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Abstract

We propose a novel framework for Alzheimer’s disease (AD) detection using brain MRIs. The 

framework starts with a data augmentation method called Brain-Aware Replacements (BAR), 

which leverages a standard brain parcellation to replace medically-relevant 3D brain regions in 

an anchor MRI from a randomly picked MRI to create synthetic samples. Ground truth “hard” 

labels are also linearly mixed depending on the replacement ratio in order to create “soft” labels. 

BAR produces a great variety of realistic-looking synthetic MRIs with higher local variability 

compared to other mix-based methods, such as CutMix. On top of BAR, we propose using a soft-

label-capable supervised contrastive loss, aiming to learn the relative similarity of representations 

that reflect how mixed are the synthetic MRIs using our soft labels. This way, we do not fully 

exhaust the entropic capacity of our hard labels, since we only use them to create soft labels 

and synthetic MRIs through BAR. We show that a model pre-trained using our framework can 

be further fine-tuned with a cross-entropy loss using the hard labels that were used to create 

the synthetic samples. We validated the performance of our framework in a binary AD detection 

task against both from-scratch supervised training and state-of-the-art self-supervised training plus 

fine-tuning approaches. Then we evaluated BAR’s individual performance compared to another 

mix-based method CutMix by integrating it within our framework. We show that our framework 

yields superior results in both precision and recall for the AD detection task.
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1 Introduction

Alzheimer’s Disease (AD) is an irreversible neurodegenerative condition, which is 

characterized by atrophy of brain tissue, with distinctive microscopic changes. However, 

AD-related atrophy is hard to detect, because healthy aging also causes some atrophy. 

Therefore, for a population-level impact, an abundantly available medical modality, MRI, 

can be used to detect the disease. Lately, deep-learning-based approaches have become 

common [1,2], mostly using the ADNI dataset. However, much of the early work is hard to 

reproduce due to data-leakage problems [3]. Thus further research is needed on the topic.

Contrastive learning has been recently shown to be a powerful technique to learn semantics-

preserving visual representations in a self-supervised manner [4,5]. Based on SimCLR [5], 

the idea is to create two differently augmented copies (positives) of the anchor image, 

while considering the rest of the samples within the batch as negatives. Augmentations 

are a set of parametric transformations, such as random crops, rotations, etc. that aim to 

preserve semantics of the data while altering them. These positives are then mapped closer 

in the latent space, while the negatives become further away. This approach is shown to be 

very effective in natural images [5], as well as in some medical tasks [6,7]. However, the 

self-supervised contrastive approach has its drawbacks in AD detection, which is a binary 

classification problem. The assumption that the anchor and the rest of the batch are equally 

semantically different is incorrect, because it is highly likely that a batch could contain a 

false negative sample, thus making the training harder.

One way to fix this problem is to use supervised-contrastive learning, which leverages 

hard labels [8]. However, this approach has its limitations as using hard labels during 

pre-training exhausts the entropic capacity of labels, thus leading to sub-optimal fine-tuning 

performance. Soft labels could be employed during supervised contrastive training, which 

can be exploited to learn the relative similarity of pairs. CutMix [9] is a technique known 

to be very effective in creating soft labels by non-linearly combining images to create 

synthetic images and labels. A slightly modified version of CutMix has recently been 

applied in a brain lesion segmentation task [10], where instead of using an arbitrary patch for 

replacement, lesion-based ROIs are utilized according to the lesion location and geometry. 

We argue that since AD-related atrophy is widely distributed across different parts of the 

brain, replacing a big patch, as in [9], or focusing on a single ROI, as in [10] is not 

suitable for AD detection, where global understanding of the entire input MRI is essential. 

Furthermore, for pixel-wise aligned inputs such as ours, replacing a big patch usually creates 

an easier task for the model, but for pre-training the whole idea is to create difficult tasks so 

the model will learn more powerful representations.

We propose an augmentation technique for brain MRIs that we call Brain-Aware 

Replacements (BAR), which utilizes anatomically relevant regions from the Automated 

Anatomical Labeling Atlas (AAL) for non-linear replacements from a randomly picked MRI 

into an anchor MRI to produce synthetic MRIs and soft labels. Compared to CutMix, BAR 

produces more realistic-looking synthetic MRIs, which leads to higher local variability, thus 

harder-to-solve synthetic samples. On top of BAR, inspired by [11], we propose a supervised 

contrastive pre-training plus fine-tuning framework. However, unlike [11], our pre-training 
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model aims to learn the relative similarity of representations, reflecting how much the mixed 

images have the original positives or negatives by optimizing a continuous-value-capable 

supervised contrastive loss [12]. This way, we do not fully exhaust the entropic capacity of 

our hard labels, since we only use them to create soft labels and synthetic MRI mixtures 

through BAR.

Our contributions are two-fold. First, we propose BAR, a novel augmentation strategy that 

utilizes the AAL to create realistic-looking synthetic samples and soft labels. Second, we 

show that training a supervised contrastive loss with the soft labels and synthetic MRIs 

generated through BAR leads to very powerful representation learning. We also show that 

the pre-trained model can be further fine-tuned utilizing the same labels that were used to 

create synthetic MRIs and soft labels. To the best of our knowledge, supervised mixture 

learning with contrastive loss has yet to be investigated, as most of the contrastive mixture 

learning approaches are conducted in self-supervised fashion [13,14]. Also, our work is 

the first application of supervised contrastive learning within AD classification research. 

We compare our results with a slightly modified version of CutMix by incorporating it 

into our framework, as well as state-of-the-art self-supervised and supervised pre-training 

approaches and show that our approach outperforms them on the AD-vs-cognitively-normal 

binary classification task. We will share our code at1.

2 Method

Contrastive Objectives:

The goal of contrastive learning [5] is to map samples to a unit hypersphere by preserving 

semantics, i.e., semantically similar samples are pulled together, and different ones are 

pushed apart. In the self-supervised approach, an anchor image Xi is augmented twice using 

a set of transformations, which creates two augmented views, t1
i and t2

i. With these two 

augmented views, an InfoNCE loss [15] can be calculated as follows:

LNCE = − ∑i = 1
n log eθ(t1

i , t2
i)

1
b ∑j = 1

b eθ(t1
i , t2

j)

(1)

where θ denotes an encoder, t2
j|j ≠ i is a negative sample, n is the number of samples, and b

is the number of samples within the batch. For each sample i, the model learns to map t1
i, t2

i

closer while pushing the negatives further away under the assumption that they are equally 

different from the anchor t1
i by optimizing the InfoNCE loss.

However, for classification problems with a small number of classes such as ours, this 

approach has its flaws since it is highly probable that (t1
i, t2

j)j ≠ i contains false negatives, 

i.e., the samples that are from the same class as the anchor. To alleviate this problem, 

a supervised version of InfoNCE could be used as given in [8]. However, this approach 

1https://github.com/aldraus/BrainAwareReplacementsForAD.
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requires the use of all labels during pre-training, which in fact limits the model’s 

performance during the final fine-tuning stage.

CutMix Strategy:

Given a set of 3D brain MRIs Xi|i = 1
n  and their binary annotations yi|i = 1

n  stating whether they 

have AD or not, it is possible to generate synthetic images Xi
p|i = 1

n  and soft labels yi
p|i = 1

n

by transferring a 3D region from Xj into Xi, and modifying the label yi to be a linear 

combination of yi and yj as follows [9]:

Xi
p = (1 − M) ⊙ Xi + M ⊙ Xj

(2)

yi
p = λyi + (1 − λ) * yj

(3)

Here M denotes a binary mask, and λ denotes the pixel-wise combination ratio. This process 

can be repeated to create a large variety of synthetic images and soft labels and is shown 

to be effective in natural images. For natural images, local ambiguity generally yields less 

optimal results, since fine-grained features are mostly localized, thus local connectivity is 

important. In AD detection however, the atrophy is not localized, but instead generally 

spread across the whole MRI, so replacing a number of smaller locally disconnected 

regions instead of a big patch would give more of an insight into the disease. Also, unlike 

natural images, our MRI data is pixel-wise aligned, thus, estimating the mixture from a big 

connected region is an easier problem compared to estimating the mixture when a number of 

smaller patches are replaced. Because the goal is to make pre-training objectives harder, it is 

more suitable to use a number of smaller patches when replacing parts. This way, the model 

is implicitly forced to have more of a global understanding.

Proposed Framework:

Our framework is based on two ideas: First, to address the problems mentioned in 

the CutMix section, we propose Brain Aware Replacement (BAR) as an alternative 

augmentation strategy that non-linearly creates realistic looking mixtures within the dataset 

by replacing anatomically relevant 3D brain regions. BAR has some advantages over 

CutMix. Unlike CutMix, the generated images always look realistic, thus there is less 

distribution shift [16], which in turn helps network training. Also, BAR explicitly forces the 

model to pay attention to the relationship between medically relevant brain regions, instead 

of random patches provided by CutMix. Second, to alleviate the problems mentioned in 

the Contrastive Objectives section, we propose the use of a continuous-valued supervised 

contrastive objective [12] with soft labels that are produced with BAR. Inspired by [11], our 

framework is based on a supervised pre-training plus supervised fine-tuning approach; the 

overall architecture is shown in Fig. 1.
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For BAR, given that ∀i ∈ [1..N], Xi is pixel-wise aligned, in similar fashion to Eq.2, a 3D 

binary mask M is generated by sampling regions from the Automated Anatomical Labeling 

Atlas (AAL) 2 [17], which has 62 distinct brain regions when the left and right lobes are 

merged. The variable λ is sampled from a left-skewed beta distribution with σ = 0.8 and 

β = 0.8 and is used for sampling a number of regions from the AAL to create M. A number 

of anatomical brain regions in proportion with λ are then carved from a randomly selected 

sample Xj and are replaced into the same regions of t1
i based on Eq.2. Equation 3 is then 

used to create a pseudo label yi
p for t1

i by linearly mixing yi and yj. This approach helps create 

a large variety of natural looking inputs, which enables the model to be further fine-tuned 

using the hard labels that are used to create the synthetic samples through BAR. To prevent 

the model from focusing on the same regions, t1
i is further augmented by Brain Aware 

Masking (BAM), which fills the 20% of the anatomical brain regions that are left untouched 

in the swapping stage with random noise. Then, t2
i is augmented by either in-painting [18] or 

out-painting [19], and local pixel shuffling [20], which are all adopted for 3D inputs. During 

supervised pre-training, t1
i and t2

i are then used to train a Siamese network. Here a continuous 

valued supervised contrastive loss is used as given in [12]:

LNCE
c = − ∑

k = 1

n φ(yk
p, yi

p)
∑j = 1

b φ(yj
p, yi

p)
log eθ(t1

i , t2
k)

1
b ∑j = 1

b eθ(t1
i , t2

j)

(4)

where φ denotes a distance kernel between two labels, which in our case are the soft 

labels of mixtures given in Eq.3. Hence, we explicitly force our model to learn the relative 

similarity of augmented versions, and bring similarly mixed MRIs together by focusing on 

anatomically replaced brain regions. Then a 3D reconstruction (recon) objective [7] between 

the anchor MRI and the decoder-processed second augmented copy t2
i (that does not contain 

any replacements from another MRI) is trained as follows:

Lrecon = t2
i − Xi 1

(5)

The final pre-training loss is then calculated as α1LNCE
c + α2Lrecon. We conducted a 

hyperparameter search based on the validation set, and found that α1 = α2 = 1 yields the 

best results.

Model Architecture.

We utilize a 3D Vision Transformer (ViT) [21] as our encoder with 10 layers and 12 

attention heads. Our ViT takes a 3D input volume with resolution (H, W , D) where H, W , D
are each 96, and sequences it in non-overlapping flattened patches with resolutions of 16 × 

16 × 16. This creates H × W × D/163 = 216 patches for each MRI. All patches are projected 

into a 768-dimensional embedding space and added on the learnable positional embeddings. 

The learnable [cls] token is added at the beginning of the sequence of embeddings, so 

each MRI is represented with a 217 × 768 dimensional matrix. Then we use multi-head 
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self-attention and multilayer perceptron sublayers, both of which utilize layer normalization 

[22]. For our decoder, we use 2 layers of Convolutional Transpose layers which reconstruct 

the MRIs from 216 × 768 latent representations ([cls] is not used during reconstruction). The 

model outputs two tensors, a reconstructed output for the recon objective and the cls token 

for the contrastive objective.

3 Experimental Settings

Data:

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset2 in this work. 

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, positron emission tomography, other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment and early AD. We include all participants across the ADNI 1–2-3 

cohorts that have structural T1 MRI scans divided in 246 Alzheimer’s patients (AD) and 597 

healthy controls (CN), which totals to 3306 MRIs. The data is first registered to the ICBM 

template, then skull stripping and bias field correction are conducted, and the resulting MRIs 

are resampled to 96 × 96 × 96 voxels along the sagittal, coronal and axial dimensions. 

The data is split into training and testing sets that do not have overlapping subjects, which 

prevents data leakage [3]. The average age of subjects in the training and testing sets are 

roughly similar and around 77. 5-fold cross validation is conducted, and every time one of 

the folds is used to select the model parameters and tested on the individual test set.

Implementation Details:

We used Pytorch [23] and MONAI3 to implement our models. In all our experiments, we 

used the ADAM optimizer, with a learning rate of 10−4 for pre training and 3∗10−5 for 

fine tuning stages. σ = 0.8 is used for our RBF kernel φ. We trained our models using 4 

NVIDIA RTX A4000 GPUs, having 16Gb VRAM each; a batch size of 4 is employed 

during pre-training due to computation limits of 3D modalities and a batch size of 12 is 

used during fine tuning. For fine tuning, we used 2 layers of MLP with 128 and 64 neurons 

that we attach on top of our [cls] token and trained with binary cross entropy loss. For 

augmentations, we used MONAI’s RandCoarseDropout and RandCoarseShuffle functions 

with holes = 6, spatial size = 5 for inner cut, holes = 6, spatial size = 20 for outer cut, and 

holes = 10 and spatial size = 5 for pixel shuffling.

Experimental Design:

We compared the performance of our proposed framework against: 1) Training a model from 

scratch, 2) Self-Supervised pre-training + fine-tuning, 3) Modified CutMix based supervised 

pre-training + fine tuning. For training from scratch, we used a 3D ViT as our encoder. For 

the self-supervised approach, we tested with three different settings to see the individual 

contributions of contrastive objective, reconstruction objective and their combination. For 

2adni.loni.usc.edu.
3https://monai.io/.
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the modified Cutmix, we replace a number of smaller 3D patches from the target MRI to the 

anchor MRI, instead of a single patch. For augmentations, we used inner and outer cutouts 

with equal probability for both augmented views, followed by pixel shuffling. Finally, we 

tested the performance of BAR against CutMix.

4 Experimental Results

The results for the AD vs NC task are shown in Table 1. As expected, both self-supervised 

and supervised pre-training outperform training from scratch. For the self-supervised 

approach, when trained alone, the contrastive objective yields the worst results, especially on 

recall. We hypothesize that this is caused by the large number of false positives due to the 

binary nature of the problem. Because the CN case is more abundant in the training data, 

that class is more affected, thus explaining the poor recall rate. In some cases, the anchor 

might even be pushed apart against a sample from the same subject, which is non-optimal. 

Interestingly, when combined with the recon objective, the contrastive objective provides 

a slight boost to the performance. Recon stabilizes the learning when combined with the 

contrastive loss (which is tricky to train as it depends on the intensity of the masking ratio 

from inner-outer cuts in earlier iterations, and it is quite unstable) and grants a performance 

boost. Finally, we compare CutMix with BAR, and see that BAR outperforms CutMix both 

with and without the recon objective. BAR is especially better in precision, which shows that 

it is better in detecting AD related atrophy. Also, in both cases, using the recon loss during 

pre-training yields a substantial performance boost.

Ablation Study on Brain Aware Masking in Self-supervised Case:

We test the performance of BAM, (i.e., we randomly selected and filled 3D anatomical 

brain regions with noise) against the use of inner and outer cuts in a self-supervised manner. 

When fine-tuned, the performance is comparable to inner outer cuts with an overall accuracy 

of 83.54±1.8 when trained with Contrastive + Recon with a similar drop ratio used in 

inner-outer cuts.

Ablation Study on the Selection of Beta Distribution for BAR:

We tried two different beta distributions for sampling brain regions in BAR, a left skewed 

one with parameters of beta(0.2, 0.8) and a uniform distribution with beta(1,1). We obtained 

an overall accuracy of 86.9±1.5 with the left skewed one as opposed to 87.2±1.3 with 

the uniform one. We argue that the replacement ratio sampled from the left skewed beta 

distribution makes somewhat of an easier objective with less replacements and thus is easier 

to solve. However, more research is needed to find the optimal replacement ratio.

Ablation Study on Further Transferability:

To see how much further transferability is possible, we froze the ViT encoder in the BAR 

framework and trained an MLP with the cls tokens of the encoder. We obtained an accuracy 

of 85.2 which shows that there is further room for the same features to be used for fine 

tuning, as the fine-tuned model yields about 87.22. We argue that this is the case because 

we do not directly use our hard labels during pre-training but use them for creating soft 
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labels and realistic looking synthetic images instead, thus their entropic capacity is not fully 

exhausted during the pre-training phase.

Ablation Study on Directly Using the Hard-labels During Pre-training:

We also compared our soft-label supervised contrastive learning + fine-tuning approach 

against hard-label supervised contrastive learning + fine-tuning approach. To that end, we 

utilized hard-labels and no replacements during pre-training of supervised contrastive loss 

[8] + recon loss, using inner outer cuts and pixel shuffling for both t1
i and t2

i. This approach 

is produces lower quality embeddings compared to the soft-label approach as it yields an 

accuracy around 83.7% by training an MLP on top of the frozen encoder, and its fine tuning 

results are 84.7%.

5 Discussion and Conclusion

We proposed a new framework for AD detection that combines a novel augmentation 

strategy, BAR, which leverages 3D anatomical brain regions to create synthetic MRIs and 

labels. We showed that, when pre-trained with the synthetic samples, a continuous valued 

supervised contrastive loss is very effective for the AD detection task. We experimented on 

the public dataset ADNI and showed that our approach outperforms training from scratch 

as well as self-supervised approaches. Furthermore, we compared BAR with (CutMix), a 

popular synthetic data generation strategy into our framework, and showed that, for the 

AD detection task, using medically relevant brain regions is superior to replacement with 

arbitrary patches. For future work, We plan to expand our dataset to see how scaleable this 

framework is with larger datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
Overall architecture of the proposed method. A number of anatomically-relevant 3D brain 

regions are taken from Xj and replaced in the same part of Xi where j ≠ i. The replaced 

version, t1
i, is followed by BAM, where another brain region is replaced with random noise. 

Then t2
i undergoes inner-outer cuts and pixel shuffling, and a Siamese ViT is used to get 

the cls tokens for both views, which in turn are used to compute the contrastive loss. 

Furthermore, a decoder is used to generate an image from t2
i (which has no replacements) 

and a reconstruction loss is calculated between the recon 2 and the anchor Xi.
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Table 1.

Fine-tuning results for AD vs. CN case; best is shown in bold

Framework Method Precision Recall Accuracy

No Pre Training ViT from scratch 74.38±7 85.6±3.1 80.83±3

Self Supervised Pre-Training + Fine Tuning Contrastive 78.42±4.5 81.18±1.6 80.1±1.9

Recon 78.6±5 85.57±1.1 82.69±2.5

Contrastive + Recon 80.2±4.1 85.77±2 83.4±1.7

Supervised Pre-Training +Fine Tuning CutMIX 83.06±4.8 87.08±3.5 85.29±2.8

CutMIX + Recon 84.6±3.8 87.9±2.2 86.4±1

BAR 84.7±3.3 87.6±2.1 86.3±1.1

BAR + Recon 86.24 ± 3 88.08 ± 2.3 87.22 ± 0.8
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