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A B S T R A C T   

Objectives: This research delves into the application of texture analysis in spine computed tomography (CT) scans 
and its correlation with bone mineral density (BMD), as determined by dual-energy X-ray absorptiometry (DXA). 
It specifically addresses the discordance between the 2 measurements, suggesting that certain spinal-specific 
factors may contribute to this discrepancy. 
Methods: The study involved 405 cases from a single institution collected between May 6, 2012 and June 30, 
2021. Each case underwent a spinal CT scan and a DXA scan. BMD values at the lumbar region (T12 to S1) and 
total hip were recorded. Texture features from axial cuts of T12 to S1 vertebrae were extracted using gray-level 
co-occurrence matrices, and a regression model was constructed to predict the BMD values. 
Results: The correlation between CT texture analysis results and BMD from DXA was moderate, with a correlation 
coefficient ranging between 0.4 and 0.5. This discordance was examined in light of factors unique to the spine 
region, such as abdominal obesity, aortic calcification, and lumbar degenerative changes, which could poten
tially affect BMD measurements. 
Conclusions: Emerging from this study is a novel insight into the discordance between spinal CT texture analysis 
and DXA-derived BMD measurements, highlighting the unique influence of spinal attributes. This revelation calls 
into question the exclusive reliance on DXA scans for BMD assessment, particularly in scenarios where DXA 
scanning may not be feasible or accurate.   

1. Introduction 

Osteoporosis, a prevalent bone disease, is characterized by a reduc
tion in bone mass and strength, leading to an increased risk of fractures 
[1]. This risk is notably high in areas abundant in trabecular bone, such 
as the proximal femur, vertebral body of the spine, and the distal radius. 
The complexity of the disease underscores the need for a robust diag
nostic system for its effective management. 

The central dual-energy X-ray absorptiometry (DXA) of the lumbar 
vertebrae and femoral bone currently serves as the reference standard 
for diagnosing osteoporosis [2]. However, DXA measurements can 
become complex due to inherent variability, influenced by factors like 
the progression of osteosclerosis and the degree of adiposity [3]. This 
complexity is particularly noticeable in the lumbar spine, where 

measurements can be overestimated due to scoliosis, degenerative 
arthritis, bone tissue formation, osteosclerosis, and subcutaneous fat [4]. 

Despite the DXA T-score being endorsed by the World Health Orga
nization (WHO) as the standard for osteoporosis diagnosis, it does have 
limitations, particularly when compromised by degenerative changes. In 
this study, we propose a novel approach, extending the commonly used 
region of interest (ROI) from L1-L4 to T12-S1 in spine CT scans. This 
approach aims to provide a more comprehensive understanding of bone 
health. Although our initial goal was to explore the correlation between 
BMD as measured by DXA and texture analysis values derived from these 
CT scans, the correlation was not as strong as expected. 

Recognizing this, we shifted our focus to developing a method akin to 
the trabecular bone score (TBS) [5], but distinct in its use of the gray 
level co-occurrence matrix (GLCM) [6,7]. With GLCM, we extract 45 
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different texture analysis values from the CT scans, which are then 
processed through machine learning techniques to establish correlations 
and create a predictive model. Our comprehensive data set, including 
follow-up patients, provides unique insights into the temporal progres
sion of bone health. 

Our findings underscore the potential of texture analysis as a reliable 
and efficient tool for monitoring bone mineral status, offering an op
portunity for more precise diagnosis and management of osteoporosis. 
Notably, this study represents a significant advancement in the field by 
extending the typical ROI used in DXA, thereby enhancing the assess
ment of osteoporosis, and overcoming limitations in the traditional 
approach. 

2. Methods 

Our retrospective study, approved by the institutional review board 
(2023-01-001), initially involved 1720 cases from 843 patients. All pa
tients underwent both spine CT and DXA scans at the same institution 
between May 9, 2011 and July 30, 2022 for the evaluation of spine- 
related diseases, including the differentiation of spine pathologies and 
assessment of fractures. The spine CT scans were integral in providing 
detailed imagery for the diagnosis and management of these conditions. 

A meticulous selection process was then conducted, which led to a 
refined cohort comprising 405 cases from 219 patients. This selection 
was based on the adherence to a specific criterion—a temporal gap of 
less than a month between the spine CT and DXA scan dates. The 
rationale behind this criterion was to ensure a close temporal correlation 
between the 2 diagnostic modalities, thereby enhancing the reliability of 
our findings in understanding the relationship between spine CT results 
and DXA measurements in a real-world clinical context. 

During the subsequent selection process, cases were excluded if they 
met any of the following conditions: absence of an actual measurable 
axial cut from T12 to S1 vertebrae in the CT images; historical instances 

of compression fractures or burst fractures anywhere from T12 to S1; 
previous surgical interventions due to fractures, including verte
broplasty or kyphoplasty for spinal compression fractures; or the exis
tence of metal artifacts from unstable burst fractures; or difficulties in 
identifying trabecular bones due to severe osteolytic or pathological 
changes. 

This exclusion process resulted in a final cohort comprising 405 cases 
from 219 patients who were included in our analysis (Fig. 1). By con
ducting a rigorous selection process, we ensured the robustness and 
reliability of our study, focusing on the most relevant and insightful 
cases for our investigation into the potential of texture analysis in 
monitoring bone mineral status. By selecting an extended region of in
terest from T12 to S1, this study provides a more comprehensive 
approach to diagnosing and managing osteoporosis. 

2.1. CT and DXA imaging protocols 

The CT scans were carried out using a Siemens SOMATOM 128, 
Definition AS + scanner (Siemens Healthcare, Forchheim, Germany). 
The standardized protocol for each scan entailed a single-energy CT scan 
with settings at 120 kVp and 247 mA, featuring a dose modulation with 
a 0.6 mm collimation. The effective pitch was maintained at 0.8, and the 
reconstruction kernel employed was B60 (sharp). For the spine CT scans, 
which were executed without the use of contrast, a reconstructed slice 
thickness of 5.0 mm was consistently preserved. 

For the DXA scans, a standard device was utilized, adhering to a 
conventional protocol (GE Lunar Prodigy, GE Healthcare). The subse
quent reports were produced using vendor-specific software (Physicians 
Report Writer DX; Hologic, Discovery WI, USA). The strict adherence to 
standardized imaging protocols throughout the study guarantees the 
reproducibility and uniformity of our results. 

Fig. 1. Flowchart illustrating the selection process of patients undergoing concurrent spine CT and DXA scans. CT, computed tomography; DXA, dual-energy X-ray 
absorptiometry. 
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2.2. Regions of interest 

The regions of interest (ROIs) for statistical measurement from bone 
images were limited to the trabecular part of the bone to prevent 
distortion in measurements. Among various methods for isolating ROIs, 
we chose the thresholding method [8] for this research. For each patient, 
a 2-dimensional (2D) slice image was selected from the spine CT axial 

cut, where the 2D image encompassed the maximum axial trabecular 
area of the vertebral bodies between T12 and S1. As shown in Fig. 2, our 
texture analysis was conducted within a rectangular region that covered 
most of the trabecular area. This method allowed for a comprehensive 
evaluation across the extended ROI, providing greater depth to our 
findings. 

Fig. 2. Schematic flow for BMC and BMD estimations from computed tomography. 
BMC, bone mineral content; BMD, bone mineral density. 
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2.3. Feature extraction 

In our study, we extracted a total of 45 features from the designated 
ROIs. This included 5 intensity-based features obtained through histo
gram analysis and 40 texture-based features sourced from a Gray Level 
Co-occurrence Matrix (GLCM). The intensity-based features—mean, 
standard deviation, skewness, kurtosis, and entropy—were garnered 
from the histogram of the ROI image. These fundamental features help 
interpret various bone intensity characteristics such as brightness, 
asymmetry, randomness, uniformity, and sharpness. 

Concurrently, the texture-based features provided insights into the 
spatial relationships between adjacent pixels on the 2D image. They 
were extracted from the GLCM, which is a matrix representation of the 
frequency of occurrence of pixel intensity values in an image. In this 
study, we constructed 8 GLCMs for each sample ROI image at 4 levels (N 
= 16, 32, 64, 128) and 2 directions (horizontal and vertical). From each 
GLCM, we derived 5 statistics: entropy, contrast, correlation, homoge
neity, and variance. 

These 45 features were then incorporated into a linear regression 
(LR) model and an artificial neural network (ANN) model. The LR model 
predicted BMD using a linear combination of the 45 input features. The 
ANN model, a fully connected neural network, consisted of 3 hidden 
layers with 8 nodes in the first and second layers and 2 nodes in the third 
layer, using a rectified linear unit as the non-linear operator (as depicted 
in Fig. 2). 

2.4. Correlation assessment 

In our study, we utilized either a LR model or a fully connected ANN 
to predict BMD and analyze the correlation between the predicted 
values and the reference DXA BMD values. 

During preprocessing, each feature value was normalized using the 
sample mean and standard deviation. Similarly, every BMD reference 
was also normalized. In the LR model, BMD was estimated as a weighted 
sum of the 45 normalized features and a bias term. The weights in this 
model were determined by minimizing the mean squared error (MSE), 
which represents the difference between the predicted and reference 
BMD values. 

Given that the number of samples in our dataset was greater than the 
number of trainable weights, overfitting was not a concern in this study. 
Therefore, we did not divide the dataset into training and testing sub
sets, nor did we use any regularization techniques such as ridge 
regression or the least absolute shrinkage and selection operator 
(LASSO). 

3. Results 

3.1. Patient demographics 

Our study encompassed a total of 405 cases from 219 patients, with 
105 men and 114 women participating. The average age and BMI of the 
participants were 58.12 ± 9.26 years and 24.19 ± 4.65 kg/m2, respec
tively. The average time interval between the spinal CT and DXA was 
2.89 ± 5.22 days (Table 1.). Finally, the baseline diagnosis of 

osteoporosis, osteopenia, and normal BMD of the enrolled participants 
are shown in Table 2. 

3.2. Correlation coefficients of the texture analysis values and DXA- 
measured BMD 

We observed a significant correlation between the texture analysis 
values derived from axial cuts of spinal CT scans and DXA-measured 
BMD. However, this correlation was modest, falling within the range 
of 0.431–0.561 for total hip BMD (excluding L1), and 0.434–0.527 for 
total lumbar BMD (excluding L1). These findings are depicted in Figs. 3 
and 4, using scatter plots to show the correlation between the estimated 
and actual DXA BMD measurements. 

It’s important to note that while our research explores the potential 
of spinal CT texture analysis as a diagnostic tool for bone health 
assessment, it does not position this method as a definitive standard for 
diagnosing osteoporosis. The observed correlation with DXA measure
ments, although significant, is modest and may reflect the inherent 
inaccuracies of DXA scanning, particularly in patients with degenerative 
changes or other factors that may compromise the accuracy of DXA. 

This study represents an initial attempt to use a wider range of ROI 
(from T12 to S1) than typical DXA analysis (L1 to L4). Despite the 
modest correlation achieved, we believe this approach opens new pos
sibilities for assessing bone health in cases where DXA scanning is not 
feasible or compromised. 

4. Discussion 

Our research focused on the potential of machine learning method
ologies, specifically LR models [9], and texture analysis of Computed 
Tomography Hounsfield Units (CT HU), in the detection and assessment 
of osteoporosis. By extracting a broad set of features from spinal CT 
scans, we aimed to provide estimates of bone mineral density (BMD) 
that correlate with DXA measurements. 

In our study of 405 cases from 219 patients, we demonstrated a 
significant, albeit modest, correlation between the CT-derived estimates 
and DXA-measured BMD. Notably, the highest correlation was observed 
in the L1 vertebral region, consistent with the DXA measurement loca
tion, indicating that the alignment of the estimation and measurement 
sites could enhance the correlation. However, the correlation for total 
hip and total lumbar BMD (excluding L1) was less pronounced, ranging 
between 0.431–0.561 and 0.434–0.527, respectively, suggesting the 
necessity for further refinement of the method. 

Furthermore, we adopted a broader range of Regions of Interest 
(ROIs) from T12 to S1 for CT texture analysis, as opposed to the typical 
L1 to L4 range used in DXA. This opportunistic usage of the existing 
spinal CT scans not only leveraged an underutilized imaging resource 

Table 1 
Demographic and clinical characteristics of the study participants.  

Cases (Subjects) 405 (219) 

Age, yrs 58.12 ± 9.26 
The time between CT and DXA dates, days 2.89 ± 5.22 
Sex, male/female 105/114 
BMI, kg/m2 24.19 ± 4.65 

Values are expressed as mean ± standard deviation. 
CT, computed tomography; DXA, dual-energy X-ray abostroptiometry; BMI, 
body mass index. 

Table 2 
The baseline diagnosis of the osteoporosis, osteopenia and normal BMD of the 
enrolled participants.  

Age, yrs Normal Osteopenia Osteoporosis BMD, g/cm2 

Lumbar spine 
21–30 6 (60.0) 4 (40.0) 0 (0.0) 0.958 ± 0.112 
31–40 25 (47.2) 22 (41.5) 6 (11.3) 0.967 ± 0.133 
41–50 27 (54.0) 20 (40.0) 3 (6.0) 0.957 ± 0.121 
51–60 25 (32.1) 33 (42.3) 20 (25.6) 0.872 ± 0.153 
61–70 8 (28.6) 12 (42.9) 8 (28.5) 0.725 ± 0.136 
Femoral neck 
21–30 8 (80.0) 2 (20.0) 0 (0.0) 0.850 ± 0.135 
31–40 31 (58.5) 17 (32.1) 5 (9.4) 0.876 ± 0.128 
41–50 35 (70.0) 14 (28.0) 1 (2.0) 0.832 ± 0.122 
51–60 29 (37.2) 30 (38.5) 19 (24.4) 0.786 ± 0.126 
61–70 10 (35.7) 10 (35.7) 8 (28.6) 0.678 ± 0.127 

Values are expressed as number (%) or mean ± standard deviation. 
BMD, bone mineral density. 
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Fig. 3. Correlation scatter plot: estimated BMD from T12-S1 CT axial cuts vs. total lumbar DXA BMD. 
BMD, bone mineral density; CT, computed tomography; DXA, dual-energy X-ray absorptiometry. 
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Fig. 4. Correlation scatter plot: estimated BMD from T12-S1 CT axial cuts vs. total hip DXA BMD. 
BMD, bone mineral density; CT, computed tomography; DXA, dual-energy X-ray absorptiometry. 
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but also widened the area of investigation, offering a potentially more 
comprehensive assessment of spinal bone health. 

Interestingly, our study also revealed discordance between the CT 
and DXA measurements in certain scenarios. This discordance could 
stem from various factors, including differences in the measured regions, 
methodological discrepancies, or inherent inaccuracies in DXA scan
ning, particularly in patients with degenerative changes or abdominal 
obesity [10]. DXA measurements are known to be susceptible to inac
curacies in individuals with high abdominal fat content due to over
laying soft tissue artifacts [3]. On the contrary, spinal CT, particularly 
when encompassing a broader ROI, might provide a more accurate 
reflection of the bone health in these patients. 

Our research showcases the advantageous usage of CT scans in 
estimating BMD, especially in the context of increased overall obesity. 
Unlike DXA-estimated BMD, CT scans are less affected by surrounding 
adipose layers and soft tissue inhomogeneity, thereby minimizing the 
“noise" in the BMD estimation. 

We chose to employ spine CT scans for this texture analysis due to 
their frequent usage during health checkups, often alongside DXA scans 
for osteoporosis diagnosis. These scans encompass regions of interest 
(T12-S1), which are integral to DXA BMD measurements. Moreover, CT 
HU measurement provides a straightforward representation of BMD 
using the tissue density of vertebral trabecular bone mass. To further 
refine this process, we utilized the Gray Level Co-Occurrence Matrix 
(GLCM), a widespread method in texture analysis. Extracted statistical 
parameters from GLCM, including energy, contrast, entropy, and others, 
facilitate a quantitative understanding of the spatial relationship be
tween pixels in the analyzed area [11]. 

In contrast to previous studies, our investigation is not limited to the 
L1 region [12]. Instead, we considered a broader range, spanning from 
T12 to S1, a factor that enhances the robustness of our findings. However, 
our study still carries certain limitations, such as a relatively small sample 
size from a single center and a lack of consideration for aortic calcifica
tion. Nevertheless, these constraints do not overshadow our primary 
finding: the value of CT scans for BMD estimation, particularly consid
ering their potential in screening patients for osteoporosis risk without 
additional diagnostic tests. While further research is necessary to 
consolidate these insights, our study signals a promising direction in 
addressing discordance between spine CT texture analysis and DXA BMD. 

Although our research is a significant stride towards integrating 
machine learning with radiomics for osteoporosis assessment, it also 
highlights the need for further research in this area. Given the modest 
correlations achieved and the discordance observed with DXA mea
surements, CT-derived BMD estimates may not yet be ready to serve as a 
standard diagnostic tool for osteoporosis. However, they do offer an 
alternative perspective, which, in conjunction with traditional methods 
like DXA, could potentially provide a more holistic and accurate 
assessment of bone health. In addition, a notable limitation of our study 
is the potential for selection bias due to the inclusion of multiple images 
from the same patients, particularly those under follow-up. This aspect 
of our study design was essential for observing the temporal changes in 
texture analysis features and DXA-based BMD values over time. How
ever, it is important to acknowledge that this approach might have 
introduced a bias by overrepresenting certain patient profiles. Future 
studies could benefit from a more diversified patient pool to mitigate 
this limitation and provide a more comprehensive understanding of the 
disease progression in a wider patient demographic. We believe this 
acknowledgment of potential bias adds to the transparency and rigor of 
our research findings. Also, our study’s limitation lies in not accounting 
for comorbid conditions like renal dysfunction, diabetes, and obesity, 
which can affect bone quality. The lack of this data may limit the 
applicability of our findings across varied patient profiles. Recognizing 
these factors is essential for a comprehensive understanding of bone 
health in future studies. 

In summary, our study underscores the potential of CT HU texture 
analysis and machine learning models in providing a new lens for 
osteoporosis detection and monitoring. Despite certain limitations, this 
approach offers a promising starting point for future studies aiming to 
leverage the underutilized resource of spinal CT scans in bone health 
assessment. Further investigations involving larger and more diverse 
patient groups, and refined methodologies, could potentially corrobo
rate and expand upon our findings. 

5. Conclusions 

Emerging from this study is a novel insight into the discordance 
between spinal CT texture analysis and DXA derived BMD measure
ments, highlighting the unique influence of spinal attributes. This 
revelation calls into question the exclusive reliance on DXA scans for 
BMD assessment, particularly in scenarios where DXA scanning may not 
be feasible or accurate. 
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