist in Dt, this training manner makes it difficult to decouple the 
semantic-specific knowledge between the known and novel cell 
types. Based on this analysis, we are motivated to directly uncover 
the intrinsic discrimination via constrained generative clustering 
on the target data with structural regularization induced by ref-
erence data. Specifically, we learn two sets of parameterized cell 
type prototypes for the reference and target data, respectively 
(see Figure 1). For reference data, we take the average of cell
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Figure 1. An overview of scBOL. (A) scBOL performs annotation on the scRNA-seq data or spatial transcriptomics data. The input of scRNA-seq data 
is the gene expression matrix and the autoencoder is used on it to denoise data and capture biological information. In contrast, the input of spatial 
transcriptomics data includes gene expression profile and spatial cell coordinates and GCN is used on it to map the cells into a joint embedding space. 
(B) Our annotation task is the same for two kinds of data, that is, automatically assign cells to cell types present in the reference data, and assign 
cluster labels to the cells of novel cell types. Moreover, for the private cell types that only exist in the reference data, scBOL does not group cells in 
the target data with them. The reference and target classifiers are connected to the output of the embedding space and Lce, Lref and Lpro are the loss 
functions of scBOL. (C) Samples and prototypes in reference and target data are distinguished by different shapes and colors, respectively. The cell type 
relationship between reference and target data is partially overlapping, that is, there are overlapping cell types in them, as well as their own private cell 
types. (D) d1. The bipartite matching principle is proposed to link clusters from the same cell types by exploiting semantic-level cycle consistency. d2. 
Since prototype-level bipartite matching may bring too much noise and make the model unstable, the cycle consistency constraint is also given on the 
sample level to further consider the semantic relationship between the cells and prototypes. (E) We propose to impose the prototypical regularizer on 
the reference and target cells to drive features within the same cluster to become more aggregated and features in different clusters further apart. (F) 
The number of novel cell types is estimated by consensus score, calculated based on the common semantic anchor. 
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embeddings belonging to the same cell types as the initialization 
of reference prototypes {μr 

i }|Cr | 
i=1, where  μr 

i = 1 
|Ci 

r |
∑

xr 
j ∈Ci 

r 
zr 

j denotes 

the labeled prototype of i-th known cell type and Ci 
r denotes the 

set of cells from i-th known cell type. For target data, we first 
perform k-means clustering to categorize them into k clusters 
{Ki 

t}k 
i=1, where Ki 

t represents the set of cells from i-th target cluster. 
And their clustering labels are denoted as {ŷt 

i }nt 
i=1. The  value  of  

k can be estimated and entered into the model as a prior. The 
specific estimation method will be introduced later. Then we 
take the average of target cell embeddings belonging to the same 
cluster as the initialization of target prototypes {μt 

i }k 
i=1, where  

μt 
i = 1 

|Ki 
t |

∑
xt 

j ∈Ki 
t 
zt 

j . 

Semantic anchor selection for bipartite 
alignment 
The main challenge of our task is how to effectively match the 
common cell types between Dr and Dt and separate the private 
cell types within them. Instead of introducing extra network 
parameters for common cell detection, we aim to mine both com-
mon cell types and individual private cell types simultaneously 
with discriminative clusters. So a question naturally arises: how to 
associate the common clusters that represent the same cell types 
from both Dr and Dt. To achieve this goal, we propose a bipartite 
matching principle to link clusters from the same cell types by 
exploiting the semantic-level cycle consistency. 

Specifically, for each target prototype μt 
i , we search for its 

nearest prototype μr 
N(i) in the reference data by cosine distance. 

The same procedure is implemented for each reference prototype 
μr 

j and we can obtain its nearest target prototype μt 
M(j). If a target 

prototype μt 
i and a reference prototype μr 

j reach bipartite match-
ing, i.e. both act as the other’s nearest prototype simultaneously, 

μr 
N(i) = μr 

j & μt 
M(j) = μt 

i , (1)  

then such a pair of clusters is recognized as common clusters. 
The intuition here is simple: cluster prototypes from the common 
cell type usually lie close enough to be associated compared with 
the other clusters representing private cell types [57]. Enabled by 
this motivation, we can further identify common cells based on 
the matched clusters from Dr and Dt. However, simply unifying 
the cells belonging to the common clusters does not consider the 
semantic relationship between the cells and prototypes, leading 
to the high noise in cell division. To alleviate this issue, we further 
give the cycle consistency constraint as the sample level. For each 
target cell zt 

l from paired clusters (μt 
i , μ

r 
j ), we search for its nearest 

reference prototype μr 
N(ŷt 

l ) 
and then determine if it holds the cor-

responding cluster label in reference data. When the consensus is 
reached, i.e. μr 

N(ŷt 
l ) 

= μr 
j , then target cell zt 

l can be regarded as the 
common semantic anchor in target data. Similarly, we also collect 
the common semantic anchors in reference data. For convenience, 
we give some mathematical symbols to illustrate them. Assume 
that the one-to-one mapping function from the target label set to 
the reference label set is φ, then for target cell zt 

i , φ(ŷt 
i ) /= ∅  if and 

only if zt 
i is a target semantic anchor. Similarly, for j-th reference 

cell, φ−1(yr 
j ) /= ∅  if and only if zr 

j is a reference semantic anchor. 
It should be explained that φ(.) obtains a known cell type label in 
the reference data, and φ−1(.) obtains a cluster label in the target 
data. 

It is important to highlight the distinct contrasts between 
the Mutual Nearest Neighbor (MNN) method [58] and our pro-
posed bipartite matching method. Firstly, regarding semantic-
level alignment, the MNN method prioritizes individual samples, 

whereas our bipartite matching approach focuses on prototypical 
representations. Secondly, in terms of sample-level alignment, 
the MNN method seeks the closest neighbor for each sample, as 
opposed to the bipartite matching method, which aims to iden-
tify the nearest prototype corresponding to each sample. These 
divergent approaches in alignment at varying levels suggest that 
our method of anchor selection is likely to demonstrate enhanced 
robustness in comparison with the traditional MNN approach. 

Intra-data neighbor-aware prototypical learning 
We learn a shared latent space z that extracts embedding features 
in both reference and target data. At the early training stage, the 
features are not so discriminative and the boundaries between 
clusters are not so clear. Some existing works use instance-wise 
discrimination techniques to learn a compact embedding space 
where all cells are well separated [59, 60]. Despite the promis-
ing results, these approaches have a fundamental weakness: 
the semantic structure of the whole data is not encoded by 
the learned representations. Therefore, we need to exploit the 
global and local semantic cell type structure and drive features 
within the same cluster to become more aggregated and features 
in different clusters further apart. Here we propose to impose 
the prototypical regularizer on the reference and target cells to 
uncover the intrinsic structure of the data. Specifically, for i-th 
reference cell with the embedding feature zr 

i , we compute the 
similarity probability distribution between zr 

i and {μr 
i }|Cr | 

i=1 as Pr 
i = 

[pr 
i,1, pr 

i,2, ..., pr 
i,|Cr |], with  

pr 
i,j = 

exp(sim(zr 
i , μ

r 
j )/τ)∑|Cr | 

l=1 exp(sim(zr 
i , μ

r 
l )/τ) 

, (2)  

where sim(·, ·) represents the cosine similarity and τ is a temper-
ature factor. Similarly, for another augmented view z̃r 

i , we can also 
get its similarity vector P̃r 

i , where  ̃pr 
i,j is calculated by replacing zr 

i 
with z̃r 

i in Equation (2). Since the reference data are well-labeled, 
we give the prototypical learning loss on them via the cross-
entropy function, 

Lce = −  
1 

2nr 

nr∑
i=1 

|Cr |∑
j=1 

I[j = yr 
i ]
(

log pr 
i,j + log p̃r 

i,j

)
. (3)  

For target data, the clustering label divides each cell into a proto-
type in a hard way and is highly noisy in the early stage of training. 
Using them exclusively for supervised learning on target data 
may lead to error accumulation and propagation as the model 
is trained. So instead we introduce a neighbor-aware prototypical 
learning paradigm that encourages the consistency of assignment 
distribution between nearest neighbors. To achieve this, we first 
divide the target data into confident set Dc 

t and fuzzy set Df 
t based 

on a reliable score. This score is obtained by calculating the ratio 
of the distance between the sample and its cluster center and 
the distance between the sample and the nearest non-self-cluster 
center. The smaller the score, the more reliable the cluster label of 
the sample. In each training epoch, we default to select the top α% 
samples with the lowest score in each cluster into Dc 

t , otherwise 
into Df 

t . Then, for samples in Dc 
t , we use their clustering labels 

to supervise learning their representations, while for samples 
in Df 

t , we pursue that the similar cells should have the similar 
prototypical assignment distribution. Concretely, we also use the
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Gaussian kernel function to measure the similarity between each 
target cell and target prototypes, 

qt 
i,j = 

exp(sim
(
zt 

i , μ
t 
j )/τ

)
∑k 

l=1 exp(sim
(
zt 

i , μ
t 
l )/τ

) . (4)  

Given the two branch target embeddings, we can search their 
nearest neighbor set in each branch by cosine distance. For ease 
of writing, we denote the closest cell as T(i) and T̃(i) for i-th tar-
get cell. Then the neighbor-aware prototypical learning objective 
within Dt can be written as 

Lpro = −  
1 

2nt 

nt∑
i=1

[(
log qt 

i,ŷi 
+ log q̃t 

i,ŷi

)
Ii∈Dc 

t 
(5) 

+ (
log σ

(〈
qt 

i , q̃
t 
T(i)

〉) + log σ
(〈

qt 
T̃(i) , q̃t 

i

〉))
I
i∈Df 

t

]
, 

where σ is sigmoid function and ⟨.〉 refers to the inner product 
operation. And q̃t 

i,j is obtained similar to p̃r 
i,j. By minimizing Lce 

and Lpro, we can improve the inter-cluster separability and intra-
cluster compactness, thus improving the discriminability of fea-
ture space. 

Cross-data semantic-aware prototypical learning 
So far, we have only discussed the intra-data learning strategies 
and have not yet touched on cross-data alignment learning, espe-
cially on common cell types. When there are batch effects across 
reference and target data, the model does not necessarily project 
the same cell type from different data to the same area well. In 
this case, the prediction accuracy of the model on the common 
cell types would be greatly reduced. To alleviate this issue, here 
we aim to match the common cell types to transfer the semantic 
knowledge from reference data to target data, thereby improving 
the generalization ability of the model on these cell types. By 
utilizing the mined semantic anchors as matching bridges, we 
propose to perform cross-data instance-prototype representation 
learning to explicitly enforce learning cell type-aligned features. 
It is commonly hypothesized in transfer learning that the impor-
tance of samples varies for learning transferable models. A simple 
strategy to implement this hypothesis is to re-weight instances 
based on their similarities to the reference object [57]. Here we 
also employ this strategy in our model. Specifically, for any target 
cell xt 

i , we compute its similarity to the reference prototypes 
{μr 

i }|Cr | 
i=1, based on the following transformed distance: 

wt→r 
i,j = 

1 
2

(
1 + cos(zt 

i , μ
r 
j )

) = 
1 
2

(
1 + 

zt 
i ∗ μr 

j 

||zt 
i ||2||μr 

j ||2

)
. (6)  

Similarly, we can also calculate the similarity wr→t 
i,j between refer-

ence cell xr 
i and target prototype μt 

j . Then we can further obtain 
the probability assignment distribution between target cells and 
reference prototypes by the Gaussian kernel function, 

pt→r 
i,j = 

exp(sim(zt 
i , μ

r 
j )/τ)∑|Cr | 

l=1 exp(sim(zt 
i , μ

r 
l )/τ) 

, (7)  

The same procedure can be applied to reference cells and target 
prototypes to get their assignment distribution pr→t 

i,j . Based on 
the cross-data semantic anchor cells, we design the following 
weighted cross-entropy objective to transfer the cell type-specific 

knowledge across reference and target data, 

Lreg = −  
1 

2nt 

nt∑
j=1 

wt→r 
j,φ(ŷt 

j )

(
log pt→r 

j,φ(ŷt 
j ) 

+ log p̃t→r 
j,φ(ŷt 
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)
(8) 
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)
, 

where p̃t→r and p̃r→t are obtained by substituting the augmented 
cell features into the corresponding equations. By minimizingLreg, 
the alignment of the common cell types between reference and 
target data can be achieved, allowing the model to better learn 
generalizable features. 
Overall loss. For non-spatial scRNA-seq data, together with the 
data denoising loss Lden (see supplementary materials), we give 
the training objective as 

Ltol = Lden + λ1Lce + λ2Lpro + λ3Lreg, (9)  

where λ1, λ2 and λ3 are three weight hyperparameters. For spatial 
transcriptomics data, we do not use the data denoising loss and 
just combineLce withLpro andLreg as the overall training objective. 

Estimating cell type number by consensus score 
In the single-cell clustering and annotation field, cell type num-
ber estimation is always a challenging and under-investigated 
problem. This problem is also not solved yet in our task: how 
to determine the target cluster number without knowing the 
true value? The traditional approach is to apply the clustering 
evaluation criterion to estimate the cluster number [61]. However, 
they cannot directly consider the cross-data knowledge. So here 
we propose a consensus score that utilizes the ratio of semantic 
anchor to determine the target cluster number. 

Concretely, given a pair of bipartite-matched prototypes μr 
i1 

and 
μt 

i2 
, their corresponding cluster sizes are nr1 and nt1, respectively. 

Assume that there are mr1 semantic anchor cells in cluster μr 
i1 

to be matched with μt 
i2 

and mr2 semantic anchor cells in cluster 
μt 

i2 
to be matched with μr 

i1 
, then the consensus score of (μr 

i1 
, μt 

i2 
) 

is defined as 1 
2 ( mr1 

nr1 
+ mr2 

nr2 
). Finally, we calculate the averaged 

consensus scores of all matched pairs of clusters as the evalu-
ation metric. To specify the target cluster number k, we  perform  
multiple clusterings with different k values and then determine 
the optimal one according to the consensus score. 

PERFORMANCE EVALUATION 
Dataset composition 
To enhance the comprehensiveness of cell annotation, our study 
delineates the experimental framework into two principal cat-
egories: intra-data annotation and inter-data annotation. The 
latter approach is specifically designed to mitigate batch effects 
that frequently arise between reference and target datasets. In 
the domain of intra-data annotation, our collection comprises 
five scRNA-seq datasets alongside one spatial transcriptomics 
dataset. These datasets exhibit a range of complexities, with total 
cell counts spanning from 6000 to 110 000. Additionally, they 
utilize diverse sequencing technologies and are derived from a 
variety of tissue types. To ensure broad applicability, we have 
categorized the cell types into three distinct classes. This classifi-
cation scheme is elucidated in the supplementary tables provided. 
We operate under the assumption that for common cell types, 
both reference and target data comprise an equivalent proportion, 
accounting for 50% of the total cells in the pooled dataset. Moving 
to inter-data annotation, our selection encompasses five pairs of
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scRNA-seq datasets, in addition to one pair derived from spatial 
transcriptomics. Each pair is composed of a reference dataset 
paired with a corresponding target dataset. The cell counts within 
these pairs range from several thousand to tens of thousands. 
The number of cell types in the reference dataset is set to be 
approximately half that of the target dataset to demonstrate 
robustness in cases of unequal cell type distribution. Details 
pertinent to these datasets, including their specific attributes and 
configurations, are thoroughly documented in the supplementary 
materials accompanying this publication. 

Evaluated baselines 
We aim to establish a new practical cell type identification task for 
which few ready-to-use baselines exist. So we extend the recently 
published scRNA-seq clustering and annotation methods as the 
comparison baselines. For the clustering of scRNA-seq data, we 
select scCNC [62] and scDECL [63], since they use bothDr andDt in 
training under the semi-supervised learning setting, while other 
methods only train on Dt in the unsupervised scenario. We also 
compare with STAGATE [23], a customized clustering method for 
spatial transcriptomics data, which integrates the reference data 
and target data for representation learning. For the annotation 
of scRNA-seq data, we choose MARS [40], ItClust [34], scNym 
[46] and  scArches [45] since they can detect the ‘unassigned’ 
cells. Specifically, we first use them to classify target cells into 
known cell types and identify the ‘unassigned’ group. Next, we 
apply k-means clustering on the ‘unassigned’ group to obtain 
novel clusters. For spatial transcriptomics data annotation, we 
choose STELLAR [51] as the compared baseline, because it can 
simultaneously identify the known cell types and discover novel 
cell types. The further running details of these methods can be 
seen in the supplementary materials. 

Evaluation metrics 
In all experiments conducted, the results presented are the mean 
values computed over three independent trials. Concerning scBOL 
and other comparative annotation baselines, we assess classifica-
tion performance for common cell types and evaluate clustering 
efficacy for novel cell types. But for clustering baselines, since they 
cannot recognize the common cell types, we report the clustering 
accuracy on both common and novel cell types. To calculate clus-
tering accuracy, the Hungarian algorithm is utilized to address the 
optimal assignment problem [64]. When reporting accuracy on 
all cell types, we solve the optimal assignment problem on both 
common and novel cell types. 

Implementation details 
Our algorithm is mainly done in Python and is based on the 
PyTorch framework. We conducted the experiments with two 
Tesla A100 GPUs and the detailed version of the package used 
has been given on GitHub. For scRNA-seq data, the two layers of 
the encoder are sized 512 and 256, respectively, and the decoder 
has the reverse structure of the encoder. The bottleneck layer has 
a size of 128. The training mini-batch size is set to 256, and the 
optimizer is Adam with a learning rate of 1e-4. The temperature 
τ in prototypical learning is set to 1.0, and the sample selection 
ratio α is set to 20. The loss weight λ1, λ2 and λ3 are all set to 1.0. 
We first train the whole model using Lden loss with 600 epochs. 
Then, we apply the k-means algorithm on target embeddings to 
obtain cluster centers as the initial values of target prototypes. 
The initialization of reference prototypes can be obtained by the 
mean values of reference embeddings based on ground-truth 
labels. Finally, we train the model with the overall loss Ltol until 

the predictions no longer change. For spatial transcriptomics data, 
we use a graph convolutional layer with a hidden dimension of 
feature size in all layers. A cluster sampler first clusters the input 
graph into subgraphs and then assigns the subgraphs into mini-
batches. The model is trained for 100 epochs by Adam optimizer 
with an initial learning rate of 1e-3 and weight decay of 0. We set 
the temperature τ as 0.1 and the sample selection ratio as 0.05. 
The loss weight hyperparameters are set to the same values in 
scRNA-seq data. 

RESULTS COMPARISON 
Intra-data experiment on scRNA-seq dataset 
In summary, scBOL consistently outperforms competing algo-
rithms on five authentic datasets (Figure 2A). Notably, scBOL’s 
coverage profile resembles a pentagon, suggesting its robust per-
formance across these datasets. scBOL ranks within the top two 
for both known and novel accuracy metrics when compared with 
other methodologies. These findings corroborate our hypothesis 
that utilizing cycle-consistent anchor cells from aligned clusters 
enhances the model’s capacity to accurately map common cell 
types and identify new ones. It is significant that scNym matches 
scBOL’s high performance in known accuracy, and occasionally 
surpasses it in specific datasets. Nevertheless, scNym’s weaker 
novel accuracy performance, where scBOL remains a strong con-
tender, suggests a limitation. Specifically, scNym’s tendency to 
classify novel cell types as common ones reduces its applicability. 
Similarly, scCNC and ItClust face challenges; they often rely on 
artificial thresholds and other means to differentiate between 
common and novel cell types, resulting in a skewed emphasis 
on annotating common types at the expense of discovering novel 
ones. ItClust, in particular, demonstrates the poorest performance 
in both known and novel accuracy, potentially due to suboptimal 
parameter initialization in its target network. scArches also yields 
less favorable results for both accuracy measures, handicapped 
by its assumption that a low-dimensional latent space conforms 
to a Gaussian mixture model, which significantly constrains its 
representational capabilities. 

A comparative analysis with three additional clustering meth-
ods—MARS, scCNC and scDECL—reveals their inability to match 
scBOL’s effectiveness, largely because they do not leverage label 
information from the reference dataset. These methods merely 
assign cluster labels to samples without providing annotations, 
limiting their utility. scBOL, by contrast, navigates these chal-
lenges by executing bipartite alignment at both the cluster and 
sample levels between the target and reference datasets, employ-
ing neighbor-aware and semantic-aware prototypical learning. 

Moreover, an intrinsic compromise exists between aligning 
common cell types and discovering novel ones. scBOL uniquely 
balances this compromise well, as evidenced by its superior over-
all accuracy results. scBOL’s preeminence in partitioning common 
and novel cell types is evident in intra-data experiments. The 
methodology’s explicit alignment of common cell types between 
datasets and facilitation of clustering for distinct private cell types 
in the embedding space further reinforce its superiority. 

Inter-data experiment on scRNA-seq dataset 
To rigorously evaluate the efficacy of scBOL in cross-data appli-
cations, where reference and target datasets may originate from 
differing tissues or donors, we conducted experiments across 
five dataset groups (Figure 2B). Despite all methods being sus-
ceptible to batch effects, scBOL consistently outperformed the 
others across three accuracy metrics, corroborating its robustness
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Figure 2. Radar plots of scBOL and other six methods measured by three kinds of accuracy on five scRNA-seq datasets. A. Radar plots for intra-data 
experiments. B. Radar plots for inter-data experiments. M-SS2 to M-10X: Mammary Smart-seq2 as reference data and Mammary 10x as target data. Mu 
to Ba: Muraro as reference data and Baron as target data. V-SS2 to V-10X: Vento-Tormo Smart-seq2 as reference data and Vento-Tormo 10x as target 
data. P to M: Plasschaert as reference data and Montoro as target data. H-l to H-r: Haber largecell as reference data and Haber region as target data. 

in mitigating batch variations. This superior performance likely 
stems from scBOL’s strategy of linking cluster identifiers through 
mutual nearest prototypes and the utilization of shared semantic 
anchors, which collectively contribute to effective batch effect 
amelioration. 

While scNym exhibits commendable performance in the 
domain of known accuracy, rivaling that of scBOL, its limitations 
become apparent in the realm of novel cell type accuracy. The 
algorithm’s tendency to misclassify cells within ambiguous 
regions as common, rather than novel, cell types serves to under-
score these shortcomings. Moreover, scNym and similar existing 
annotation tools often overlook the necessity of assigning specific 
cluster labels to novel cell types, instead choosing to default 
to broad, undefined categories for such cells. MARS, another 
noteworthy technique, displays distinct capabilities in novel 
cell type accuracy. However, its effectiveness diminishes when 
discerning known cell types, which could be attributed to the 
method’s strategy of independently training reference and target 
datasets. In addition, as a distinguishing clustering approach, 
MARS is restricted to offering generic cluster labels without 
providing precise cell type identification. The performance of the 
remaining four methodologies shows notable variability across 
different datasets, as evidenced by the substantial deviations from 
idealized pentagon shapes in their graphical representations. 
This variability suggests a strong dependency on dataset 
characteristics and highlights opportunities for enhancement 

in both their annotation and clustering capacities. In sum, scBOL 
emerges as the preeminent solution among the tested methods, 
eclipsing both annotation and clustering alternatives in terms of 
performance. Its efficacy in neutralizing batch effects, accurately 
conforming common cell types and adeptly clustering novel cell 
types firmly establishes scBOL as a veritable tool for integrated 
single-cell analysis. 

To facilitate a more intuitive understanding of the association 
between predictive outcomes, we employed a Sankey diagram 
for comparative analysis of the performance of scBOL and three 
alternative well-regarded methodologies (Figure 3A). The diagram 
offers compelling visual evidence that substantiates our assess-
ment: scBOL is capable of assigning pertinent cluster labels to 
target private cells and delivers precise annotations for cells 
with known cell types. In contrast, the other techniques exhibit 
varying levels of performance deterioration, which underscores 
the suboptimal efficacy of their two-stage approach that com-
bines clustering with annotation. More specifically, ItClust and 
scNym partially succeed in correctly categorizing certain cell 
types; this limitation possibly arises from the arbitrary nature 
of their threshold determinations and misguided presumptions 
regarding the structure of the embedding space. Furthermore, 
ItClust’s methodology of independently training reference and 
target datasets renders it susceptible to batch effects. scArches, 
conversely, exhibits subpar performance, failing to consistently 
identify endothelial cells. This inadequacy is attributed to its
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Figure 3. Inter-data experiments scRNA-seq data. A. Mapping relationship among prediction results of scBOL and other three methods via Sankey plots 
for the experiment where Mammary Smart-seq2 is the reference data and Mammary 10x is the target data. B. Visualization plots via UMAP calculated 
using the latent representations of scBOL and the other seven methods colored by cell types for the experiment where Vento-Tormo Smart-seq2 is 
reference data and Vento-Tormo 10x is target data. 

flawed foundational hypotheses and illogical approaches to the 
alignment of shared cell types. 

The visualization plots produced employing UMAP, grounded 
on the latent representations derived from each algorithm, 
demonstrate that scBOL proficiently discerns the heterogeneous 
cell populations (Figure 3B). This proficiency facilitates cell 
clustering predicated on intrinsic biological characteristics rather 
than confounding batch effects. In stark contrast, alternative 
approaches amalgamate cell types that are phenotypically similar 
yet distinct, such as decidual natural killer cells and trophoblast 
cells, as well as T cells and natural killer cells. This amalgamation 
betrays a shortfall in the specificity of their respective learning 
algorithms, which may stem from constraints in sample size 
precluding the accurate disambiguation of these subtle cell 
groups. Among them, MARS exhibits the poorest performance, 
displaying negligible discriminative capacity, likely a repercussion 
of its approach of bifurcating the training process between 
reference and target datasets, culminating in model overfitting. 
scNym and scArches struggle to capture the intricate biometrics 
of some phenotypically overlapping cell types, potentially 
attributable to their inadequate assimilation of the global data 
structure. Moreover, the graphical representation elucidates that 

the embedding outputs of MARS and scArches are derived from 
disparate batches and do not converge seamlessly within the 
embedding domain, signifying their ineptitude in overcoming 
the batch effect. Conversely, scBOL adeptly integrates samples 
from heterogeneous batches in the embedding realm, starkly 
juxtaposing its efficacy to that of its counterparts in resolving 
the batch effect. In summation, scBOL boasts a significant edge 
in the arena of generalized annotation. Globally, scBOL not 
only orchestrates cell type alignment and robustly ameliorates 
batch effects via cluster associations across reference and target 
datasets but also employs prototypical learning stratagems based 
on sample confidence to holistically delineate cell typologies. 
Locally, scBOL enhances the alignment of common cell types 
between the reference and the target sets and dispels batch 
influences by employing semantic anchors, attesting to its 
comprehensive capability in cell type annotation. 

Robustness analysis in scRNA-seq dataset 
Here we investigate the resilience of the scBOL model across 
different configurations by variably adjusting key parameters 
such as the count of novel cell types within the target dataset 
and the labeled ratio. These modifications are anticipated to exert
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Figure 4. Robustness analysis.(A, B) The trend of overall accuracy concerning the change of target private cell type numbers in Quake 10x and Quake 
Smart-seq2 datasets, respectively; (C, D) The trend of overall accuracy concerning the change of labeled ratio in Quake 10x and Quake Smart-seq2 
datasets, respectively. 

considerable influence on the outcomes yielded by the model. It 
is pertinent to note that the nature of our task aligns with trans-
ductive learning as opposed to inductive learning. Accordingly, 
both the reference dataset and the target dataset are employed 
as training datasets, while the target dataset alone is designated 
for testing purposes. Consequently, the composition of both the 
training and testing datasets correlates directly with the authen-
tic dataset utilized in our study. 

The magnitude of the target private cell type count, denoted by 
|C̄t|, critically influences the challenge associated with annotating 
established cell types and clustering novel cell types. It is there-
fore essential to investigate how fluctuations in |C̄t| affect the 
accuracy of our methodology. We performed this analysis using 
the Quake 10x and Quake Smart-seq2 datasets, comprising 36 
and 45 distinct cell types, respectively. For the Quake 10x dataset, 
|C̄t| ranged across [∗ ∗ ∗4, 11, 18, 25, 32], while for Quake Smart-
seq2, the range was [5, 14, 23, 32, 41] (Figure 4A, Figure 4B). Essen-
tially, we altered the count of novel cell types in the test dataset 
(the target dataset) for this evaluation. Our results unequivocally 
demonstrate that scBOL consistently outperforms other compar-
ative methodologies by significant margins, thereby highlighting 
its effectiveness in aligning common cell types and identifying 
new ones. The relative smoothness of scBOL’s performance curve 
further corroborates its resilience to variations in |C̄t|. On  the  
contrary, the remaining six methodologies typically yield sub-
standard outcomes. Specifically, the overall accuracy for scArches 
and scNym plummets as |C̄t| increases, attributed to their design 
prioritizing the annotation of common cell types and the potential 
increased interference from a higher |C̄t|. While  MARS, scCNC  and  
scDECL exhibit relative stability as |C̄t| escalates, they tend to 
deliver suboptimal performance, often assigning generic cluster 
labels devoid of semantic content. Furthermore, the performance 
of ItClust is erratic, marked by a dramatic increase in Quake 
10x and a notable decline in Quake Smart-seq2, which exposes 
its instability. From the evidence presented, we can deduce that 
scBOL yields a more consistent and robust performance com-
pared with other benchmarked methods in response to variations 
in |C̄t|. 

The ratio of labeled data is a critical factor that influences the 
extent to which knowledge from reference data can be applied 
to target data. To investigate this effect, we conducted a series of 
experiments on the Quake 10x and Quake Smart-seq2 datasets 
(Figure 4C, Figure 4D), varying the annotated data proportion 
across the spectrum of [0.1, 0.3, 0.5, 0.7, 0.9]. Our analysis reveals 
that scBOL consistently outperforms the other baseline methods, 
sustaining its high performance irrespective of the annotated 
proportion. This highlights scBOL’s superiority and robustness. In 

Figure 5. Radar plot of scBOL and other five competing methods mea-
sured by three kinds of accuracy. A. Radar plots on the Hubmap dataset 
for intra-data experiment. B. Radar plots for inter-data experiment, where 
Tonsil is the reference dataset and BE is the target dataset. 

stark contrast, the performance of the other six methodologies 
was impacted to varying degrees by the annotated proportion, 
underscoring their reliance on labeled information from reference 
data. Except for scCNC and scDECL, all methods exhibited a 
decline in overall accuracy as the annotated proportion increased. 
This suggests that an excessive volume of reference data may 
diminish the models’ capacity to identify new cell types. scCNC 
and scDECL, being unsupervised clustering approaches, operate 
independently of the labeled information within the reference 
dataset. This autonomy likely accounts for their performance 
fluctuations with varied annotated proportions and also suggests 
a relative loss of competitive edge due to the absence of labeling 
information. In summary, scBOL demonstrates that it can deliver 
reliable and impressive results without being susceptible to 
fluctuations in annotated data proportions. For reasons of 
brevity, additional experimental findings are presented in the 
supplementary materials. 

Intra-data experiment on the spatial 
transcriptomic dataset 
In this study, we extended our evaluation of scBOL to single-cell 
transcriptome-imaging datasets, substituting the autoencoder 
with a graph convolutional network (GCN) (Figure 5). The integra-
tion of GCN allows scBOL to harness the spatial arrangement and 
molecular profiles of cells. We initiated our investigation with an 
intra-dataset analysis employing the Human BioMolecular Atlas 
Program (HuBMAP) dataset, which was generated using Cyclic-
Immunofluorescence (CODEX) technology. Results demonstrate 
that scBOL outperforms competing methods, showcasing its
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robust capability to capture and integrate both spatial and gene 
expression information effectively. We subsequently compared 
scBOL with prominent scRNA-seq clustering and annotation 
algorithms, such as MARS, scNym and scArches, underlining 
the significance of incorporating spatial information. Relying 
solely on gene expression data proves insufficient to extract 
comprehensive biological insights; the concurrent utilization 
of spatial information significantly enhances clustering and 
annotation performance. Although MARS exhibits resilience 
to the absence of spatial data concerning known accuracy, it 
experiences pronounced degradation in both novel and overall 
accuracy, potentially attributable to the reference dataset 
predominantly covering common cell types. In stark contrast, 
scNym and scArches reveal subpar performances across all 
accuracy metrics, reinforcing the critical role that spatial context 
plays. STAGATE, a method for spatial clustering and integration, 
delivers markedly unsatisfactory results across all accuracy 
measures, with particular deficits in known accuracy. As an 
unsupervised method, it fails to leverage the annotated labels and 
spatial details contained within the reference dataset and may 
suffer from the stringent data quality requirements it imposes. 
STELLAR, a spatial annotation tool, matches scBOL’s performance 
concerning known accuracy yet falls short in novel accuracy. This 
shortfall may stem from its inaccurate estimations of the number 
of novel cell types. In summary, our comprehensive analysis 
positions scBOL as the superior analytical tool when confronted 
with spatial transcriptome datasets. Its remarkable performance 
is conclusively established against an array of benchmarks, 
including single-cell annotation, spatial clustering and spatial 
annotation methodologies, unequivocally highlighting scBOL’s 
excellence in this domain. 

To provide a clearer visualization of annotation outcomes, we 
present Sankey diagrams that illustrate the correlation between 
actual and predicted cell types for each method (Figure 6A). These 
diagrams graphically depict the distribution of cell types and 
facilitate a comparative assessment of the efficacy of cell type 
annotations across various sample sizes. This approach is par-
ticularly valuable for identifying rare cell types as the visual 
representation can substantially enhance the interpretation of 
annotation accuracy. scBOL consistently achieves near-perfect 
identification, even of infrequent cell types such as Nerve and 
Endothelial, underscoring its proficiency in incorporating spatial 
information. Moreover, scBOL’s edge is evident in its capacity to 
detect and assign labels to novel cell types. Within the context 
of three newly identified cell types—Plasma, Smooth Muscle and 
Enterocyte—scBOL is the only method that can correctly classify 
all three simultaneously. This capability likely stems from scBOL’s 
algorithmic design, which is tailored to estimate the number of 
novel cell types and to ensure each cell type’s integrity while 
maintaining clear distinctions between different cell types on the 
global structural level. In contrast, both scNym and scArches fall 
short when analyzing spatial transcriptome data; these methods 
can identify only a limited subset of cell types. STELLAR, which 
is specifically designed for spatial transcriptomic analysis, also 
encounters challenges in this complex task. While STELLAR reli-
ably identifies common cell types, it significantly errs with novel 
cell types, even in the presence of extensive samples, indicating 
a limitation in recognizing new cell categories. The information 
conveyed by the Sankey diagrams reaffirms that scBOL upholds 
its accuracy in annotating spatial transcriptome data regardless 
of cell category, size or uniqueness. 

The embedding space visualization via UMAP plots (Figure 6B) 
highlights the distribution of samples for scBOL and five 

alternative methods. The embedded representations derived by 
scBOL effectively retain critical cell-type-specific information, 
enabling distinct segregation of all cellular phenotypes. Remark-
ably, scBOL demonstrates its robust annotation capabilities even 
for underrepresented cell types, such as Nerve and Endothelial 
cells, by consistently achieving accurate identification, thereby 
showcasing its superior annotation prowess. Contrastingly, the 
alternative approaches, encompassing single-cell clustering, 
single-cell annotation, spatial data clustering and spatial data 
annotation methods, experience varying degrees of conflation, 
suggesting that prevailing methods predominantly struggle 
with the intricate challenges of cell type alignment and novel 
cell type clustering within the context of our study. Notably, 
MARS demonstrates a marked deficiency in spatial data anal-
ysis, evidenced by a complete amalgamation of cell types, 
which renders them indistinguishable—a clear indication of 
its inapplicability to spatial data. While scNym and scArches 
at times exhibit commendable performance with single-cell 
annotation, their efficacy diminishes notably when applied 
to spatial transcriptome data annotation, underscoring the 
imperative need to incorporate spatial context. STAGATE’s subpar 
performance, which is potentially attributable to both algorithmic 
design flaws and a total disregard for existing cell type labels, 
further emphasizes this point. Similarly, STELLAR’s limitations 
become conspicuous in the discovery and identification of novel 
cell types within the UMAP visualization. Novel cell types, such as 
SmoothMuscle and Endothelial cells, are often confounded in the 
embedding, challenging their recognition. In summary, bench-
marking against these competitive methodologies showcases 
scBOL’s distinction in intra-data analyses. Such results affirm the 
effectiveness of scBOL’s dual-directional alignment and prototype 
learning strategies, consolidating its standing as a method of 
choice for intricate spatial transcriptomic data interrogation. 

When cell-type annotations are projected back onto spatial 
coordinates, predictions made by scBOL demonstrate con-
cordance with verified annotations. Furthermore, scBOL does 
not exhibit difficulties in identifying cell types within specific 
regions of the tissue sample (Figure 7). The evidence conclusively 
demonstrates the superiority of scBOL in accurately identifying 
common cell types and effectively clustering novel cell types 
within spatial data, thus highlighting its potential for widespread 
application in practical contexts. In contrast, the limitations 
of STELLAR are clearly illustrated in the provided images. 
Specifically, when analyzing plasma samples of substantial size, 
STELLAR predominantly erroneously assigns them to the category 
of macrophages, underscoring its deficiency in detecting novel 
cell types and its propensity to erroneously categorize them 
as common cell types. Additionally, this trend is reaffirmed by 
the consistent misclassification of the novel cell type ‘smooth 
muscle’ as ‘endothelial’ by STELLAR, which further corroborates 
our conclusions regarding its limitations in cell type discovery. 

Inter-data experiment on the spatial 
transcriptomic dataset 
Buoyed by the promising outcomes from the intra-data transfer 
trials, we proceeded to execute inter-data experiments to evaluate 
the capacity of scBOL and comparative methodologies to mitigate 
batch effects (Figure 5). We employed expert-annotated samples 
from a singular donor for training and implemented STELLAR 
on unannotated samples originating from two additional donors. 
These datasets are characterized by variations arising from sev-
eral parameters, including the timing of tissue collection, the 
individual conducting the staining and imaging processes and
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Figure 6. Intra-data experiments on Hubmap spatial transcriptomics data. A. Mapping relationship among prediction results of scBOL and other three 
methods via Sankey plots. B. Visualization plots via UMAP for Hubmap experiments calculated using the latent representations of scBOL and other five 
methods colored by cell types. 

the distinct segmentation algorithms employed. These factors 
can potentially alter the distribution of markers, which in turn 
might impact the interpretability and uniformity of findings. 
Such discrepancies undeniably introduce heightened obstacles 
to the annotation task. Nonetheless, scBOL sustains superior 
performance across all three metrics of accuracy, reaffirming the 
robustness of the bidirectional alignment strategy employed at 
both the individual sample and cluster levels in addressing batch 
effects. Remarkably, scBOL stands out as the solitary methodology 
that does not exhibit a marked decline in performance in cross-
data scenarios, whereas alternative approaches are substantially 
compromised by batch variations, particularly in terms of novel 
accuracy. Among these, scNym bears the brunt, with its known 
accuracy plummeting from approximately 80 to around 20. MARS 
and STELLAR continue to display a pronounced trade-off between 

aligning common cell types and identifying novel cell populations, 
with the presence of batch effects exacerbating their deficien-
cies in discovering new cell types. Hence, scBOL emerges as the 
preeminent performer in all evaluated aspects, unequivocally 
demonstrating its efficacy. 

Sankey diagrams were utilized to analyze the proficiency of 
each method in establishing accurate cell type correspondences 
(Figure 8A). scBOL exhibited remarkable accuracy in mapping 
both common and novel cell types, demonstrating its adeptness at 
balancing the identification of these categories. Notably, scBOL’s 
performance remained robust even with cell types characterized 
by limited sample sizes, indicating its resistance to sample size 
imbalances. On the contrary, scNym failed to recognize cells 
labeled as pdpn, and scArches could not identify cells marked as 
pdpn or smoothmuscle. The inability of these methods to identify
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Figure 7. CODEX image of Hubmap in spatial coordinates colored according to STELLAR predictions (left), scBOL predictions (middle) and ground-truth 
annotations (right). 

certain cell types could be attributed to insufficient sample num-
bers or inadequate batch effect correction, which hindered the 
integration of reference and target datasets. Additionally, some 
cell types may require spatial context for accurate identification. 
While STELLAR’s performance notably improved concerning the 
Hubmap dataset, it encountered significant challenges in learning 
data embeddings, such as incorrectly assigning disparate clus-
tering labels to cells within the glandular_epi cluster. Comple-
mentary UMAP visualizations verified the predictive quality of 
each method ( Figure 8B). Once again, scBOL distinguished itself by 
preserving cell-type-specific signatures and counteracting batch 
effects, unlike other methods, which struggled to delineate a 
coherent class structure. Notably, scBOL was the sole method 
capable of recognizing plasma cells. In stark contrast, scArches 
demonstrated a substantial deficiency in managing batch effects, 
leading to the erroneous classification of identical cell types from 
different batches. Similarly, scNym could not entirely segregate 
cell types within the embedding space, presenting a distorted view 
of cell type diversity. Moreover, batch effects caused scNym to 
bifurcate pdpn cells into two separate groups. STELLAR’s flawed 
identification of plasma cells further underscores the suboptimal 
nature of its performance. 

Additionally, the CODEX images of Barrett’s esophagus (BE) 
were mapped using spatial coordinates, and the predictions for 
scBOL closely align with the ground-truth data, suggesting that 
scBOL’s accuracy is largely unimpacted by batch effects (Figure 9). 
Conversely, the results from STELLAR’s analysis are less than 
optimal. It incorrectly classified a substantial proportion of glan-
dular epithelial cells as plasma cells (This is shown in the part 
of Figure 9 circled by an ellipse), which reveals its limitations in 
conducting detailed classification of novel cell types. In summa-
rizing the above analysis, it becomes evident that scBOL excels in 
learning and accurately representing the embedding space of data 
while effectively mitigating batch effects. This underlines scBOL’s 
capacity for leveraging spatial information and underscores its 
superior performance in cross-dataset experimentation. 

Robustness analysis in spatial transcriptomic 
dataset 
The influence of the labeled data ratio on the annotation 
problem is pivotal, as it determines the extent of information 

transferred from reference to target data. We investigated the 
resilience of scBOL to variations in this parameter by modifying 
its value within the set [0.3, 0.4, 0.5, 0.6, 0.7] across two distinct 
datasets—Hubmap and Tonsil-BE (Figure 10A, Figure 10B). scBOL 
exhibited remarkable and consistent performance across both 
intra-dataset (Hubmap) and inter-dataset (Tonsil as the reference 
and BE as the target) evaluations, affirming its dominance and 
reliability. This impressive outcome is likely due to scBOL’s dual-
feature extraction strategy that captures both global structure 
and individual sample characteristics, rendering it less prone 
to disruption. In contrast, other methods we examined, such 
as scArches and STELLAR, displayed pronounced variability 
across the experiments, underscoring their dependency on 
reference datasets. Although STELLAR, as an esteemed anno-
tation approach, ranks just behind scBOL in overall accuracy, its 
inconsistency detracts from its competitive edge. This may stem 
from STELLAR’s inability to assimilate biological information 
from a macroscopic viewpoint. MARS, on the other hand, 
exhibited significant oscillations in performance on the Hubmap 
dataset, yet remained stable on the Tonsil-BE dataset. This 
discrepancy might be attributed to the abundant samples in 
the Tonsil reference dataset, which diminish the influence of 
varying labeled ratios. STAGATE, an unsupervised clustering 
method devoid of reference data reliance, also demonstrated 
performance fluctuations correlating with increased labeled 
ratio. The likely reason is that a higher labeled ratio decreases 
the number of samples requiring annotation, thus reducing its 
annotation burden. In summary, scBOL exemplifies superior 
stability when confronted with changes in the labeled data ratio 
in spatial transcriptomic data, enhancing its applicability in real-
world multi-omics scenarios. 

Validity of |Ct| estimation 
The cardinality of the set Ct denotes the number of distinct cell 
types present within the target dataset. Accurately estimating this 
quantity is crucial for the identification of new cell types, thereby 
underscoring the necessity of validating the efficacy of the con-
sensus score-based estimation methodology. In this regard, we 
employ two experimental datasets: Quake 10x and Quake Smart-
seq2, which contain 36 and 45 cell types, respectively. Our inves-
tigation focuses on scenarios where the discrepancy, referred to
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Figure 8. Inter-data experiments on Tonsil-BE spatial transcriptomics data, where using Tonsil as reference dataset and BE as target dataset. A. 
Mapping relationship among prediction results of scBOL and other three methods via Sankey plots. B. Visualization plots via UMAP for Tonsil-BE 
experiments calculated using the latent representations of scBOL and seven other methods colored by cell types. 

as the ‘gap’ between the estimated and true values of Ct spans an 
array of values: [−15, −10, −5, 0, 5, 10, 15] (Figure 11). Here, a ‘gap’ 
of 0 indicates a perfect match between the estimated count and 
the actual number of cell types. Examination of the results from 
both datasets reveals that the consensus score peaks when the 
gap equals 0; this phenomenon corroborates the reliability of our 
proposed estimation strategy. 

Effect of Lpro and Lreg 

In this section, we conduct ablation studies utilizing five pairs 
of scRNA-seq datasets to delve deeper into the impact of the 
intra-data neighbor-aware prototypical learning model, denoted 
as Lpro, along with the cross-data semantic-aware prototypical 
learning model, Lreg. The omission of Lpro leads to a marked 
decline in scBOL’s overall accuracy, unequivocally affirming its 
integral role within the framework (Figure 12A). The benefits of 
Lpro are particularly noteworthy when analyzing cross-dataset 
scenarios, such as when ‘Haber largecell’ serves as the reference 
dataset and ‘Haber region’ is the target dataset, or ‘Muraro’ 

and ‘Baron_human’ are employed as reference and target 
datasets, respectively. In a similar vein, excluding Lreg results 
in significant impairment in scBOL’s functionality, an effect 
that is starkly evident with cross-datasets pairings like ‘Muraro’ 
with ‘Baron_human’, or ‘Mammary Smart-seq2’ with ‘Mammary 
10x’ as the reference and target datasets, respectively (refer to 
Figure 12B). The presence of Lreg consistently bolsters annotation 
and clustering performance across all datasets, substantiating the 
meaningfulness of this enhancement. To draw things together, 
the data presented herein incontrovertibly affirm the critical 
nature of the two methodological advancements integrated into 
our training algorithm. 

These insights dovetail perfectly with the hypothetical out-
comes initially proposed in our study. Specifically, the intra-data 
neighbor-aware prototypical learning hones in on both the global 
and local semantic structures of cell types, promoting within-
cluster feature cohesion while distancing features across distinct 
clusters. On the other hand, cross-data semantic-aware prototyp-
ical learning compels the model to consciously seek alignment
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Figure 9. CODEX image of BE in spatial coordinates colored according to STELLAR predictions (left), scBOL predictions (middle) and ground-truth 
annotations (right). 

Figure 10. (A, B) Robustness analysis: The trend of overall accuracy 
concerning the change of labeled ratio in the Hubmap dataset and Tonsil-
BE dataset. 

Figure 11. Variation in consensus score about gap measurement on two 
large-scale datasets: Quake 10x and Quake Smart-seq2. 

with cell type features by leveraging semantically linked anchors 
as connective conduits. Furthermore, our exploration extends 
to hyperparameter sensitivity, particularly the contrastive tem-
perature, τ , and the sample selection ratio, α, detailed in the 
supplementary material. The robustness of our proposed method 
is underscored by consistently high overall accuracy across all cell 
types, notwithstanding fluctuations in these parameters. 

DISCUSSION 
Identification methods for cell types within single-cell datasets 
have progressed significantly, transitioning from labor-intensive 
manual annotation techniques based on unsupervised clustering 
and the detection of marker genes to automated annotation 

Figure 12. (A, B) Ablation study: Comparing the accuracy on all cell types 
with or without Lpro and Lreg, respectively. M-SS2 to M-10X: Mammary 
Smart-seq2 as reference data and Mammary 10x as target data. Mu to Ba: 
Muraro as reference data and Baron as target data. V-SS2 to V-10X: Vento-
Tormo Smart-seq2 as reference data and Vento-Tormo 10x as target data. 
P to M: Plasschaert as reference data and Montoro as target data. H-l to 
H-r: Haber largecell as reference data and Haber region as target data. 

methods that employ supervised classification algorithms 
to facilitate label transfer using well-characterized reference 
datasets. However, when the target dataset contains previously 
unidentified cell types absent in the reference dataset, a 
common approach is to first isolate these novel cell types as a 
distinct population and subsequently apply cluster analysis to 
categorize them. Although this two-stage approach is practical, 
it is not necessarily the most effective. Our integrative one-
stage end-to-end methodology demonstrates superior accuracy 
and efficiency when compared with the modified two-stage 
techniques. Empirical evidence from prior experiments indicates 
that the precision of two-stage algorithms significantly lags 
behind that of our scBOL framework, particularly concerning 
the identification of novel cell types. The rational explanation 
for this is that the tasks of classifying established cell types 
and uncovering novel ones are intrinsically complementary, 
with both relying heavily on the robustness of the cell feature 
representation. A more nuanced understanding of the target 
data’s category structure is critical to achieving a more distinctive 
representation of cell features. Additionally, our one-stage end-to-
end annotation strategy outpaces the two-stage method in terms 
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of speed, by eliminating the need for a separate unsupervised cell 
clustering phase. 

Despite the numerous benefits inherent in our methodological 
approach, we have yet to finalize cell annotations across the 
entirety of the target dataset. In particular, we need to identify 
marker genes in newly discovered cell clusters, which is a crit-
ical step in the biological analysis process. While this aspect is 
beyond the primary scope of this study, it remains an essential 
and intellectually stimulating topic for discussion. There may be 
skepticism among some members of the scientific community 
regarding the biological relevance of these novel cell clusters. To 
address such concerns, we have included a series of validation 
experiments in the supplementary materials. These experiments 
utilize differential gene expression analysis to evaluate the con-
gruence between marker genes in our predicted cell clusters and 
those in well-established reference clusters. Empirical evidence 
demonstrates that the cell cluster predictions made by our scBOL 
algorithm show a high degree of marker gene similarity to the 
known clusters—a level of accuracy not replicated by competing 
algorithms. This high correlation between our predictions and the 
ground truth underscores the significance of the problem we are 
tackling and attests to the robustness of our proposed solution. 
Looking forward, there is an enticing opportunity to integrate 
genetic-level a priori knowledge into our framework, to reduce 
the need for extensive differential gene expression analysis when 
determining the marker genes of new cell clusters. This prospect 
poses a fascinating and worthwhile challenge, meriting deliberate 
reflection and potentially paving the way for additional scholarly 
inquiry. 

The supplementary material includes several critical addi-
tional experiments. For instance, we adjusted our analytical 
framework, originally calibrated on known cell types, to encom-
pass a range of novel cell types, to evaluate the potential 
influence of rare cellular subsets on our methodology. The 
findings demonstrate that scBOL is adept at precisely discerning 
cell types across the spectrum of prevalence, from high-density 
populations to those occurring in low abundance. Corresponding 
to our assessment of the labeled ratios in known cell types, we 
further investigated the influence that varying proportions of 
unique, target-specific cell types exert on scBOL’s performance. 
It was observed that an increased presence of novel cells might 
slightly compromise the identification accuracy for familiar cell 
types. Nevertheless, scBOL consistently maintains a robust and 
favorable balance in its performance for distinguishing both 
known and novel cell types. Moreover, we present scalability 
tests for scBOL and competing algorithms in the context of 
extensive datasets. While not the most expedient, our approach 
is far from the slowest, efficiently processing tens of thousands of 
cells within several hours. Crucially, we conducted comparative 
analyses using different algorithms on two distinct spatial 
transcriptomic datasets. Diverging from the Hubmap and 
TonsilBE datasets, which were generated via multiplexed imaging 
technology, we included a representative subset of seqFISH data— 
derived from in situ hybridization techniques—and Stereo-seq 
data—sourced from sequencing technologies. Impressively, scBOL 
sustained robust performance metrics on both datasets. This 
suggests that the intrinsic variance in spatial transcriptomics 
data types and their origins exerts minimal impact on the 
applicability of scBOL. This resilience of performance across 
diverse datasets aligns with our previously drawn conclusions 
from scRNA-seq data analysis. 

Last but not least, we turn our attention to the development of 
algorithms within the single-cell community, particularly those 

harnessing deep learning technology. Notably, the versatility of 
the scBOL framework in addressing both scRNA-seq data and 
spatial transcriptomic data can be attributed to its innovative 
bipartite prototype alignment technique. This approach operates 
on the dimension of cell feature representation, a shared ele-
ment across various foundational network modules. The inherent 
flexibility of scBOL suggests a potential for broader application 
across an array of single-cell omics data; a simple substitution 
of its core backbone with one tailored to a specific omics type 
would facilitate the generation of cell representations. We urge 
our fellow researchers in algorithm development to channel their 
expertise toward crafting algorithms of greater generality, capable 
of embracing the widest spectrum of data types. Concurrently, 
we must also ponder whether a singular network structure could 
proficiently accommodate the diversity inherent in single-cell 
data, in a manner reminiscent of how the transformer model has 
achieved paradigmatic status in the realms of natural language 
processing, computer vision and speech recognition [65–67]. We 
remain optimistic that an analogous architectural framework 
could simplify the challenge of adapting to various data forms 
and analytical tasks within our domain [41, 68, 69]. Furthermore, 
there is a clear necessity for additional work in creating algorith-
mic evaluation benchmarks. While this study has endeavored to 
establish a benchmark as inclusive as possible, we acknowledge 
its preliminary nature—it is but an initial foray into a domain 
rife with opportunities for refinement by the research community. 
Advancing the quality and comprehensiveness of these bench-
marks necessitates collective effort, a goal we enthusiastically 
endorse. 

CONCLUSION 
The accelerated advancement of scRNA-seq has revolutionized 
our capacity to investigate gene expression heterogeneity at an 
individual cellular level. Simultaneously, the advent of spatial pro-
teomic and RNA imaging technologies has catalyzed a paradigm 
shift in our comprehension of cells and molecules in their native 
context, underscoring the significance of their spatial attributes. 
In light of these developments, we have conceptualized scBOL, an 
innovative and adaptive deep-learning instrument engineered to 
universally identify cell types across both single-cell and spatial 
transcriptomics datasets. Distinguished from prevailing annota-
tion tools—which are generally constrained to assigning a generic 
‘unassigned’ label to unrecognized cell types—scBOL empowers 
researchers with versatile applicability to diverse datasets and 
supports more nuanced analytical approaches. The scBOL frame-
work is predicated on four foundational strategies: 

(1) Universality in Annotation: scBOL is adept at annotating 
both scRNA-seq and spatial transcriptomics data, due to 
its diverse network architectures. It employs a community-
endorsed autoencoder to refine scRNA-seq data, filtering 
noise to reveal the underlying biological signals and capture 
the data’s intrinsic low-dimensional structure while deploy-
ing a GCN to discern spatial and molecular patterns within 
spatial transcriptomics data. 

(2) Global-Local Semantic Structure Exploration: Unlike meth-
ods solely focusing on a singular level of abstraction, scBOL 
introduces an intra-data neighbor-aware prototypical learn-
ing approach. This method harnesses the entirety of the 
dataset’s semantic structure across both macroscopic and 
microscopic perspectives, thereby enhancing the granularity 
of analysis. 
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(3) Cross-Data Semantic Anchor Utilization: The framework fea-
tures a novel, cross-data semantic-aware prototypical learn-
ing strategy, leveraging semantic anchors to align cell-type 
features. This alignment is pivotal for maintaining consis-
tency across common cell types and also addresses the batch 
effect by performing a dual-orientation alignment at the 
prototype and sample levels. 

(4) Refined Estimation of Novel Cell Populations: scBOL also 
offers an advanced method for estimating the prevalence of 
novel cell populations, which surpasses mere heuristic deter-
mination, facilitating more rational and precise outcomes. 

Functioning as a transductive learning technique, scBOL inte-
grates both reference and target datasets within the training 
phase, enhancing its predictive power and robustness. Overall, the 
scBOL annotation framework stands out for its exceptional flexi-
bility and broad applicability across the realm of transcriptomics 
research. 

scBOL has demonstrated its versatility across a diverse array 
of scenarios. Initially, our experimental outcomes utilizing scRNA-
seq data and spatial transcriptomics evidence scBOL’s proficiency 
in identifying common cell types and delineating novel ones. 
What enhances its utility is the model’s capacity to interface with 
reference and target datasets from either identical or disparate 
tissues and donors, showcasing scBOL’s exceptional ability to 
mitigate batch effects. Furthermore, the robustness of scBOL has 
been rigorously confirmed through an analysis of the model’s 
performance sensitivity to variations in key parameters, reinforc-
ing its suitability for practical applications. Visual aids, such as 
Sankey diagrams, UMAP visualizations and CODEX plots, corrob-
orate scBOL’s competence in capturing both the intrinsic biolog-
ical signals in gene expression profiles and the spatial informa-
tion encoded by spatial coordinates. In addition, the progression 
of consensus scores about the variable |Ct| substantiates our 
approach for inferring the count of novel cell types. 

LIMITATIONS AND FUTURE IMPLICATIONS 
Given these accomplishments, we aim to identify areas ripe for 
enhancement and propose several plausible avenues for future 
research endeavors. 

Firstly, the current framework has demonstrated its efficacy 
with canonical datasets; nevertheless, the burgeoning interest in 
scalable neural networks to accommodate voluminous datasets 
has become increasingly prominent. Tackling the challenge of 
concurrently assimilating vast quantities of data across a diverse 
array of tissues and donors is not only worthwhile but also has 
the potential to broaden the applicability of the model by enhanc-
ing its capacity for generalization. Given the significance of this 
expansion, it is imperative to refine the generalized annotation 
problem and evolve the scBOL framework to encompass atlas-
scale datasets. Such refinement would empower the model to 
achieve a more nuanced embedding representation of cell types, 
thereby elevating its utility across a wider range of applications 
and catalyzing the identification of hitherto undiscovered cell 
types within complex biological landscapes. 

Secondly, scBOL operates as a transductive learning method, 
necessitating access to both reference and target datasets during 
its training phase. However, this requirement is often impractical 
in real-world scenarios. For one, reference data may not always be 
readily accessible. Moreover, the addition of new data for learning 
purposes demands their incorporation alongside reference data 
within the model, necessitating re-training—a resource-intensive 
process. Consequently, there is a crucial need to investigate an 

inductive learning approach. Such a method would require only 
the reference data for initial training, after which the resulting 
model would be capable of generalizing to target data without 
the need for further modification or re-training. This could sig-
nificantly enhance the applicability and efficiency of the learning 
process in practical settings. 

Thirdly, this study primarily addresses the challenge of 
annotating scRNA-seq and spatial transcriptomics data using 
the scBOL framework. Nevertheless, the advent of multi-
omics technologies facilitates the simultaneous acquisition 
of diverse modalities of biological data, thereby enabling a 
more comprehensive characterization of cellular diversity. A 
critical trajectory for subsequent research endeavors involves 
the expansion of scBOL’s capabilities to encompass multi-omics 
datasets. This augmentation would enhance scBOL’s capacity 
to unravel cellular heterogeneity with greater efficiency by 
integrating and interpreting critical biological insights gleaned 
from various data dimensions. 

Key Points 
• To our knowledge, we present the novel scBOL algo-

rithm, which represents the inaugural unified approach 
to address the practical annotation problem in both 
scRNA-seq and spatial transcriptomics data. 

• scBOL deftly assigns distinct cluster labels to novel cell 
types, diverging from the simplistic assignment of a 
generic ‘unassigned’ label. This added capability poses a 
significantly higher level of difficulty, distinguishing our 
algorithm as a sophisticated advancement in the field. 

• scBOL introduces two innovative strategies: the intra-
data neighbor-aware prototypical learning strategy and 
the cross-data semantic-aware prototypical learning 
strategy. They collectively enhance scBOL’s capability 
of comprehending semantic structures at both macro-
scopic and microscopic levels. 

• scBOL presents a straightforward and efficacious 
approach to the complex task of quantifying the total 
number of cell types within a given dataset. 

• Extensive experiments on scRNA-seq and spatial 
transcriptomics data demonstrate that scBOL effectively 
resolves the annotation conundrum, consistently 
delivering outstanding performance. Furthermore, 
scBOL exhibits superior capabilities in mitigating batch 
effects and demonstrates robustness across diverse data 
conditions. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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51. Brbić M, Cao K, Hickey JW, et al. Annotation of spatially resolved 
single-cell data with stellar. Nat Methods 2022;19(11):1411–8. 

52. Cao Z-J, Lin W, Lu S, et al. Searching large-scale scrna-seq 
databases via unbiased cell embedding with cell blast. Nat 
Commun 2020;11(1):3458. 

53. Eraslan G, Simon LM, Mircea M, et al. Single-cell rna-seq denois-
ing using a deep count autoencoder. Nat Commun 2019;(1):1–14. 

54. He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for 
unsupervised visual representation learning. In Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition 2020 
(pp. 9729–9738). 

55. Yoon J, Zhang Y, Jordon J, van der Schaar M. Vime: extending the 
success of self-and semi-supervised learning to tabular domain. 
Adv Neural Inf Process Syst 2020;33:11033–43. 

56. Hamilton W, Ying Z, Leskovec J. Inductive representation learn-
ing on large graphs. Adv Neural Inf Process Syst 2017;30. 

57. Tang H, Chen K, Jia K. Unsupervised domain adaptation via 
structurally regularized deep clustering. In Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition 2020 
(pp. 8725–8735). 

58. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch 
effects in single-cell rna-sequencing data are corrected by 
matching mutual nearest neighbors. Nat Biotechnol 2018;36(5): 
421–7. 

59. Han W, Cheng Y, Chen J, et al. Self-supervised contrastive learn-
ing for integrative single cell rna-seq data analysis. Brief Bioinform 
2022;23(5):bbac377. 

60. Yang M, Yang Y, Xie C, et al. Contrastive learning enables rapid 
mapping to multimodal single-cell atlas of multimillion scale. 
Nat Mach Intell 2022;4(8):696–709. 

61. Vieth B, Parekh S, Ziegenhain C, et al. A systematic evaluation 
of single cell rna-seq analysis pipelines. Nat Commun 2019;10(1): 
1–11. 

62. Wang H-Y, Zhao J-P, Zheng C-H, Yan-Sen S. Sccnc: a method 
based on capsule network for clustering scrna-seq data. Bioin-
formatics 2022. 

63. Gan Y,  Chen Y,  Xu G,  et al. Deep enhanced constraint clustering 
based on contrastive learning for scrna-seq data. Brief Bioinform 
2023;24(4):bbad222. 

64. Kuhn HW. The hungarian method for the assignment problem. 
Naval Res Logist Q 1955;2(1–2):83–97. 

65. Touvron  H, Martin  L, Stone  K, et al. Llama 2: open foundation and 
fine-tuned chat models arXiv preprint arXiv:2307.09288. 2023. 

66. Liu H, Li C, Wu Q, Lee YJ. Visual instruction tuning. Adv Neural 
Inf Process Syst 2024;36. 

67. Zhu D, Chen J, Shen X, et al. Minigpt-4: enhancing vision-
language understanding with advanced large language models 
arXiv preprint arXiv:2304.10592. 2023. 

68. Theodoris CV, Xiao L, Chopra A, et al. Transfer learning 
enables predictions in network biology. Nature 2023;618(7965): 
616–24. 

69. Cui H, Wang C, Maan H, et al. Scgpt: toward building a founda-
tion model for single-cell multi-omics using generative ai. Nat 
Methods 2024;1–11.


	 scBOL: a universal cell type identification framework   for single-cell and spatial transcriptomics data
	INTRODUCTION
	METHOD
	PERFORMANCE EVALUATION
	RESULTS COMPARISON
	DISCUSSION
	CONCLUSION
	LIMITATIONS AND FUTURE IMPLICATIONS
	Key Points
	SUPPLEMENTARY DATA
	ACKNOWLEDGEMENT


