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Abstract

Deep learning (DL) is applied in many biomedical areas. We performed a scoping review on 

DL in medical genetics. We first assessed 14,002 articles, of which 133 involved DL in medical 

genetics. DL in medical genetics increased rapidly during the studied period. In medical genetics, 

DL has largely been applied to small data sets of affected individuals (mean = 95, median = 29) 

with genetic conditions (71 different genetic conditions were studied; 24 articles studied multiple 

conditions). A variety of data types have been used in medical genetics, including radiologic 

(20%), ophthalmologic (14%), microscopy (8%), and text-based data (4%); the most common data 

type was patient facial photographs (46%). DL authors and research subjects overrepresent certain 

geographic areas (United States, Asia, and Europe). Convolutional neural networks (89%) were 

the most common method. Results were compared with human performance in 31% of studies. In 

total, 51% of articles provided data access; 16% released source code. To further explore DL in 

genomics, we conducted an additional analysis, the results of which highlight future opportunities 

for DL in medical genetics. Finally, we expect DL applications to increase in the future. To aid 

data curation, we evaluated a DL, random forest, and rule-based classifier at categorizing article 

abstracts.
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Introduction

Artificial intelligence (AI) is increasingly studied and applied in a variety of biomedical 

contexts. Among different types of AI, deep learning (DL), a type of machine learning 

(ML), has shown strong potential, such as several recent, high-profile breakthroughs.1,2 

In brief, ML is a type of AI that aims to enable computers to perform tasks without 

explicit programming to perform that task. In turn, DL is a subset of ML, in which 

the main objective is representation learning.3,4 Representation learning involves finding 

a set of features (eg, a numerical vector) that best represents a data point (eg, an X-ray 

image). Unlike other ML sub-branches, DL does not require domain experts (eg, a human 

radiologist) to handcraft these features for the raw data; instead, DL automatically learns 

these features using multiple processing layers (hence the term deep). Intuitively, one can 

think of the first few layers as learning simple localized interactions and the latter layers as 

learning more complex interactions of the outputs from the previous layers. For example, 

suppose the input is an image and the goal is to identify the image. The first layer learns 

the interactions of the pixels within a small contiguous region (eg, a square of 32 × 32 

pixels). The second layer learns the interactions among these regions (eg, interactions among 

different squares of 32 × 32 pixels). The third layer learns the interactions of the outputs 

from the second layer, and so forth. The final layer returns a numerical vector, which can be 

interpreted as the feature vector representing the input image. Now, a downstream module 

(usually a classifier) could be applied to this vector representation to identify the correct 

label for the input image.3 DL can also be applied to different data types. For language data, 

for example, the first layer of a DL method would typically model all pair-wise interactions 

among the words in an input document. The subsequent layers model the relationships of 

these pair-wise interactions, and so forth.3,5

For the analyses we performed, we considered DL approaches as those built from 

architectures like convolutional neural network (CNN), long short-term memory, self-

attention network (such as Transformer), or vector representation learning (such as an 

autoencoder). We did not confine our searches to a specific set of well-established models 

because many image classifiers may be used for the classification of individuals with 

suspected genetic conditions may be different from these well-known models, but were still 

built based on CNN blocks.6-9

Each biomedical discipline has nuances that affects the application of methods such as DL. 

The field of medical genetics involves conditions that are complex, esoteric, and individually 

rare, but are common in aggregate.10-12 In addition, the underlying causes for many genetic 

conditions are known at the molecular or cytogenomic level.13,14 By contrast, other fields 

of medicine more typically involve relatively common conditions affecting many people, 

in which the biological underpinnings or precise molecular causes of disease often remain 

murkier.

In addition to the earlier mentioned nuances regarding DL in medical genetics, there are 

reasons that DL may be especially important in this field. First, there is a severe lack of 

expert clinicians in medical genetics, which may mean that assistance from these types of 
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tools may be valuable.15-17 Second, geneticists have been at the forefront of technologic 

breakthroughs (eg, genomic sequencing), and may be apt to embrace new approaches.18

Despite this, there has not been a systematic analysis exploring DL in medical genetics. To 

address this dearth, we performed a scoping review evaluating publications from 2015 to 

2021. We intentionally focused on constitutional conditions because these are the conditions 

that clinical geneticists typically encounter in practice and research. Overlapping analyses 

have been performed regarding related topics, such as use of AI and ML in rare diseases19,20 

or epigenetics.21 In addition to these valuable efforts, and because DL is instrumental in 

areas such as computer vision, we felt it would be illuminating to examine the more specific 

application of DL in medical genetics to determine which conditions are studied and how.22 

We aimed to analyze key factors, such as study objectives, what data types and methods 

were used, and the origin and availability of code and data. To further explore aspects of 

how DL is applied in genomics, we also performed a separate analysis.

We expect DL to become an increasingly important tool in medical genetics. To support 

future analyses with minimal manual data curation, we present a DL, random forest (RF), 

and rule-based classifier to identify article abstracts on DL in medical genetics.

Materials and Methods

Data collection

For our main analyses, we gathered articles for review based first on all monogenic 

genetic condition names (referred to as condition names) from OMIM (available at https://

www.omim.org/). We downloaded all condition names, including synonyms, that were 

defined as phenotype description, molecular basis known (symbolized with # in OMIM) on 

June 3, 2021, and then manually standardized each condition name for syntax and to remove 

extraneous terms (eg, anemia, sideroblastic 1 became sideroblastic anemia). We started 

with 6092 condition names and synonyms, which we reduced to 4124 terms by manually 

removing redundant terms, such as in the case of multiple conditions with the same 

root name (eg, multiple instances of polycystic kidney disease). We included conditions 

with nonmonogenic causes (eg, cytogenomic conditions such as Williams syndrome), but 

excluded conditions judged to be multifactorial or involve susceptibilities without specific 

known individual causes. For example, we did not include studies involving susceptibilities 

to conditions such as diabetes mellitus except when they involved monogenic causes, such 

as for maturity-onset diabetes of the young. In this part of our analysis, we also excluded 

conditions involving somatic genetic changes related to cancer (Supplemental File 1). 

Second, we incorporated all gene names (referred to as gene names) related to these types of 

genetic conditions by downloading all genes in the Clinical Genomic Database (available at 

https://research.nhgri.nih.gov/CGD/)10 on June 22, 2021. We used the 4265 gene names that 

were then annotated in the database. We searched PubMed (June 22, 2021 for gene names, 

July 8, 2021 for condition names) by creating a Boolean search string of each condition 

name or gene name and the phrase “deep learning” (Supplemental File 2). Search results 

were combined into a spreadsheet and sorted by PMID. Figure 1 shows article selection 

and categorization on the basis of Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses guidelines for systematic reviews.23
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Article categorization

Each article in our main analyses was manually categorized into 1 of 10 categories, defined 

as one of the following:

(1) DL about genetic conditions (ie, pertaining to the medically-oriented application of 

DL in medical genetics), (2) Other AI approaches (not DL) about genetic conditions, (3) 

DL about genetic conditions, but judged to be primarily involving basic science or not 

immediately translational or used in direct clinical ways for individual patients, (4) DL about 

health conditions that are not necessarily primarily genetic (eg, diabetes mellitus, cancer in 

general), or when the cohort may have involved individuals with genetic conditions, but no 

analyses were performed or described to show whether individuals within the cohort actually 

had identified genetic etiologies, (5) Other AI approach about health conditions that are 

not necessarily primarily genetic (eg, diabetes mellitus, cancer in general), (6) DL applied 

to animal models of genetic conditions, (7) Articles about DL/AI or genetic conditions 

(but not a combination of these), (8) Studies unrelated to the areas of interest (eg, studies 

involving educational or learning theory, but not about DL), (9) Broken links/languages 

other than English, and (10) Review articles/editorials/conference reports/corrections that 

were not judged to include original data or analyses. Articles that included multiple types of 

information would be categorized as the lowest number category—eg, an article that could 

be categorized as either category 1 or 3 would be considered category 1. Duplicate articles 

were removed.

In an attempt to ensure inclusion of relevant articles, we also manually imported and 

categorized an additional 71 articles (beyond the ones already identified) reported to 

use the DL-based approach developed by Face2Gene (https://www.face2gene.com/) from 

their website (https://www.face2gene.com/publications/) on July 26, 2021. Each Face2Gene 

article was searched by title in PubMed to find its PMID to sort with the other articles. 

Articles that could not be found in the PubMed database were marked as such. These articles 

were categorized in the same way as other articles. To help reduce bias that may have been 

introduced by the inclusion of these articles, we also provide key findings in the Results 

section without these articles.

This combined spreadsheet had 33,714 initial rows; after categorizing and deleting 

uncategorized duplicates, 14,002 apparently unique rows remained. Of these, 1190 were 

categorized by >1 person; 341 were, owing to initial disagreement, manually adjudicated 

by multiple reviewers to determine final categorization. Because our main objective was 

to analyze the application of DL for genetic conditions, we focused our analyses on 

information from category 1 articles. To additionally investigate the broader use of DL 

in genomics, we conducted a separate review, as described later.

Additional analyses of DL in genomics

To further examine more general and other uses of DL in genomics (eg, to better 

capture information about DL in genome sequencing), we performed an additional PubMed-

based search using the term “deep learning” with “genome,” “genome sequencing,” and 

“genomics.” We refer to the related analyses as DL in genomics. Unlike the main analyses 

Hanchard et al. Page 4

Genet Med. Author manuscript; available in PMC 2024 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.face2gene.com/
https://www.face2gene.com/publications/


described earlier, which focused on specific genetic conditions, our goal with this separate 

analysis on DL in genomics was to examine how DL is applied more generally and in ways 

not captured by the previous methods. In this search, we used the same time frame (from 

2015 to July 8, 2021) as the main search. We identified 984 articles and categorized each 

article into 1 of 8 categories (these were intentionally different than those used in our main 

analyses because we hoped to explore the data set through a different lens):

(1) DL for clinically-oriented study of human genomic data (related to constitutional genetic 

conditions, as defined earlier); however, unlike in our main analyses, we included general 

methods that could be applied to data sets relevant to genetic disorders, such as methods to 

classify genetic variants or analyze genomic data to find answers for individuals suspected to 

have genetic conditions, (2) DL for clinically-oriented study of human genomic data (related 

to conditions that can have monogenic causes in some people and apparently multifactorial 

etiologies in other people; examples include autism and Alzheimer disease), (3) DL for 

clinically-oriented study of human genomic data (related to other health conditions or 

genomic analyses not involving conditions that have germline genetic causes, such as 

analyses on somatic cancer data), (4) DL for general analysis of human genomic data (ie, 

analyses that are primarily used for nonclinical, often research-related investigations, such 

as methods to analyze single-cell expression data), (5) DL for nonhuman genomic data sets, 

(6) Studies unrelated to the area of interest (a frequent example was use of DL to analyze 

pathology imaging data in which the potential importance of genomics was mentioned 

in the article but was not investigated), (7) Broken links/language other than English for 

the abstract, and (8) Review articles/editorials/conference reports/corrections that were not 

judged to include original data or analyses.

Model training

Of the 14,002 article PMIDs collected in our main analyses, 306 were excluded for 

the following reasons: unavailable abstracts through automated extraction methods (295); 

articles that were corrected or amended (6); duplicate articles cached from preprint servers 

(5). Abstracts for each of the remaining 13,696 articles were downloaded using the Entrez 

Direct Command Line Utility e-fetch.29

One-tenth (n = 1370) of the data set (n = 13,696) was chosen as the test set. The test set had 

1370 articles of which 14 (1.02%) were category 1 and 1356 (99.98%) were non–category 

1. With the remaining samples, we trained 9 models by using 9-fold cross validation and 

then tested these models on the same test set. Because the data set was severely imbalanced 

against category 1 (see Supplemental Figure 1; note that the numbers of articles in each 

category differ slightly from those shown in Supplemental Table 1, because data were 

not extractable for all articles for the model-building), the abstracts in each category were 

sampled independently to ensure equal representation in each of the 9 training folds and the 

test set. Each training fold had an average of 10,956 articles, of which an average of 102 

(0.93%) were category 1; each validation fold had an average of 1370 articles each, of which 

an average of 12 (0.88%) were category 1.

Two types of ML approaches based on RF and Bidirectional Encoder Representations from 

Transformers (BERT) were used for the abstract classification (unpublished data: Devlin J, 
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et al arXiv preprint:181004805. and Adhikari A, et al arXiv preprint:190408398. 2019).30 

For BERT, only punctuation and stop words were removed before training. However, for RF, 

the words in the abstracts were stemmed and split into bigrams, which were used as training 

features because RF does not contain a default word tokenizer as BERT does.

Because we were primarily interested in the binary classification of category 1 abstracts vs 

the rest of the other categories, model performance was evaluated using binary labels, with 

category 1 abstracts as the positive class and all other categories as the negative class.

The RF models were trained using python sklearn.31 Each RF model was trained with a 

maximum depth of N/2, with N being the size of the training set (on average N = 10,956). 

BERT models were trained using our own modification of docBERT (unpublished data: 

Mulyar A, et al arXiv pre-print:191013664.). Each BERT model was trained for 200 epochs 

with early stopping and the same hyperparameter setting (see our code for more detail). For 

each of the 9 folds in the cross validation, training performance was measured on the basis 

of cross-entropy loss on the respective validation set.

Besides the ML predictors, we experimented with string-matching rules that predicted the 

label for an abstract on the basis of presence or absence of certain key phrases.32 We were 

interested in these simpler methods because in this context, ML acts as a statistical classifier 

with probability values, whereas rule-based approaches provide binary results. These rules 

were used in an exploratory fashion to determine how they would affect classification 

performance, including in combination with other predictors (Supplemental Table 5).

To handle the labeling agreement and disagreement for the abstracts among multiple 

classifiers, we used Snorkel to aggregate the probability predictions from each model and 

generate a single prediction probability.32,33

Results

Summary

The categorization of the main 14,002 articles analyzed is shown in Supplemental Table 

1; articles with categorizations are included in Supplemental Table 2 (full Supplemental 

References for this table and for Supplemental Tables 3, 6, and 8 are available in 

Supplemental File 3). Although this is a scoping review, we prepared a Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses flow diagram to depict the categorization 

steps (Figure 1).

Our analyses focused on the 134 articles in category 1 (details for these articles are provided 

in Supplemental Table 3); these included 76 articles that did not involve Face2Gene. We 

note that our manual analyses initially identified 133 category 1 articles; checking the model 

results identified another category 1 article that had been missed. We observed an increase 

in the total number of articles during the selected timeframe (Figure 2A); the rate of growth, 

when including projected publications through the end of 2021, appears to fit an exponential 

curve.
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Patients and conditions represented and data types used

The 134 articles in category 1 focused on >71 individual conditions; of these, 50 different 

conditions were assessed in a single article. Twenty-one conditions (or groups of conditions 

with heterogeneous causes, such as Noonan syndrome) were the focus of multiple papers. 

In total, 12 articles assessed multiple conditions, 6 papers assessed multiple inherited eye 

conditions, and 6 assessed hemoglobinopathies (eg, sickle cell anemia). Some articles had 

a more defined scope, such as several that focused on DL as applied to selected pathogenic 

variants related to a certain condition (Figure 2B and Supplemental Table 3).

The number of affected individuals included in the studies (for these calculations, we did 

not include the use of control or unaffected individuals, who might be used for training 

or testing purposes) ranged from single individuals, studied via application of an existing 

DL model, to 2400 individuals (Figure 2C). Excluding articles when data were unclear, 

unavailable, or when individual patients were not studied, the mean and median number 

of affected individuals in the remaining articles was 95 and 29, respectively. For the 76 

non-Face2Gene articles, the mean and median number of affected individuals was 117 and 

42, respectively. Studies involving larger numbers of individuals involved those that assessed 

multiple conditions and those analyzing medical records or nonfacial images (eg, radiologic 

or ophthalmologic images). Papers focusing on smaller numbers of individuals typically 

included those in which DL was used to help in the diagnostic or phenotyping processes; 

this was biased by the Face2Gene algorithm,6 which was used frequently by medical 

geneticists to assess findings in individuals with known or suspected genetic conditions 

(see details later in DL methods used).

The most common data source was patient photos, used in 61 (46%) studies; the next 

most common data source included radiologic studies, ophthalmologic images and/or other 

ophthalmologic data, and microscopy data, used in 26 (19%), 19 (14%), and 11 (8%) papers, 

respectively. Excluding Face2Gene articles, the most common data types of the remaining 

76 papers were radiologic data in 25 articles (33%), ophthalmologic images and/or other 

ophthalmologic data in 18 articles (24%), and microscopy data in 11 articles (14%). Of these 

non-Face2Gene papers, 5 (7%) used patient photos. See Figure 3A; Supplemental Figure 2 

shows more details about select data types.

Purposes of studies and clinical areas

DL analysis of genetic conditions were uses in diverse ways. The most common use was for 

diagnosis, used in 71 (52%) of uses (we categorized some articles as using DL in multiple 

ways and defined 136 uses from 134 articles). The next most common use was what we 

termed disease monitoring (monitoring disease manifestations after diagnosis, including 

related to progression or treatment response), which was the main use in 33 (24%) articles. 

The third most common use was what we termed identifying phenotypic features, which 

we defined as using DL to characterize or phenotype (most commonly by examining facial 

features) individuals with a known diagnosis, which was used in 21 (15%) of articles. 

As has been shown by other reviews,20 a small number of articles focused on therapeutic 

approaches, such as drug discovery for genetic conditions. Among non-Face2Gene articles, 

and considering 78 uses among 76 articles, 33 (42%) involved diagnosis, 32 (41%) involved 
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disease monitoring, and 4 (5%) involved text and database mining or identifying phenotypic 

features (Figure 3C).

Although subjective, we attempted to categorize the articles according to which patient-

facing specialties the approaches were most applicable. Although this work focused on 

medical genetics, our methods would theoretically identify articles relevant to genetic 

conditions that could be diagnosed or treated in other specialty areas. For example, a genetic 

condition resulting in cardiac arrhythmia might be primarily diagnosed and managed by a 

cardiologist, whereas a neurologist might manage patients with genetic forms of epilepsy. 

The 3 most common areas were medical genetics, neurology, and ophthalmology, with 61 

(46%), 21 (16%), and 20 (15%) articles, respectively (Supplemental Table 4).

DL methods used

We examined the types of DL used in the studies (Figure 3B). Because some articles used 

multiple DL types, we counted 140 uses among the 134 articles. Of these, 124 (88%) 

involved CNN, 10 (7%) used recurrent neural networks, 2 (1%) used autoencoders, and 1 

(1%) used BERT, 3 (2%) did not supply enough data (sometimes for proprietary reasons) 

to enable the methodology to be accurately determined. These trends held true for non-

Face2Gene articles; 65 (90%) of 72 articles in which the type of DL could be ascertained 

used CNN. See also Supplemental Figure 3.

We next examined whether the DL results were compared with human performance or 

other methods, and whether these comparisons were quantified. Of the 134 articles, 41 

(31%) compared DL with a human, usually specialists in the field studied (eg, the results 

of DL to assess eye disease with an ophthalmologist). Of the 76 non-Face2Gene articles, 

36 (49%) included comparisons with humans. Of the total articles, 83 (62%) and of the 

non-Face2Gene articles, 48 (63%) compared DL performance with other methods, such as 

another DL method or another AI approach (eg, RF). In total, 15 (11%) articles compared 

DL results with both human and other methods.

We were interested in code and data availability because these can affect the ability to 

validate, extend, and implement results. Not all papers provide both code and data, therefore 

we independently tallied the number of papers with code or data. Of the 134 articles, 22 

(16%) stated that the code was available; of these, 18 provided an online link (however, not 

all links appeared functional when checked) and 3 stated that code was available on request. 

In total, 69 (51%) of the total articles stated that data used in the study were available; 19 of 

these stated that data were available only on request. Similarly, access to study code and data 

used in the study were provided in 19 (25%) and 30 (39%) of the non-Face2Gene articles, 

respectively (Supplemental Figure 4).

Locations of studies

To help show where research took place, we first identified the country of origin of the 

corresponding author. The United States accounted for most articles followed by China, 

Germany, Italy, and South Korea (Figure 4A). Next, we gathered information about the 

locations of the studied populations. If multiple countries were mentioned, all such countries 

were included in the tallies. For this information (excluding studies in which data were not 
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available, or data involved multiple, unspecified countries), the United States accounted for 

the most articles followed by China, the Netherlands, the United Kingdom, and Singapore 

(Figure 4B).

Additional analyses of DL in genomics

The categorizations (as well as the annotations described in the following) of the 984 

articles identified in this search are shown in Supplemental Table 6 and summarized in 

Supplemental Table 7. Of the 984 articles, 683 were identified in our previous search. For 

this analysis, we specifically decided not to remove these duplicates, because the goal was to 

examine the data set in a different way than for our main analyses.

In addition to Supplemental Tables 6 and 7, we summarize key findings of these analyses 

in this section. A total of 39 (4%) articles examined DL studies of human genomics 

data related to germline genetic conditions. We emphasize that for these categorizations, 

we included articles that were more general rather than specific to a certain condition. 

For example, we included papers on DL-based methods of analyzing genomic data 

or classifying genetic variants in a way that would be directly relevant to individuals 

with genetic conditions. Of these 39 articles, 6 (16%) involved general variant detection 

(including structural variants) and workflow methods, 28 (72%) involved methods of variant 

classification and pathogenicity annotation, and 5 (13%) involved DL-based analysis of 

specific conditions or classes of conditions. Of the 984 articles, 26 (3%) involved DL 

analyses applied to conditions with monogenic or multifactorial causes, including Alzheimer 

disease (8 papers), neurobehavioral conditions (10 papers), and other conditions (8 papers) 

(eg, susceptibility to cerebral palsy, Crohn disease). In total, 232 (24%) papers involved the 

use of DL to analyze data sets for conditions in which there is no known monogenic cause in 

at least some individuals, or when data sets relevant to nongermline conditions (eg, somatic 

cancer) were investigated. Of these articles, 167 (17% of the 984 total articles, and 72% of 

the 232 articles in this category) involved DL analyses of somatic cancer. Of note, 118 of 

these articles (12% of the 984 total articles and 51% of the 232 articles in this category) 

involved analyses of data from The Cancer Genome Atlas (TCGA) project (Supplemental 

Figure 5).34 Although this high proportion of TCGA-related papers was likely biased by our 

methods, there seems to be a correlation suggesting that the availability of this data set led to 

many papers on DL in cancer.

Model evaluation

The number of DL papers is expected to continue to increase (Figure 2A). To aid human 

curation, we built different classifiers on our abstracts; these classifiers are based on BERT 

and RF classifiers.

For the model evaluation, we wanted to examine how different models (alone and in 

combination) would perform at differentiating category 1 from non–category 1 articles. This 

can show how these models could be used to efficiently categorize articles. We thus focused 

on the true positive and false positive rate for identifying category 1 articles.

As shown in Table 1, aggregating BERT with RF and rule-based classifiers (via Snorkel) did 

not outperform the aggregation of BERT classifiers alone, suggesting that RF and rule-based 
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classifiers did not add useful new information to BERT. We suspect 2 main reasons: RF 

may not sufficiently capture the nuances in written language in this context (eg, in situations 

when similar ideas may be expressed in different ways) and our string-matching rules may 

be overly simplistic.

For the aggregated predictor based just on BERT (row 3 in Table 1), the true positivity 

rate was 100% (14/14 category 1 abstracts in test set correctly classified) and the false 

positive rate was 5.5% (75/1356 non–category 1 in test set mislabeled as category 1; see the 

following for more details). Because the false positive rate was 5.5%, our approach can still 

be helpful, including to automatically reduce papers that need to be manually assessed.

Next, we manually reviewed the 76 non–category 1 articles initially classified as false 

positives by this analysis; most were category 4 articles. On manual review, we noted that 

62 (82%) of the articles were likely to be false positives either because of the mention 

of conditions that can have Mendelian forms as well as non-Mendelian forms (these false 

positive articles were about the latter type of condition) or because of the use of specific 

terms (eg, “EEG” or “OCT”) that appeared in many category 1 abstracts. Manual analysis 

did identify 1 article that was initially (by our manual analyses) incorrectly categorized as 

category 4 and should have been category 1, which has since been updated in all manuscript 

materials. Thus, to be accurate, 75 of the 76 results were false positives, and one was 

initially incorrectly assigned through our manual processes. This may be evidence of the 

value of automated approaches (Supplemental Table 8).

Discussion

We anticipate that DL will increasingly affect many medical fields. Applying DL to medical 

genetics involves specific challenges, including the rarity of many conditions.11,35,36 

Condition rarity yields less data for DL training and testing. Related to this, gathering 

representative data from diverse individuals may be difficult, especially if ascertainment 

occurs in a limited geographic region.20,37,38 However, unlike many areas of medicine, 

the practice of medical genetics focuses on establishing precise diagnoses.10,14 The ability 

to accurately categorize many conditions on the basis of shared molecular causes may 

translate to high accuracy and applicability.38 In support of this, our analyses show that 

more than a third of 133 articles on DL in medical genetics focused on single rare genetic 

conditions. Furthermore, most studies that we identified applied methods to small numbers 

of individuals. However, our data were biased based on the inclusion of many articles using 

an established DL algorithm.6 We tried to help address this bias by providing key statistics 

after excluding Face2Gene articles. Overall, because AI depends on training data, inclusive 

data collection and recruitment are critical to ensure that methods work equitably.

The growth we see in the number of articles involving DL and medical genetics reflects 

a number of factors. Greater availability of high-performance computing resources, DL 

algorithms, and data sets have increased the adoption of DL in many venues. Our findings 

suggest that the early adoption of a platform for DL related to facial features helped drive 

the use of DL in medical genetics.6 We believe that part of the reason for this adoption was 
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the ease-of-use of the platform. This may provide a roadmap for other tools that can be 

applied to other data types.

Although the growth of DL in medical genetics is impressive, it is clear from our separate 

analysis of DL in genomics that applications in medical genetics lag behind oncologic 

studies. There are undoubtedly many factors at work. One likely factor is the availability of 

data through projects such as TCGA.34 This suggests the potential of similarly aggregating, 

annotating, and sharing data relevant to medical genetics.

As shown in related analyses and reviews, our data show that DL in medical genetics 

concentrates on diagnosis. This is logical because the overall practice of medical genetics 

focuses on diagnosis (one exception is biochemical genetics, in which the work often 

involves patient management). Despite current diagnostic emphasis, DL may help narrow 

the gap between diagnosis and therapy in multiple ways, from preclinical selection of 

molecular testing to ensuring that a patient with a rare condition receives the right treatment 

quickly.37-39

This study included our own classification work. We feel that this helps highlight how 

data derived from manual curation can be used to enable more automated approaches. We 

emphasize that this work is exploratory and is not intended to maximize the prediction 

accuracy, but rather to show how applying and combining different techniques can affect 

performance. Importantly, the methods we implemented can be used for other related and 

unrelated data sets.

As with other scoping reviews, our analyses involve multiple limitations. First, it is unlikely 

that our search strategy captured all relevant articles. For example, certain forms of DL, such 

as related to DL-based genomic analyses,40,41 may not have been explicitly mentioned in 

articles in a way that was captured by our search methods. In addition, we used PubMed 

as our principal source of papers. PubMed emphasizes biomedical publications and limits 

key works from disciplines such as computer science and informatics. Second, although we 

tried to provide key data without certain articles, our search method likely led to bias. Third, 

we may have misclassified some articles and our analyses may have imperfectly appreciated 

details and nuances. We chose to include all articles in which DL was used; this included 

studies in which a DL model was trained and tested, as well as studies in which existing DL 

models were employed. This “lumping” could obscure differences among articles. Finally, 

it is likely that there are many important examples of DL in medical genetics that are not 

represented in the medical literature; much work occurs in biotechnology and other entities 

that are less likely to publish.42

Despite these limitations, we anticipate that our analyses depict key trends about DL in 

medical genetics. These trends include a focus on diagnostic objectives and the use of 

images (especially facial photos). This may point to opportunities beyond diagnosis (eg, 

therapy selection) or the use of less-leveraged data types.

Our analyses show that, in medical genetics, investigations tend to concentrate on a single 

data type, such as images or genetic variants. We found few manuscripts on the types of 

genetic conditions encountered by clinical geneticists that used DL to analyze both genomic 
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(or multiomic) and phenotypic data sets. As shown in our analyses of DL in genomics, this 

appears to be an area in which somatic oncologic analyses are outpacing the studies related 

to constitutional genetic conditions. We see this as a ripe area for future study in medical 

genetics and suggest that examining how fields such as oncology have used data sets for 

these types of purposes may provide a useful model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PRISMA schema for data collection and categorization.
Although we performed a scoping review, this schema was adapted from the one used for 

systematic reviews and is used with appropriate permission and citation as described in 

the guidelines.23,24 Sources used include Clinical Genomic Database (CGD), Face2Gene, 

OMIM, and PubMed.25-28 PRISMA, Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses.
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Figure 2. Articles per year and characteristics of studied individuals.
A. Number of articles per year binned as category 1 (articles on deep learning [DL] applied 

to genetic conditions). Articles from 2021 includes observed articles as well as projected 

articles, the latter was calculated on the basis of the observed trend during the depicted time 

period (January 2015-June 2021). B. Distribution of genetic conditions studied using DL. C. 

Number of individuals with the studied genetic conditions included in each study. Further 

details are available in Supplemental Table 3.
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Figure 3. Characteristics of methods used.
A. Types of clinical input data analyzed via deep learning (DL). B. Types of DL methods 

used in each article. C. Categorization of the primary use of DL in each article. Further 

details are available in Supplemental Table 3. BERT, bidirectional encoder representations 

from transformers; CNN, convolutional neural network; ECG, electrocardiogram; EEG, 

electroencephalogram; RNN, recurrent neural network.
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Figure 4. Geographic distribution of articles.
A. Location of the corresponding author(s) for each of the 134 articles. B. Location of study 

populations for articles with available data.
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Table 1

Performance of the respective models to differentiate category 1 from non–category 1 articles on the held-out 

test set of articles

Model TPR FPR FNR TNR

Snorkel LFs only 0.143 0.378 0.571 0.469

Snorkel RFs only 0.214 0.000 0.786 1.000

Snorkel BERTs only 1.000 0.055 0.000 0.945

Snorkel LFs + RFs 0.143 0.378 0.643 0.469

Snorkel LFs + BERTs 0.143 0.378 0.857 0.622

Snorkel RFs + BERTs 1.000 0.055 0.000 0.945

Snorkel LFs + RFs + BERTs 0.143 0.378 0.857 0.622

Bold values show the results for the highest-perfoming models.

BERT, bidirectional encoder representations from transformers; FNR, false negative rate; FPR, false positive rate; LF, labeling functions; RF, 
random forest; TNR, true negative rate; TPR, true positive rate.
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