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Abstract

Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis
of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection
and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T
lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 anti-
gens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure,
and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and rela-
tively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being
non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can
stimulate the production of high levels of IFN-y* T lymphocytes in individuals with ATB, LTBI, and health controls.

IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372,
AUC=0.8214, 95% (I [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incor-
porated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct

a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance

for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In sum-
mary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5,
and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.
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Introduction
Tuberculosis (TB) is a chronic infectious disease caused
by Mycobacterium tuberculosis (MTB), with pulmonary
TB being the most common form. According to the
World Health Organization (WHO) Global Tuberculo-
sis Report 2023, there were 10.6 million new TB cases
and 1.3 million TB-related deaths worldwide in 2022
[1]. By 2022, 30 high-burden countries will account
for 87% of the world’s tuberculosis cases, with China
ranking third with 7.1%, after India (27%) and Indone-
sia (10%) [2]. Previous studies have shown that about
one-third of the global population infected with TB
develops active tuberculosis (ATB), while the remain-
ing 90% develop latent tuberculosis infection (LTBI)
[3]. LTBI refers to a special state in which individuals
infected with MTB do not exhibit clinical manifesta-
tions or radiographic changes of active TB but test pos-
itive for a tuberculin skin test (TST) [4]. Without timely
diagnosis and intervention, individuals with LTBI have
a 5-10% lifetime risk of progressing to ATB. However,
when individuals with LTBI are coinfected with human
immunodeficiency virus (HIV), the risk can be as high
as 10%, significantly higher than in HIV-negative pop-
ulations [5-7]. Epidemiological investigations have
shown that 85-90% of newly diagnosed ATB cases are
attributable to LTBI [4]. Therefore, early detection and
differential diagnosis of LTBI form the foundation for
preventing and controlling the transmission of TB.
Currently, the detection methods for LTBI include
TST and interferon-y release assays (IGRAs) [8].
The traditional TST uses the purified protein deriva-
tive tuberculin (PPD) as the antigen, which results
in high false-positive rates among individuals vacci-
nated with Bacillus Calmette-Guérin (BCG) and can-
not distinguish between LTBI and ATB patients [9].
In recent years, new TST diagnostic methods, such as
Diaskintest, C-Tb Skin Test, and EC-test, have been
developed using antigens like early secreted antigen
target protein 6 (ESAT-6) and culture filtrate protein
10 (CFP-10) instead of traditional PPD [10]. In addi-
tion, there are five IGRA test kits, including T-SPOT.
TB, QFT-GIT, QFT-Plus, LIAISONQFT-Plus, and
LIOFeron TB/LTBI [7, 11, 12]. These IGRAs and the
new TST diagnostic methods use CFP-10 and ESAT-6
as stimulating antigens, significantly improving the
diagnostic sensitivity and specificity for MTB infection,
but still cannot distinguish between LTBI and ATB
patients. Therefore, identifying effective LTBI diagnos-
tic candidates and their application to the differential
diagnosis of LTBI are essential for improving the sen-
sitivity and specificity of LTBI diagnosis, reducing the
probability of developing active TB, and promoting TB
prevention and control.
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Research has shown that antigens from the region of
difference (RD) and latency-associated antigens of MTB
hold the most potential as target antigens for distin-
guishing LTBI from ATB [7]. In the preliminary study,
we screened 21 candidate antigens (LTBI-RD-related
antigens) that belong to both the RD-related antigens
and latent infection stage antigens, including Rv1511,
Rv1736¢, Rv1737c, Rv1978, Rv1980c, Rv1981c, Rv2031c,
Rv2626¢, Rv2653c, Rv2654c, Rv2656¢, Rv2657c, Rv2658c,
Rv2659c, Rv2660c, Rv3425, Rv3429, Rv3872, Rv3873,
Rv3878, and Rv3879c [13-31]. We further studied the
Thl-type helper T lymphocyte (HTL) epitopes, cyto-
toxic T lymphocyte (CTL) epitopes, and the number of
interferon-gamma (IFN-y) © T lymphocytes in the pep-
tide pool induced by these candidate antigens in mice
with ATB, LTBI, and healthy controls (HCs). The results
showed that ATB mice had five Th1-dominant peptides,
seven CTL-dominant peptides, and four peptides pool-
induced IFN-y" T lymphocyte frequencies higher than
those in LTBI and HC mice [32]. Additionally, we suc-
cessfully constructed multi-epitope vaccines (MEVs) and
multi-epitope-based diagnostic biomarkers (MEBDBs)
based on the above antigens, demonstrating their good
immunogenicity in LTBI, ATB, and HC populations [33—
38]. Therefore, immunodominant epitopes of LTBI-RD-
related antigens have potential applications in diagnosing
and preventing TB.

In this study, we predicted and screened potential
immunodominant HTL, CTL, and B cell epitopes based
on 15 LTBI-RD-related antigens. We connected these
epitopes using linkers and adjuvants to construct an
MEBDB. The physicochemical properties, immunologi-
cal characteristics, and spatial structures of MEBDB were
analyzed using bioinformatics and immunoinformat-
ics techniques, and the immune responses of MEBDB
were simulated. MEBDB was expressed and purified
in vitro. The immunological characteristics of MEBDB
were validated using enzyme-linked immunospot assays
(ELISPOT) and high-throughput liquid protein analysis,
and its diagnostic performance was evaluated in three
groups: LTBI, ATB, and HCs. The MEBDB constructed in
this study provides new candidate diagnostic molecules
for the differential diagnosis of LTBIL

Results

Prediction of dominant HTL, CTL, and B cell epitopes

and construction of the diagnostic molecule HP16118P
Based on previous research, we further selected 15 LTBI-
RD related antigens with potential for distinguishing
LTBI (Table S1), including Rv1511 [39], Rv1736¢ [13],
Rv1737c¢ [14, 15], Rv1978 [28], Rv1980c [21], Rv198ic
[22], Rv2031c [29-31], Rv2626¢ [16—19], Rv2656¢ [40],
Rv2659c¢ [20], Rv3425 [25-27], Rv3429 [28], Rv3873 [22],
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Rv3878 [23], and Rv3879c [24]. Based on the selected 15
antigens, we further predicted and selected 16 dominant
HTL epitopes, 11 dominant CTL epitopes, and eight
dominant B cell epitopes (Table 1), constituting the cen-
tral part of MEBDB. To enhance the immune effect and
targeting of MEBDB, we added epitope adjuvant pep-
tides human beta-defensin-3 (HBD-3) and PADRE at
the amino terminus, Toll-like receptor 2 (TLR-2) ago-
nist phenol-soluble modulin a 4 (PSMa4) at the car-
boxyl terminus, and 6 His tags (HHHHHH) to connect
all epitopes, forming a novel MEBDB candidate named
HP16118P (Fig. 1a).

Prediction of the physicochemical properties

and immunological characteristics of HP16118P

The physicochemical properties of the HP16118P mol-
ecule are crucial for its immunological functions. We
used the Expasy ProtParam server to predict the phys-
icochemical properties of HP16118P. The results showed
that HP16118P has a molecular weight of 90265.44 Da,
a theoretical isoelectric point of 9.84, a GRAVY index of
75.09, an instability index of 43.02, and an overall aver-
age hydrophilicity of -2.7 (Table S2). The in vivo half-life
showed that HP16118P has a half-life of over 10 hours in
E. coli. Using the Protein-Sol server, the predicted isoe-
lectric point of HP16118P was 10.23, with a solubility of
0.382. In summary, HP16118P is a stable and hydrophilic
protein with moderate solubility.

Furthermore, the HP16118P molecule used for LTBI
discrimination diagnosis must possess good antigenic-
ity and immunogenicity to induce effective immune
responses and should not be allergenic or toxic. Immuno-
genicity analysis of HP16118P revealed an immunogenic-
ity score of 6.43254 and antigenicity scores of 0.7381 and
0.60063 (Table S2). This indicates that HP16118P has
good immunogenicity and can induce immune responses
in immune cells. Additionally, both methods predicted
that HP16118P is non-allergenic, and results from the
Toxin Pred server indicated that HP16118P is non-toxic.
In conclusion, HP16118P is a non-toxic, non-allergenic
protein with good immunogenicity and antigenicity.

Prediction of the spatial structure of HP16118P

and the interactions between HP16118P and TLR-2,

and simulation of the HP16118P-induced immune
response

We used PSIPRED to predict the secondary structure of
HP16118P (Fig. 1b) and found that the HP16118P mol-
ecule contains 844 amino acids, with 41% a-helices, 7%
[B-sheets, and 50% random coils. We further employed
four structure prediction servers (Rebetta, Swiss model,
AlphaFold2, and I-TASSER) to predict the tertiary
structure of HP16118P. Subsequently, we obtained five
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potential tertiary structure models and performed struc-
tural optimization using GalaxyWEB. Each model under-
went quality assessment using ERRAT, VERIFY 3D,
PROCHECK, and WHATCHECK methods (Table 2).
Our results revealed that prior to GalaxyWEB optimiza-
tion, model 5 predicted by [-TASSER exhibited the best
quality: (1) ERRAT provided a quality score of 79.1209
and passed the VERIFY 3D test (at least 80% of the
amino acids have scored >= 0.1 in the 3D/1D profile);
(2) PROCHECK identified 844 residues, with evalua-
tions including 9 items, comprising 7 Errors, 2 Warnings,
and 0 Passes; (3) The Ramachandran plot displayed per-
centages of 65.10% in the core region (favored region),
27.60% in the allowed region, 4.50% in the generously
allowed region, and 2.80% in the disallowed region; (4)
WHATCHECK results comprised 48 items, of which
10 were Errors, 20 were Warnings, and 18 were Passes.
Interestingly, after GalaxyWEB optimization, we found
that model 4 exhibited the best quality: (1) ERRAT pro-
vided a quality score of 73.8538 and passed the VERIFY
3D test (at least 80% of the amino acids have scored >=
0.1 in the 3D/1D profile); (2) PROCHECK identified 844
residues, with evaluations including 9 items, comprising
4 Errors, 3 Warnings, and 1 Pass; (3) The Ramachandran
plot displayed percentages of 81.50% in the core region,
13.40% in the allowed region, 2.20% in the generously
allowed region, and 2.80% in the disallowed region; (4)
WHATCHECK results comprised 46 items, of which 4
were Errors, 15 were Warnings, and 27 were Passes.
Considering the TLR-2 targeting ability of the designed
HP16118P in this study, we analyzed the amino acid
sites involved in the interaction between HP16118P
and TLR-2 using the ClusPro 2.0 online server. LigPlot™
visualization results showed that HP16118P and TLR-2
could dock closely and interact with each other, with a
center energy of -1066.9 kcal/mol and a Lowest Energy
of -1436 kcal/mol (Fig. 1c). Further analysis revealed 12
pairs of interacting amino acid residues (Fig. 1d). Subse-
quently, we used the C-ImmSim server to simulate the
immune response induced by HP16118P. We found that
HP16118P successfully stimulated the immune system,
demonstrating the ability to influence the production
of specific antibodies and various cytokines by immune
cells. The results showed that (1) HP16118P can activate
natural NKs, maintaining their numbers between 325-
375 cells/mm? (Fig. 2a). HP16118P also stimulated the
proliferation and differentiation of macrophages (MA)
and DCs, inducing the proliferation peak of present-
ing-2 type MA cells (Fig. 2b) and DCs (Fig. 2c). Unlike
DCs, the number of resting and active MA cells stabi-
lized at approximately 90 cells/mm?® on the eighth day
after HP16118P-induced immune simulation (Fig. 2b).
HP16118P also significantly activated epithelial cells
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(EPs) (Fig. 2d). Furthermore, HP16118P stimulated the
differentiation and proliferation of B lymphocytes, rap-
idly increasing the number of presenting-2 type B cells,
with the peak of active B lymphocytes reaching on the
fifth day after stimulation (Fig. 2e). Interestingly, we also
observed a significantly high level of HP16118P-specific
IgG and IgM antibodies produced by HP16118P-induced
active B lymphocytes (Fig. 2f).

In addition, we analyzed the immune effects of
HP16118P on specific immune cells. The results showed
that the peak number of memory helper T lymphocytes
(Th) induced by HP16118P can reach 4500 cells/mm?
(Fig. 2g), while the number of active Th cells reached its
peak on the tenth day after immune stimulation (Fig. 2h).
In contrast to Th cells, the ability of HP16118P to induce
the production of memory cytotoxic T lymphocytes (Tc)
by the human immune system remained stable after
immune activation (Fig. 2i). The number of active TC cells
peaked on the fifteenth day after immune stimulation,
while the number of resting TC cells showed an opposite
trend (Fig. 2j). Excitingly, we found that HP16118P can
induce the differentiation of T lymphocytes into Thl-
type lymphocytes, mediating a strong Th1-type immune
response (Fig. 2k). Moreover, we observed that regula-
tory T cells (Tregs/TR) rapidly increased and peaked on
the second day after immune stimulation by HP16118P
(Fig. 21). Finally, we analyzed the ability of HP16118P to
induce immune cells to produce cytokines. We found
that HP16118P can generate high levels of IFN-y, trans-
forming growth factor-p (TGE-f), interleukin 11 (IL-12),
and IL-2 in human immune cells (Fig. 2m).

Successful in vitro expression of HP16118P and increased
number of IFN-y+ T lymphocytes in HCs, ATB, and LTBI
individuals

We inserted the HP16118P gene sequence between the
BamH I and Xho 1 restriction sites of the pET28a(+) plas-
mid while keeping the other gene sequences of the pET-
28a(+) vector unchanged to construct the recombinant
plasmid pET-28a(+)-HP16118P (Fig. 3a). Polyacrylamide
gel electrophoresis results showed that after three rounds
of Ni column affinity chromatography, we successfully
purified the fusion protein HP16118P with a molecular

(See figure on next page.)
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weight between 70-100kDa, as expected (Fig. 3a). To
minimize the impact of endotoxins on the immunogenic-
ity and biological functionality of the PP16118P protein,
we employed the Beyotime Protein Endotoxin Removal
Kit to eliminate endotoxins, followed by the detection of
endotoxin levels using the Beyotime Chromogenic LAL
Endotoxin Assay Kit. The results demonstrated that the
endotoxin concentration in the purified PP16118P pro-
tein, after the removal process, was found to be below
1x10* EU/pg.

We conducted ELISPOT experiments to detect the
number of IFN-y" T lymphocytes induced by HP16118P
and individual HTL and CTL epitopes in every 2.5x10°
peripheral blood mononuclear cells (PBMCs). This exper-
iment included 23 HCs, 24 LTBI, and 19 ATB subjects,
and the number of IFN-y* T lymphocytes was measured
in each group. The results (Fig. 3b) showed that, com-
pared to the auto induction medium (AIM)-negative
control stimulus, the number of IFN-y* T lymphocytes
induced by HP16118P increased, but the difference was
not significant (P>0.05). Compared to HP16118P, the
number of IFN-y* T lymphocytes induced by individual
HTL and CTL epitopes generally remained low. These
data suggest that HP16118P can cause the proliferation
of IFN-y" T lymphocytes compared to individual HTL
and CTL epitopes.

HP16118P induces high levels of cytokine secretion

in PBMCs

To evaluate the consistency of the HP16118P diagnos-
tic molecule in the computer simulation and in vitro-
induced immune response, we performed cytokine
detection on PBMCs collected from HCs, LTBI individu-
als, and ATB patients. Initially, HP16118P induced the
secretion of 35 cytokines in PBMCs, with concentrations
greater than 10000 pg/ml for tissue inhibitor of metal-
loprotease-1 (TIMP-1), more significant than 1000 pg/
ml for granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), IL-6, IL-8, monocyte chemoattractant
protein-1 (MCP-1), macrophage inflammatory protein
1B (MIP-1p), and tumor necrosis factor a (TNF-a), and
greater than 100 pg/ml for IL-1«, IL-10, IL-23, T cell
immunoglobulin and mucin domain-containing protein

Fig. 1 Construction and secondary and tertiary structure analysis of the HP16118P. a Schematic diagram of HP16118P construction. The molecule
contains 844 amino acids, with green representing HTL epitopes, blue representing CTL epitopes, and orange representing B cell epitopes. PSMa4
is a TLR-2 agonist, and PADRE and HBD-3 are auxiliary peptides. b Secondary structure of HP16118P. Pink highlights indicate a-helices, yellow regions
represent 3-sheets, and gray regions represent coils. ¢ Visualization of the molecular docking between HP16118P and TLR-2 using PyMOL software.
d Predicted two-dimensional representation of the interacting amino acid sites between HP16118P and TLR-2, with HP16118P represented in blue
and TLR2 in green. The interacting amino acid sites between HP16118P and TLR2 may provide potential mechanisms for its immunomodulatory

effects.
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Table 2 Prediction of HP16118P spatial structural features using different models and algorithms
Assessment  Level 1 indicators Level 2 indicators Rebetta Swiss model AlphaFold2 |-TASSER GalaxyWEB
methodology
Model 1 ERRAT Errat Failed. No results.  80.2469 39.1691 770202  71.8362
VERIFY 3D At least 80% Fail Fail Fail Fail Fail
of the amino acids
have scored >=0.1
in the 3D/1D profile.
PROCHECK Ramachandran plot core 100.00% 84.40% 41.20% 68.70%  80.60%
allow 0.00% 13.00% 18.70% 24.80% 14.20%
gener 0.00% 2.60% 13.30% 4.20% 2.10%
disall 0.00% 0.00% 26.90% 2.40% 3.10%
residues 7 89 844 844 844
evaluations Error 0 5 7 7 4
Warning 0 1 1
Pass 8 2 1 1
WHATCHECK ~ Whole 41 47 47 48 46
Error 4 8 8 10 5
Warning 15 17 19 16
Pass 33 24 22 19 25
Model 2 ERRAT Errat Failed. No results.  68.8889 51.567 79.0382 755611
VERIFY 3D At least 80% Fail Fail Fail Fail Fail
of the amino acids
have scored >=0.1
in the 3D/1D profile.
PROCHECK Ramachandran plot core 100.00% 87.30% 55.20% 65.10%  81.80%
allow 0.00% 12.70% 19.90% 28.20% 13.40%
gener 0.00% 0.00% 10.70% 5.10% 1.60%
disall 0.00% 0.00% 14.20% 1.60% 3.10%
residues 7 64 844 844 844
evaluations Error 0 3 7 7 4
Warning 0 2 1 2 3
Pass 8 3 1 0 1
WHATCHECK ~ Whole 41 47 47 49 46
Error 6 8 1 4
Warning 12 17 18 15
Pass 33 29 22 20 27
Model 3 ERRAT too small 68.5714 59.5982 68.2741 75.5556
VERIFY 3D At least 80% too small Fail Fail Fail Fail
of the amino acids
have scored >=0.1
in the 3D/1D profile.
PROCHECK Ramachandran plot core too small 91.00% 56.60% 49.10%  81.20%
allow too small 6.40% 25.20% 3640%  13.60%
gener too small 1.30% 13.10% 7.50% 2.50%
disall too small 1.30% 5.10% 7.00% 2.70%
residues too small 91 844 844 844
evaluations Error too small 4 6 6 4
Warning too small 1 2 3 3
Pass too small 3 1 0 1
WHATCHECK ~ Whole too small 47 47 48 46
Error too small 6 8 1M 4
Warning too small 14 16 19 15
Pass too small 27 23 18 27
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Table 2 (continued)

Page 9 of 23

Assessment  Level 1 indicators

methodology

Level 2 indicators Rebetta

Swiss model AlphaFold2 I-TASSER GalaxyWEB

Model 4 ERRAT too small 53.8462 59.3596 65.7895  73.8538
VERIFY 3D At least 80% too small Fail Fail Pass Pass
of the amino acids
have scored >=0.1
in the 3D/1D profile.
PROCHECK Ramachandran plot core too small 71.40% 56.30% 4640%  81.50%
allow too small 21.40% 26.60% 38.50% 13.40%
gener too small 7.10% 12.20% 9.70% 2.20%
disall too small 0.00% 4.90% 5.40% 2.80%
residues too small 35 844 844 844
evaluations Error too small 4 6 7 4
Warning too small 2 1 2 3
Pass too small 2 1 0 1
WHATCHECK ~ Whole too small 44 47 49 46
Error too small 7 8 1M 4
Warning too small 7 15 19 15
Pass too small 30 24 19 27
Model 5 ERRAT too small 89.3617 75.3463 79.1209  72.5248
VERIFY 3D At least 80% too small Fail Fail Pass Fail
of the amino acids
have scored >= 0.1
in the 3D/1D profile.
PROCHECK Ramachandran plot core too small 84.40% 57.50% 65.10%  81.20%
allow too small 15.60% 26.40% 27.60% 13.60%
gener too small 0.00% 12.10% 4.50% 2.10%
disall too small 0.00% 4.00% 2.80% 3.10%
residues too small 55 844 844 844
evaluations Error too small 3 6 7 4
Warning too small 3 1 2 3
Pass too small 2 1 0 1
WHATCHECK  Whole too small 46 47 48 46
Error too small 7 8 10 5
Warning too small 14 15 20 15
Pass too small 25 24 18 26

3 (TIM-3), and vascular endothelial growth factor A
(VEGEF-A) (Fig. S1). These data indicate that HP16118P
possesses strong immunogenicity and can induce various
cytokine production in immune cells.

Further analysis of the differences in HP16118P-
induced cytokines among the three groups revealed that
IL-5 (P=0.0009), IL-17F (P=0.0076), IL-1a (P=0.0020),
IL-1B (P=0.0106), IL-2 (P=0.0004), TNF-a (P=0.0117),
monokine induced by gamma (MIG) (P=0.0151), and
hepatocyte growth factor (HGF) (P=0.0065) were sig-
nificantly lower in the LTBI group compared to the HC

group. IL-17F (P=0.0171), TIM-3 (P=0.0224), and vas-
cular endothelial growth factor receptor 2 (VEGF-R2)
(P=0.0101) induced by HP16118P were significantly
lower in the ATB group compared to the HC group
(Fig. 3¢). IL-5 (P=0.0372) induced by HP16118P was sub-
stantially lower in the LTBI group compared to the ATB
group (Fig. 3c). Furthermore, we compared the differ-
ences in the levels of 35 cytokines produced by PBMCs
from the ATB, LTBI, and HC groups in response to
PBS and HP16118P stimulation using the R package
"autoReg". Our results revealed that compared to the
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Fig. 2 Prediction of innate and adaptive immune responses induced by HP16118P using the C-ImmSim server. The C-ImmSim server was used

to predict the innate natural killer cells (@), macrophages (b), dendritic cells (c), epithelial cells (d), B cells (e), antibody levels (f), memory Th cells

(g, classified by memory cell count), effector Th cells (h, classified by active, resting, non-responsive, and replicative counts), memory TC cells

(i, classified by memory cell count), effector TC cells (j, classified by active, resting, non-responsive, and replicative counts), Th cell subtypes (k,
including ThO, Th1,Th2, Th17), TR subgroups (I), and cytokine levels (m) induced by HP16118P after immune stimulation in humans. Abbreviations:
TH Mem, memory T helper cells; TC, cytotoxic T cell; NK cells, natural killer cells; MA, macrophage; DC, dendritic cell; EP, epithelium; TR, regulatory T

cells; Mem, Memory; TGF-83, transforming growth factor-3

negative control PBS, HP16118P significantly induced
higher levels of G-CSF, GM-CSF, IEN-y, IL-1«, IL-18,
IL-10, IL-12p70, IL-17F, IL-2, IL-21, IL-22, IL-23, IL-31,
IL-4, IL-5, IL-6, IP-10, MCP-1, MCP-3, MIP-1p, PD-1,
TNF-a, and VEGF-A in PBMCs from individuals with
ATB, LTBI, and/or HC (Table 3).

Correlation analysis of HP16118P-induced cytokines

We performed principal component analysis (PCA) and
correlation analysis to understand further the poten-
tial relationship between HP16118P-induced cytokines
in healthy individuals, ATB patients, and LTBI indi-
viduals. The results showed that in LTBI individuals
(Fig. S2a), the cumulative variation percentages of the

concentrations of 35 cytokines induced by HP16118P
on principal component 1 (PC1) and PC2 were 57.45%
and 19.12%, respectively. We observed positive corre-
lations between IL-1a, IL-1p, IL-5, IL-13, IL-21, IL-23,
programmed cell death-1 (PD-1), granulocyte-colony
stimulating factor (G-CSF), TNF-a, GM-CSF, and IFN-
a, while IL-10 and IFN-y tended to cluster together
and showed negative correlations with MIP-1B and
IL-6. Interestingly, we also found negative correlations
between VEGF-A and most other cytokines. In ATB
patients (Fig. S2b), the cumulative variation percent-
ages of the concentrations of 35 cytokines induced by
HP16118P on PC1 and PC2 were 47.25% and 20.29%,
respectively. We found that IL-10, IFN-y, GM-CSE,
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Fig. 3 Construction and expression of HP16118P and the number of IFN-y* T lymphocytes and cytokines induced by HP16118P in HC, ATB,

and LTBI groups. a Schematic diagram of the recombinant plasmid of HP16118P and protein purification gel electrophoresis. b Detection of IFN-y*
T lymphocytes by enzyme-linked immunospot assay (ELISPOT) after HP16118P stimulation of PBMCs. HP16118P, 12 HTL epitope peptides, 10

CTL epitope peptides, AIM medium (negative control), and CE (positive control) were used to stimulate PBMCs from healthy individuals (n = 23),
ATB patients (n = 19), and LTBI individuals (n = 24). The frequency of IFN-y* T lymphocytes was detected using the ELISPOT method. ¢ Differential
cytokine induction by HP16118P in HC, ATB, and LTBI groups. PBMCs from HCs (n=7), ATB (n=8), and LTBI (n=7) individuals were stimulated

with HP16118P in vitro, and the culture supernatant was collected after 48 hours for high-throughput liquid chromatography protein analysis

to detect the expression levels of 35 cytokines. Results showed significant differences in cytokines, including IL-5, IL-17F, IL.-1q, IL-16, IL-2, TNF-a, MIG,
HGF, TIM-3, VEGF-R2, among the three groups. The data were analyzed using the non-parametric Kruskal-Wallis test, with a significance level of P <
0.05. The data are presented as medians and interquartile ranges. AIM, auto-induction medium; SFCs, spot-forming cells; HTL, helper T lymphocytes;
CTL, cytotoxic T lymphocytes; CE, the fusion protein of CFP-10 and ESAT-6; ATB, active tuberculosis; LTBI, latent tuberculosis infection; PBMC,

peripheral blood mononuclear cells

G-CSE, and IL-12p70 clustered together. In contrast,
IL-1a, IL-1B, IL-2, IL-17F, and IL-22 clustered together,
showing positive correlations among cytokines within
each cluster and negative correlations between IL-21
and most other cytokines. In HCs (Fig. S2c), the cumu-
lative variation percentages of the concentrations of 35
cytokines induced by HP16118P on PC1 and PC2 were
44.56% and 26.13%, respectively. We also found that
IL-17F and IL-1P clustered together. In contrast, IL-13,
IL-21, and GM-CSF clustered together, showing posi-
tive correlations among cytokines within each cluster

and negative correlations between VEGF-A and most
other cytokines.

Discriminatory diagnostic performance analysis

of HP16118P in HC, ATB, and LTBI populations

Based on the aforementioned results, we further selected
the differentially significant IL-5 and IL-17F as biomark-
ers for discriminating diagnosis among ATB, LTBI, and
HCs. The results are shown in Table S3: (1) Induced IL-5
by HP16118P was able to distinguish LTBI individu-
als from ATB (P=0.0372, area under the curve (AUC)
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=0.8214, 95% CI [0.5843 to 1.000]) and HC (P=0.0026,
AUC=0.9643, 95% CI [0.8770 to 1.000]) individuals,
with sensitivity and specificity of 100% and 71.43% (ATB
vs. LTBI) and 100% and 85.71% (HC vs. LTBI), respec-
tively (Fig. 4a). (2) Induced IL-17F by HP16118P was
able to distinguish ATB individuals from HC (P=0.0088,
AUC=0.9184, 95% CI [0.7716 to 1.000]) individuals, with
sensitivity and specificity of 71.43% and 85.71% (Fig. 4b).
IL-17F could also distinguish LTBI individuals from HC
(P=0.0038, AUC=0.9464, 95% CI [0.8299 to 1.000]) indi-
viduals, with sensitivity and specificity of 87.50% and
85.71%, respectively. (3) The combination of IL-5 and
IL-17F was able to distinguish LTBI individuals from
HC (P=0.0159, AUC=0.7589, 95% CI [0.5842 to 0.9336])
individuals, with sensitivity and specificity of 50.00% and
85.71% (Fig. 4c).

ATB and LTBI differential diagnostic model based on 15
machine learning algorithms and HP16118P-induced
cytokines

Using the R package “autoReg’, we conducted univariate,
multivariate, and stepwise logistic regression analyses
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on the expression levels of 35 cytokines induced by
HP16118P in the ATB and LTBI groups to select poten-
tial models for distinguishing LTBI and ATB. The results
(Table S4) demonstrated that the cytokines GM-CSF (P
=0.999, OR = 1.16, 95%CI [0.00-5.5918E+140]), IL-23 (P
= 0.999, OR = 0.27, 95%CI [0.00-Inf]), IL-5 (P = 0.999,
OR = 0.00 95%CI [0.00-Inf]), and MCP-3 (P = 0.999,
OR = 0.01 95%CI [0.00-Inf]) were included in the step-
wise logistic regression model. Subsequently, these four
cytokines were integrated into the construction of the
machine learning models, and the detailed results of 19
diagnostic performance indicators for 15 machine learn-
ing models were presented in Table S5. The heatmap
of the data results was shown in Fig. 5a. The Quadratic
Discriminant Analysis (QDA) model was selected as the
optimal model due to its excellent diagnostic perfor-
mance (Classif. ce = 0.2000, Accuracy = 0.9333, Kappa
0.8649, Accuracy Lower = 0.6805, Accuracy Upper
0.9983, Accuracy Null = 0.5333, Accuracy P Value
0.0011, McNamara P Value = 1.0000, Sensitivity =
1.0000, Specificity = 0.8571, Positive Predictive Value
= 0.8899, Negative Predictive Value = 1.0000, Precision
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Fig. 4 ROC curves of HP16118P-induced IL-5 and IL-17F cytokines for differential diagnosis of ATB, LTBI, and HCs groups. ROC curves were used
to determine the sensitivity and specificity of HP16118P-induced cytokines IL-5 (a), IL-17F (b), and their combination (c) in the differentiation of ATB
and LTBI using the Wilson/Brown method. Each graph indicates the AUC and P-value, with P < 0.05 indicating a significant difference
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of the multi-epitope biomarker HP16118P advances tuberculosis diagnosis by differentiating ATB from LTBI. The discovery of IL-5 as a specific
differentiating cytokine highlights the biomarker’s utility and its potential to enhance immune response, showcasing a significant breakthrough

in tuberculosis management and global health impact
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= 0.8899, Recall = 1.0000, F1 = 0.9412, Prevalence =
0.5333, Detection Rate = 0.5333, Detection Prevalence =
0.6000, and Balanced Accuracy = 0.9268).

Discussion

The discrimination and diagnosis of LTBI have always
been challenging in the early detection and precise pre-
vention of TB. Compared to the early PPD test, the
newly developed TST methods and IGRAs have signifi-
cantly improved the sensitivity and specificity of diag-
nosis by replacing PPD with ESAT-6 and CFP-10, thus
excluding interference from BCG vaccination and envi-
ronmental non-tuberculous mycobacterial infections
[41-44]. Unfortunately, these methods cannot distin-
guish between latent and active TB, resulting in the ina-
bility to differentiate between ATB and LTBI.

Our efforts to identify biomarkers for the discrimi-
nation of LTBI and ATB led us to select 15 promising
antigens from a previous identification of 21 LTBI-RD-
related antigens Fig. 5b. These selected antigens allowed
us to construct our novel LTBI diagnostic biomarkers
by identifying dominant epitopes associated with HTL,
CTL, and B cells [34, 45, 46]. Given epitopes’ inher-
ent limitations in immunogenicity, we enhanced our
biomarker with the TLR-2 agonist PSMa4 and helper
epitopes HBD-3 and PADRE, augmenting their immuno-
genic potential and stability [47-51]. These adjuncts not
only improve immune response but also signify advances
in MTB control and vaccine strategies [47, 52—54].

Advances in bioinformatics and immunoinformatics
have revolutionized the development of diagnostic bio-
markers and vaccines [47, 55, 56]. Through reverse genet-
ics, we analyzed HP16118P, an LTBI and ATB diagnostic
biomarker, and found it to be stable, hydrophilic, and
moderate in solubility, weighing 90265.44 Da (Fig. 5b). It
exhibits strong antigenicity and immunogenicity, capable
of eliciting an immune response without causing sensiti-
zation or toxicity. Simulations via the C-ImmSim server
confirmed that HP16118P activates innate immune
cells like NK cells, DCs, and MAs, essential for the ini-
tial defense against MTB and adaptive immune response
orchestration [47, 49, 57]. Furthermore, HP16118P
effectively stimulates effector and memory T lympho-
cytes, as well as Th1 CD4™" T cells, which play a vital role
in MTB clearance [58]. This is supported by cytokine
induction including IFN-y, IL-6, and TGF-p, as con-
firmed by in vitro experiments and consistent with pre-
vious research on immune molecular markers in MTB
response [59]. Our findings also align with biomarkers
like IP-10, IEN-y, IL-1ra, CCL3, VEGF, TNF-a, MCP-1,
and GM-CSF relevant in TB diagnosis [60—-63], indicat-
ing that HP16118P may effectively contribute to TB diag-
nostic approaches.
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Our research extended to examining the response of
35 cytokines to HP16118P in ATB, LTBI, and HC groups.
We observed significantly lower cytokine levels, namely
IL-1a, IL-1B, IL-17F, IL-2, IL-5, MIG, HGF, and TNF-a,
in LTBI compared to HCs, while IL-17F and TIM-3 levels
were markedly reduced in ATB versus HCs. Notably, IL-5
levels were significantly reduced in the LTBI group com-
pared to ATB, highlighting its potential as a diagnostic
marker. We identified IL-5 and IL-17F as key cytokines
demonstrating differential expression and represent-
ing distinct pro-inflammatory cytokine types [64], with
varying levels across MTB infection stages. IL-5 distin-
guished LTBI from ATB with high sensitivity and speci-
ficity (100% and 71.43%, respectively), whereas IL-17F
modestly differentiated ATB from HCs (71.43% sensitiv-
ity and 85.71% specificity). Previous research in Nairobi
reported sensitivity and specificity rates for IL-5 and IL-
17A in differentiating ATB from LTBI at 75.0%/91.7% and
66.7%/92.9%, correspondingly [65]. Our findings are sup-
portive of the use of IL-5 as a differentiator between LTBI
and ATB, although with varying results for IL-17A and
IL-17F when compared to the Kenyan study.

The IL-5 cytokine response to HP16118P stimulation
offers insights for differentiating LTBI from ATB. IL-5,
associated with Th2 immunity and involved in eosinophil
activation and B cell function [66], may display varying
levels between LTBI and ATB due to distinct immune
reactions. LTBI is marked by a Thl-dominated profile
with lower IL-5, while ATB may exhibit increased IL-5
due to a mixed Th1/Th2 response [47, 49, 67]. Assess-
ing IL-5 levels relative to other cytokines in response to
HP16118P can help identify the stage of Mycobacterium
tuberculosis infection. Nonetheless, IL-5 should be ana-
lyzed alongside a comprehensive cytokine profile for an
accurate diagnosis [68, 69]. Further research is necessary
to fully understand IL-5’s diagnostic role in TB infec-
tion. Furthermore, the IL-17 cytokine family, key play-
ers in chronic inflammation and associated diseases,
is predominantly produced by Th cells [70]. Among its
six members (IL-17A-F) [71], IL-17A and IL-17F were
thought to act similarly due to shared receptors. How-
ever, distinct roles in mucosal immunity and allergic
reactions have been observed in knockout mice studies,
differentiating their biological functions [72]. This differ-
ence might explain the disparity between our findings on
IL-17F and the Kenya study on IL-17A in discerning ATB
from LTBI.

As machine learning (ML) becomes integral in diag-
nosing TB, its use in differentiating LTBI from ATB
remains limited [69, 73]. Our study aimed to address this
gap by comparing traditional ROC methods with ML
in diagnosing latent infections. Through logistic regres-
sion, we pinpointed four cytokines (GM-CSF, IL-23, IL-5,
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MCP-3), with the QDA model demonstrating excellent
diagnostic accuracy at 0.93. This suggests a move towards
computational analyses for data potential maximization
in future research. However, it’s vital to consider the sam-
ple size, maintaining a minimum of ten times the number
of variables to avoid overfitting—a challenge we encoun-
tered with our preliminary HP16118P validation. Our
study’s 19 diagnostic indicators provide a comprehensive
comparison framework for future LTBI and ATB differ-
entiation models, highlighting the need to extend beyond
traditional measures like AUC, sensitivity, and specificity.

This study also has several limitations: (1) The HTL,
CTL, and B cell epitopes comprising the diagnostic
molecule HP16118P were not individually validated for
their immunogenicity in vitro, but were instead based
on bioinformatics and immunoinformatics analysis; (2)
The sample size for evaluating HP16118P’s discrimina-
tory diagnosis of LTBI and ATB was relatively small, and
further improvements are needed to enhance the sta-
bility of the ROC results; (3) Despite using 15 machine
learning algorithms to construct the LTBI discriminatory
diagnostic model based on the analysis of HP16118P-
induced levels of 35 cytokines in different populations
(ATB, LTBI, HCs), the results of multiple machine learn-
ing algorithms were missing due to the small sample size.
Despite these limitations, the LTBI discriminatory diag-
nostic candidate HP16118P, constructed based on bioin-
formatics and immunoinformatics, demonstrated good
discriminatory diagnostic capability in the current small
sample size cohort. Its diagnostic efficacy needs further
confirmation in larger sample-size studies.

Conclusion

The biomarker HP16118P developed in this study exhib-
its strong antigenicity and immunogenicity for distin-
guishing between ATB and LTBL. It is non-allergenic and
non-toxic, effectively stimulating the immune system
and promoting the proliferation of B lymphocytes and
T lymphocytes, producing high levels of antibodies and
cytokines. The immunogenicity of HP16118P was con-
firmed through ELISPOT and high-throughput liquid-
phase protein analysis, which demonstrated its ability to
induce the production of IFN-y* T lymphocytes and var-
ious inflammatory cytokines. Additionally, the cytokine
IL-5 induced by HP16118P shows potential in differenti-
ating between LTBI and ATB individuals, thus serving as
a promising candidate target for ATB and LTBI discrimi-
nation diagnosis.

Materials and methods

Selection of LTBI-RD antigens

The antigens comprising HP16118P were chosen based
on their documented association with latent tuberculosis
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infection (LTBI) and their capacity to evoke an immune
response in individuals with LTBI. This study selected 15
antigens with the potential for differential diagnosis from
the previously screened LTBI-RD related antigens [7],
including Rv1511, Rv1736¢, Rv1737¢c, Rv1978, Rv1980c,
Rv1981c, Rv2031c, Rv2626c, Rv2656c, Rv2659c, Rv3425,
Rv3429, Rv3873, Rv3878, and Rv3879c. These antigens
have been identified through comprehensive literature
reviews, experimental evidence, and bioinformatics
analysis, ensuring their relevance to TB pathogenesis and
diagnosis. The amino acid sequences of these 15 proteins
were downloaded in FASTA format from the National
Centre for Biotechnological Information (NCBI).

Prediction and selection of HTL epitopes

Allele Frequency Net Database was used to screen China-
specific MHC-II restrictive alleles. The Immune Epitope
Database (IEDB) was employed to predict dominant HTL
epitopes for the Chinese population [74]. According to
the literature reported, for MHC-II allelic restricted HTL
epitopes, epitopes with lower percentile ranking scores
have higher binding affinity to MHC-II [75]. Epitopes
with percentile ranking score <0.5 or IC50 value <500nM
were selected for further analysis as candidate epitopes.
VaxiJen2.0 was used to predict the antigenicity of HTL
epitopes [76], and epitopes with antigenicity scores>0.7
were selected. IFN epitope server was used to predict
HTL epitopes with good IFN-y inducible capability [77].
Aller TOP2.0 and AllergenFP1.0 were then used to pre-
dict the non-allergenicity of HTL epitopes with positive
IFN-y inducible capability [78, 79]. The selected epitopes
from these criteria were regarded as candidate epitopes.

Prediction and selection of CTL Epitopes

The IEDB database was used to predict dominant CTL
epitopes for the Chinese population. Epitopes with a
Percentile Rank score less than 0.5 were selected as
candidate epitopes [75]. The immune characteristics of
epitopes were predicted using the IEDB database, and
epitopes with scores greater than 0 were selected as
candidate epitopes [80]. VaxiJen 2.0 was used to predict
the antigenicity of CTL epitopes, with a threshold set at
0.5. Epitopes with antigen scores greater than 0.7 were
selected. Aller TOP2.0 and AllergenFP1.0 were further
used to predict the non-allergenicity of the target men-
tioned above epitopes, resulting in a list of candidate
epitopes for epitope molecule construction.

Prediction and selection of B-cell epitopes

In addition to T-cell-mediated direct or cytokine-medi-
ated indirect interactions with MTB during anti-TB
infection, B-cell-mediated humoral immunity also plays
an important role [81]. Therefore, the prediction and
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selection of B-cell epitopes were carried out simultane-
ously. ABCpred prediction server was used to predict lin-
ear B-cell epitopes [82]. The B-cell epitopes were sorted
by score, and the higher the score, the higher the likeli-
hood of being an epitope. To further improve the pre-
diction accuracy of B-cell epitopes, IEDB B Cell Epitope
Prediction was used. Subsequently, the B-cell epitopes
predicted by different servers were compared, and the
B-cell epitopes predicted by all servers were selected as
the final selected epitopes.

Construction of MEBDB

The construction of the MEBDB involved carefully
selecting adjuvant and linker sequences to enhance its
immune effect and targeting ability. We employed a sys-
tematic approach based on the analysis of predicted
epitopes and available literature to achieve this. From
the predicted epitopes mentioned above, we selected
16-18 HTL epitopes, 10-12 CTL epitopes, and 6-8 B-cell
epitopes for inclusion in the MEBDB. We chose specific
linker sequences for each cell type to ensure proper spa-
tial orientation and interaction of the epitopes within
the construct. GPGPG was selected as the linker for
HTL epitopes, AAY for CTL epitopes, and KK for B-cell
epitopes. In addition to the linkers, we incorporated
adjuvants and auxiliary peptides to enhance the immu-
nogenicity and immune response induction of HP16118P.
Adjuvant PSMoa4 [83], adjuvant linker EAAAK, and aux-
iliary peptides HBD-3 [84] and PADRE [49] were care-
fully selected based on their documented efficacy in
enhancing the immune response. To aid detection and
purification, we included six Histidine tags (HHHHH) at
the carboxyl terminus of the MEBDB, which was named
HP16118P.

Prediction of the physicochemical and immunological
properties of HP16118P

The ExPASy ProtParam server was used to predict the
physicochemical properties of HP16118P, including
molecular weight, theoretical isoelectric point, in vivo
half-life, instability index, and overall average hydrophi-
licity following a previous study [85]. The Protein-Sol
server was used to predict the solubility of the epitope
molecules, with a value greater than 0.45 indicating easy
solubility in water [86]. The IEDB Immunogenicity server
was used to predict the immunogenicity of the epitope
molecules, while VaxiJen v2.0 and ANTIGENpro servers
were used to predict the antigenicity of HP16118P. Aller-
TOP v.2.0 and Allergen FP v.1.0 servers were employed
to predict the allergenicity of HP16118P [78]. The Toxin-
Pred server was used to predict the toxicity of HP16118P.
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Prediction of the spatial structure of HP16118P

In the case of HP16118P, understanding its structure
can aid in elucidating its biological function and poten-
tial diagnostic applications. It can provide insights into
its stability, interactions with its target molecules, and
potential for interaction with other immune system
components. This information can contribute to a better
understanding of HP16118P’s role as a biomarker for TB.
Herein, the PSIPRED tool was used to predict the sec-
ondary structure of HP16118P, including the proportions
of alpha-helices, beta-sheets, and random coils [87]. The
I-TASSER (https://zhanggroup.org//I-TASSER/), Rebetta
(https://robetta.bakerlab.org/), Swiss model (https://
swissmodel.expasy.org/), and AlphaFold2 (https://colab.
research.google.com/github/sokrypton/ColabFold/blob/
main/AlphaFold2.ipynb) server was used to predict the
three-dimensional (3D) structure of HP16118P. Galaxy-
WEB server (https://galaxy.seoklab.org/cgi-bin/submit.
cgi?type=REFINE) was used to promote the 3D structure
quality [88]. The quality of the constructed 3D model was
further evaluated using the UCLA-DOE LAB - SAVES
v6.0 server (https://saves.mbi.ucla.edu/). Specifically,
the PROCHECK module was used to assess the over-
all quality of the constructed 3D structure and gener-
ate a Ramachandran plot [89]. The ERRAT module was
employed to identify amino acid residues with correct
and incorrect distributions in the protein structure [90],
and the quality of all amino acid positions in the model
was evaluated based on VERIFY 3D [91].

Docking simulation of HP16118P with toll-like receptor 2
The ClusPro 2.0 online server (https://cluspro.bu.edu/
home.php) was used to simulate the interaction between
the MEBDB candidate and TLR-2 [92], and the hydro-
phobic interactions and hydrogen bonds were visualized
using the LigPlot" program [93]. The PDB file of TLR-2
(PDB ID: 6NIG) was obtained from the Molecular Mod-
eling Database (MMDB) at the NCBI (https://www.ncbi.
nlm.nih.gov/structure/).

Simulation of the immune response induced by HP16118P
The C-ImmSim server (https://kraken.iac.rm.cnr.it/C-
IMMSIM/) was used to predict the ability of HP16118P
to induce immune cells to produce specific antibodies
and various cytokines. This server can also assess the
immune response of B lymphocyte populations and T
lymphocyte populations [94].

Cloning and purification of the expressed fusion protein
HP16118P

The fusion protein HP16118P was synthesized by Shang-
hai Gene-Optimal Science & Technology Co., Ltd. The
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target gene of the epitope molecule HP16118P was
inserted into the BamH I and Xho I restriction sites of
the pET28a(+) plasmid. Escherichia coli (E. coli) was
chosen as the host for cloning and expressing the fusion
protein due to its common presence, fast reproduction,
simple genome, and ease of manipulation. The protein
solution was purified using Ni-affinity chromatogra-
phy, and the quality of HP16118P was assessed using
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE). The purified PP16118P protein was
subjected to endotoxin removal using the Beyotime Pro-
tein Endotoxin Removal Kit (Cat. No. C0268S, Beyotime,
Shanghai, China). Subsequently, the endotoxin content
in the PP16118P protein was determined using the Beyo-
time Chromogenic LAL Endotoxin Assay Kit (Cat. No.
C0276S, Beyotime, Shanghai, China) following the man-
ufacturer’s instructions.

Participant recruitment, inclusion and exclusion criteria,
and medical ethics

This study recruited three groups of individuals, includ-
ing HCs, LTBI, and ATB, from April to December 2022.
The inclusion criteria for the HCs group were: no his-
tory of contact with ATB patients and negative IFN-y
assays, absence of clinical manifestations of TB, normal
chest X-ray findings, exclusion of ATB diagnosis, and
HIV-negative status. The exclusion criteria were: travel
or residency in high-risk TB areas, employees of TB spe-
cialty hospitals or laboratories, children under 12 years
old, individuals with a history of TB or old lung lesion
on imaging, individuals unable to undergo CE (CFP-10/
ESAT-6) antigen testing or allergies, HIV-positive indi-
viduals unable to undergo CE antigen testing or with
allergies.

The inclusion criteria for the LTBI group were: close
contact history with ATB patients or employees of TB
specialty hospitals or laboratories, positive IFN-y assays,
absence of clinical manifestations of TB, normal chest
X-ray findings, exclusion of ATB diagnosis, age 12 or
older, and HIV-negative status. The exclusion criteria
were diagnosed or suspected TB patients, pregnant or
lactating women, individuals who have received more
than one month of anti-TB treatment in the past, chil-
dren under 12 years old, HIV-positive individuals unable
to undergo CE antigen testing, or those with allergies.

The inclusion and exclusion criteria for ATB patients
followed the "Tuberculosis Diagnostic Criteria (WS288-
2017)" issued by China’s National Health and Fam-
ily Planning Commission. For detailed information on
ATB patients’ inclusion and exclusion criteria, please
refer to our previous publication [34]. The research
protocol and experiments were approved and super-
vised by the Ethics Committee of the Eighth Medical
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Center of the PLA General Hospital (Approval No:
309202204080808). This study was conducted follow-
ing the Helsinki Declaration. Each participant agreed to
participate in the study and disclose the laboratory data
of their blood samples with informed consent.

Differential analysis of IFN-y" T lymphocyte counts
induced by HP16118P and 22 epitopes in the three groups
of individuals using ELISPOT

The HCs (n=23), ATB patients (#=19), and LTBI indi-
viduals (n=24) were recruited in this study. Five millilit-
ers of peripheral blood were collected from the three
groups of individuals, and PBMCs were extracted.
Subsequently, PBMCs were stimulated in vitro with
AIM, CE (positive control), 12 HTL epitopes, 10 CTL
epitopes, and HP16118P. The differential counts of
IFN-y" T lymphocytes induced by HP16118P and
22 epitopes (refer to Table S6 for specific epitope
sequences) were detected among the three groups
of individuals using the human ELISPOT assay kit
(Mabtech AB, Nacka Strand, Sweden).

High-throughput liquid phase protein analysis to detect
cytokine levels induced by HP16118P

To further elucidate the potential diagnostic value of
HP16118P in ATB and LTBI, high-throughput liquid
phase protein analysis was used to detect the levels of
cytokines produced by PBMCs in the HCs, LTBI, and
ATB groups induced by HP16118P. The experiment
recruited 7 HC cases, 8 LTBI cases, and 7 ATB cases. Five
milliliters of sterile venous blood anticoagulated with
EDTA-2K were collected, and peripheral blood PBMCs
were extracted. AIM (negative control), CE (CFP-10/
ESAT-6) fusion protein (positive control), and HP16118P
were added to the 96-well cell culture plate in a volume
of 50 ul per well. A suspension of 100 ul PBMC cells was
added to each well and cultured in a 37°C, 5% CO2 incu-
bator for 48 hours. Then, the culture supernatant in each
well was gently aspirated and transferred to 1.5 ml cen-
trifuge tubes for further analysis. High-throughput liquid
phase protein analysis was used to detect the levels of 35
cytokines induced by HP16118P in PBMCs of the HCs,
LTBI, and ATB groups, including G-CSF, GM-CSF, HGF,
IFN-a, IFN-y, IL-1a, IL-1fB, IL-10, IL-12p70, IL-13, IL-
17F, IL-2, IL-21, IL-22, IL-23, IL-3, IL-31, IL-4, IL-5, IL-6,
IL-8, IL-9, IP-10, MCP-1, MCP-3, MIG, MIP-1«, MIP-1§,
PD-1, stromal cell-derived factor-la (SDF-1a), TIM-3,
TIMP-1, TNF-a, VEGF-A, and VEGF-R2. The poten-
tial of cytokines in distinguishing diagnosis among ATB,
LTBI, and HCs was further analyzed using the receiver
operator characteristic (ROC) curve.
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Machine learning algorithms to construct ATB and LTBI
differential diagnostic models

The expression levels of 35 cytokines induced by
HP16118P of participants in the ATB, LTBI, and HCs
groups were statistically analyzed using the R package
"autoReg". Specifically, subgroup analyses were con-
ducted using ATB/LTBI/HC grouping as the primary
observational indicator and PBS/HP16118P stimula-
tion grouping as the secondary observational indicator.
Normally-distributed variables were presented as mean
+ SD, and differences between groups were analyzed
using t-tests (P<0.05). Non-normally distributed vari-
ables were presented as median (IQR), and differences
between groups were analyzed using Wilcoxon tests
(P <0.05). Based on these analyses, a logistic regression
model was constructed using the R package "glmnet", and
univariate, multivariate, and stepwise logistic regression
analyses were performed using the R package "autoReg".
The variables selected in the stepwise logistic regression
were considered qualified variables for machine learning
modeling. The R package "mlr3" was utilized to construct
15 machine learning models. To provide a more com-
prehensive description of the diagnostic performance
of the models from multiple perspectives, the diagnos-
tic performance of the models was evaluated using 19
evaluation indicators based on the confusion matrix. The
results from multiple models and indicators were visual-
ized using the Chiplot online server (https://www.chipl
ot.online/) for heatmap visualization.

Statistical analysis

All data in this study were analyzed and plotted using
GraphPad Prism 10.0.0 software (San Diego, Califor-
nia, USA). For comparisons between two groups, a non-
parametric t-test [data presented as mean with standard
error of the mean (SEM)] or Mann-Whitney test (data
presented as median with interquartile range) was used
based on data normality. For experiments with three or
more groups, one-way ANOVA (data presented as mean
with SEM) or the Kruskal-Wallis test (data presented as
median with interquartile range) was selected based on
data normality and homogeneity of variance. A P-value <
0.05 indicates statistically significant differences. In princi-
pal component analysis, the method for selecting principal
components (PCs) was based on eigenvalues greater than
1. The diagnostic sensitivity and specificity of HP16118P
were analyzed using ROC curves, with an area under the
curve (AUC) between 0.5 and 1 indicating good diagnos-
tic model performance, and the closer the value is to 1, the
better the performance. Pearson’s correlation analysis was
used to analyze the correlation between cytokines.
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TNF-a Tumor necrosis factor a
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TGF-B Transforming growth factor-3

VEGF-A Vascular endothelial growth factor A
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