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1  |  INTRODUC TION

Ovarian cancer is one of the most common malignant tumours 
with high incidence and mortality rate in women worldwide. Lack 

of obvious symptoms at early stage and no effective or sensitive 
clinical screening methods led to ovarian cancer difficult to be diag-
nosed.1–3 Studies have found that oestrogen receptor (ER) plays an 
important role in the growth and metastasis of ovarian cancer, which 
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Abstract
Oestrogen is known to be strongly associated with ovarian cancer. There was much 
work to show the importance of lncRNA SNHG17 in ovarian cancer. However, no 
study has revealed the molecular regulatory mechanism and functional effects be-
tween oestrogen and SNHG17 in the development and metastasis of ovarian cancer. 
In this study, we found that SNHG17 expression was significantly increased in ovarian 
cancer and positively correlated with oestrogen treatment. Oestrogen could promote 
M2 macrophage polarization as well as ovarian cancer cells SKOV3 and ES2 cell exoso-
mal SNHG17 expression. When exposure to oestrogen, exosomal SNHG17 promoted 
ovarian cancer cell proliferation, migration, invasion and epithelial-mesenchymal 
transition (EMT) in vitro, and tumour growth and lung metastasis in vivo by accel-
erating M2-like phenotype of macrophages. Mechanically, exosomal SNHG17 could 
facilitate the release of CCL13 from M2 macrophage via the PI3K-Akt signalling path-
way. Moreover, CCL13-CCR2 axis was identified to be involved in ovarian cancer 
tumour behaviours driven by oestrogen. There results demonstrate a novel mecha-
nism that exosomal SNHG17 exerts an oncogenic effect on ovarian cancer via the 
CCL13–CCR2–M2 macrophage axis upon oestrogen treatment, of which SNHG17 
may be a potential biomarker and therapeutic target for ovarian cancer responded 
to oestrogen.
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is expressed in 40% to 80% of ovarian cancer cells and could pro-
mote ovarian cancer cells proliferation.4 Genetic research in 2021 
also revealed that high levels of ER are associated with an increased 
risk of ovarian cancer.5 Although much work has been explored on 
the mechanism of oestrogen promoting ovarian cancer tumorigene-
sis, but the existing research results which could reveal this abstruse 
mechanism remains elusive.

Nowadays, tumour microenvironment (TME) has received in-
creasing attentions on tumour development and metastasis.6–8 
Macrophages can be classified by their activation state as M1 mac-
rophages (classically activated macrophages) or M2 macrophages 
(alternatively activated macrophages). M1 macrophages could pro-
duce inflammatory cytokines such as interleukin (IL)-6 and IL-1β, 
killing tumour cells and pathogenic microorganisms whereas M2 

F I G U R E  1 SNHG17 was identified to be increased in ovarian cancer and oestrogen-treated ovarian cancer cell exosomes. (A) Heatmaps 
showed the expression of top 50 different expressed genes (DEGs) between tumour and normal tissues of ovarian cancer. (B) Volcano 
plots analysis between normal and tumour samples in GSE119054. X-axis and y-axis illustrated log2 fold change and −log 10 (p-value) 
for each gene, and the significance cut off (p-value = 0.05). The red, green and grey dots represented up-regulated, downregulated and 
non-significant genes. (C) qPCR analysis of SNHG17 in SKOV3 and ES2 cells with oestrogen treatment at a concentration of 50 nM and 
100 nM. (D) qPCR analysis of SNHG17 in SKOV3 and ES2 cells with oestrogen treatment at 0, 24, 48 and 72 h. (E) The representative 
electron microscopy image of the exosomes derived from ovarian cancer cells SKOV3 and ES2 cells with or without oestrogen treatment. (F) 
Western blot analysis of exosome markers CD63, CD9 and CD81 in exosomes and cell lysates of SKOV3 and ES2 with or without oestrogen 
treatment. (G) qPCR analysis of SNHG17 in exosomes derived from SKOV3 and ES2 cells with oestrogen treatment at a concentration of 
50 nM and 100 nM. (H) qPCR analysis of SNHG17 in exosomes derived from SKOV3 and ES2 cells with oestrogen treatment at 0, 24, 48 and 
72 h. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

F I G U R E  2 Oestrogen-treated SKOV3 and ES2 derived exosomes SNHG17 promoted macrophage M2 polarization. THP-1 cells were 
treated with 100 ng/mL PMA to achieve the M0 macrophages. Exosomes were obtained from SKOV3 or ES2 cells with or without 50 nM 
oestrogen treatment. (A–D) qPCR analysis of M2 macrophage biomarkers Arg-1, CD163, CD206, M1 macrophage biomarker iNOS, M2 
macrophage cytokines TGF-β, IL-10 and VEGF was measured in macrophages co-incubated with the above obtained exosomes (30 μg/mL) 
for 24 h. (E) qPCR analysis of SNHG17 in SKOV3 and ES2 cells or their derived exosomes with or without oestrogen treatment. (F) SKOV3 
and ES2 cells were transfected with si-SNHG17 or si-NC for 48 h. SNHG17 mRNA level was detected in cell lysates and exosomes. (G,H) 
SKOV3 and ES2 cells were transfected with si-SNHG17 or si-NC for 48 h. The exosomes were extracted from the transfected cells with or 
without 50 nM oestrogen treatment for 48 h. qPCR analysis of Arg-1, CD163, CD206, TGF-β, IL-10 and VEGF was detected in macrophages 
co-incubated with the above obtained exosomes (30 μg/mL) for 24 h. *p < 0.05, **p < 0.01, ***p < 0.001.
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macrophages secret growth factors such as epidermal growth fac-
tor (EGF) participating in the tissue remodelling or tumour pro-
gression.9,10 Previous research showed that tumour-recruited M2 
macrophages promote gastric and breast cancer metastasis via M2 
macrophage-secreted CHI3L1 protein.11 A study reported that M2 
macrophage-secreted EGF may suppress LIMT expression via acti-
vating EGFR-ERK signalling pathway to promote ovarian cancer pro-
gression.12 Increased M2/M1 macrophage ratio induced by RACK1 
was found to promote oral squamous cell carcinoma development.13 
These studies suggest that tumour-derived M2 macrophages are 
closely related to tumorigenesis.

Long noncoding RNA (lncRNAs) have been studied to be widely 
involved in physiological and pathological processes including can-
cers, autoimmune and cardiac diseases.14 Small nucleolar RNA host 
gene 17 (SNHG17) is a newly discovered tumour-related lncRNA of 
the SNHG family which is highly expressed and may exert cancer-
promoting effects in multiple cancers. For example, a present study 
revealed that SNHG17 could aggravate prostate cancer progression 
through regulating its homologue SNORA71B via a positive feed-
back loop.15 A previous study showed that SNHG17 promoted gas-
tric cancer progression by epigenetically silencing of p15 and p57.16 
One study reported that SNHG17 functioned as an oncogenic ln-
cRNA in rectal cancer by regulating the miR-361-3p/STC2 axis.17 
Another report showed that METTL3-induced SNHG17 could pro-
mote lung adenocarcinoma gefitinib resistance by epigenetically re-
pressing LATS2 expression.18 These studies indicate that SNHG17 is 
a crucial regulator for carcinogenesis in human cancers. In addition, 
the role of SNHG17 has also been investigated in ovarian cancer. 
SNHG17 was found to promote ovarian cancer cell proliferation and 
invasion by increasing FOXA1.19 A report suggested that SNHG17 
acted as an oncogene in ovarian cancer by regulating CDK6.20 
SNHG17 downregulation inhibited the tumorigenesis of epithelial 
ovarian cancer via the regulation of miR-485-5p/AKT1 axis.21 These 
studies reveal that lncRNA SNHG17 also plays a crucial role in ovar-
ian cancer. However, the detailed function and mechanisms remain 
largely unknown.

Exosomes secreted by cells act as a key role in mediating cell–
cell communication. Emerging evidence suggests that exosomes 
play an important role in facilitating tumorigenesis in the tumour 
microenvironment in multiple tumours, of which the aberrant ex-
pression of exosomal constituents such as lncRNAs are crucial.21–23 
For instance, it was reported that exosomal lncRNA RPPH1 pro-
moted colorectal cancer metastasis by mediating macrophage M2 

polarization.24 Exosomal LNMAT2 was found to promote lymphatic 
metastasis in bladder cancer.25 Exosomal metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) was verified to pro-
mote angiogenesis in epithelial ovarian cancer.26 In addition, some 
studies suggest that oestrogen may be associated with the regu-
lation of exosomes release in some human cancers. One research 
showed that the regulation of oestrogen signalling in breast cancer 
cells may be related to exosome-delivered metastasis-associated 
protein 1 (MTA1).27 Another research showed that exosomes were 
involved in the transfer of cancer cell resistance to anti-oestrogen 
drugs.28 One study showed that oestrogen could increase the re-
lease of H19-carrying exosomes from cholangiocytes.29 Another 
study revealed that exosomal miRNA played a critical role in the 
horizontal transfer of hormonal resistance.30 These above findings 
suggest that the oestrogen is closely related to exosomes and the 
contents of exosomes such as miRNAs or lncRNAs or others and 
thus prompted us to study the molecular mechanisms of exosome-
delivered lncRNAs in regulating oestrogen-induced ovarian cancer 
tumorigenesis.

In the present study, we hypothesized that oestrogen-induced 
exosomes might promote ovarian cancer tumorigenesis by mediat-
ing macrophage M2 polarization. We verified that SNHG17 was in-
creased in oestrogen-induced exosomes. Upon oestrogen treatment, 
exosome-delivered SNHG17 promoted macrophage M2 polarization 
via PI3K/Akt signalling pathway. Furthermore, CCL13-CCR2 axis 
was identified to be involved in the regulation of exosomal SNHG17 
on promoting oestrogen-triggered ovarian cancer tumour growth 
and metastasis in vitro and in vivo. Thus, our work demonstrates a 
novel mechanism of oestrogen-induced exosomes on ovarian cancer 
tumorigenesis.

2  |  METHODS AND MATERIAL S

2.1  |  Data processing

The dataset involved (GSE119054) were downloaded from the 
public Gene Expression Omnibus (GEO) database (https://​www.​
ncbi.​nlm.​nih.​gov/​gds/​). The dataset GSE119054 sequencing in-
formation in the NCBI GEO database is based on GPL19615 
(Agilent-067406 CBC lncRNA + mRNA microarray V4.0) micro-
array platform, which contains three normal tissue samples and 
six malignant ovarian tissue samples.31 The false discovery rate 

F I G U R E  3 Oestrogen-induced exosomal SNHG17 promotes macrophage M2 polarization via the PI3K/Akt signalling pathway. (A,B) 
SKOV3 and ES2 cells were transfected with si-SNHG17 or si-NC for 48 h and then treated with 50 nM oestrogen for another 48 h. The 
above extracted exosomes (30 μg/mL) were added to the macrophages for another 24 h. Western blot analysis of PI3K, p-PI3K, Akt and 
p-Akt was performed. (C–F) Macrophages were treated with four different ways. One group was incubated with PBS. The second group 
was incubated with exosomes from SKOV3 or ES2 cells without oestrogen treatment. The third group was incubated with exosomes from 
SKOV3 or ES2 cells with oestrogen treatment. The fourth was treated with LY294002 (12 μM) and incubated with exosomes from SKOV3 or 
ES2 cells with oestrogen treatment. qPCR analysis of Arg-1, CD163, CD206, TGF-β, IL-10 and VEGF was performed in the above four groups 
of macrophages with different treatment. *p ＜ 0.05, **p ＜ 0.01, ***p ＜ 0.001 compared to PBS group; ##p ＜ 0.01. (G,H) The protein level of 
PI3K, p-PI3K, Akt and p-Akt was detected in the above four groups of macrophages with different treatment.

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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(FDR) < 0.05 and the absolute value of expression difference fold 
change (|log2FC|) >= 1.5 were used as thresholds for significant 
differences, and differential analysis between tumour and con-
trol group comparisons was performed using the limma of the R/
Bioconductor package and the analysis results were visualized 
with the ggplot2 and heatmap packages.

2.2  |  Cell culture

Ovarian cancer cell lines SKOV3 and ES2 were bought from Cell 
Culture Center, Chinese Academy of Medical Sciences (Beijing, 
China). The characteristics of cell lines were identified. All experi-
ments were implemented with cells without mycoplasma. Cells were 
cultured using RPMI 1640 (Invitrogen) with 10% foetal calf plasma 
(Hyclone, Logan, UT), streptomycin (100 μg/mL) and penicillin 
(100 U/mL). Cells were transfected with siRNAs or negative control 
using Lipofectamine RNAiMAX reagent (Invitrogen). The sequences 
of siRNAs or shRNA were as shown in supplementary Table  S1. 
For CCR2 blockade, cells were treated with 10 μmol/L antagonist 
RS504393 (MedChemExpress, MCE, HY-15418) or vehicle control 
dimethyl sulfoxide (DMSO).

2.3  |  Isolation and identification of exosomes

Cell-derived exosomes were isolated using Exosome Purification Kit 
(Norgen Biotek, Canada) according to the instructions. The vesicles 
were identified by electron microscopic examination and exosome 
markers (CD63, CD81 and CD9). The concentrations of exosomes 
were determined by Zetaview (Particle Metrix, Germany).

2.4  |  RNA isolation and quantitative 
reverse-transcription polymerase chain reaction 
(qRT-PCR)

Total cells or tissues RNAs were extracted by TRIzol (Invitrogen, 
Carlsbad, CA). QPCR assay was performed with QuantiTect SYBR 
Green PCR Kit (Takara Bio Inc., Otsu, Japan) on Stepone Real-Time 
PCR System (Applied Biosystems, Carlsbad, CA). The primers of 
lncRNAs were designed by Primer Premier 5.0. The primers were 
synthesized from Sangon Biotech (Shanghai, China) (Table  S2). 
The relative RNA expression was normalized to GAPDH, which 

was calculated by the 2−ΔΔCt method (Biorad CFX manager soft-
ware 3.1).

2.5  |  Macrophages and supernatant preparation

We used 100 ng/mL phorbol myristate acetate (PMA, Sigma, 
Carlsbad, CA, USA) to induce THP-1 cells into M0 macrophages. M0 
macrophages were incubated with different sources of exosomes 
(30 μg/mL) for 24 h. The supernatant of co-incubation was collected 
by centrifuging at 10,000 g for 5 min and stored at −20°C for later use.

2.6  |  Western blot

Total protein from cells was extracted with RIPA Lysis Buffer 
(RIPA; Beyotime, Shanghai, China). The whole protein was quanti-
fied via bicinchoninic acid (BCA) (Pierce, Waltham, MA, USA) way. 
A certain amount of protein was loaded for electrophoresis, and 
the protein after electrophoresis was shifted on a polyvinylidene 
difluoride (PVDF) membrane (Millipore, Billerica, MA, USA). The 
PVDF membranes were soaked in 5% skim milk for about 2 h, and 
then, the membranes were immersed in primary antibodies at 
4°C for 18 h and secondary antibodies for 2.5 h. All protein bands 
were exposed by enhanced chemiluminescence (ECL). Protein ex-
pression on the bands was calculated by Image J Software (NIH, 
Bethesda, MD, USA).

2.7  |  Transwell and transwell-matrigel assay

Cell migration and invasion assays were performed by transwell in-
sert chambers with 8-μm pore membranes (Corning Inc., Corning, 
NY, USA). Approximately 2.8 × 105 cells without FBS were in the 
upper chamber. The culture solution with 10% FBS existed in the 
lower chamber. We cultured cells for 24 h. We got rid of the cells on 
the upper surface of the upper chamber. Then, the chamber surface 
was washed using phosphate buffer. Ovarian cancer cells in the 
chamber were soaked into 4% paraformaldehyde. After the cham-
bers were dry, we dyed the cells with 1% crystal violet for about 
1.5 min. Migration cells were on the lower surface of the chamber. 
Migration cells were included at 200 magnifications in nine fields of 
view. We applied Matrigel Membrane Matrix (40 μg/15 μL; Vigorous 
Biotechnology Beijing Co., Ltd., Beijing, China) on Boyden chambers 

F I G U R E  4 The macrophages incubated with oestrogen-induced exosomes promote ovarian cancer cell proliferation, migration, invasion 
and EMT in vitro. SKOV3 and ES2 cells were transfected with si-SNHG17 or si-NC for 48 h and then treated with or without 50 nM 
oestrogen for another 48 h. The above extracted exosomes (30 μg/mL) were added to the macrophages for another 24 h. The obtained 
supernatant was used to treat SKOV3 or ES2 cells. (A) CCK-8 analysis was performed to examine cell proliferation. #p ＜ 0.05, ##p ＜ 0.01; 
***p ＜ 0.001 compared to PBS group. (B,C) Transwell and transwell-matrigel assays were performed to examine cell migration and invasion. 
##p ＜ 0.01, ###p ＜ 0.001 compared to PBS group; **p ＜ 0.01. (D) The EMT-related proteins E-cadherin, N-cadherin and Snail were detected. 
*p ＜ 0.05, **p ＜ 0.01, ***p ＜ 0.001.
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with filter inserts (pore size, 8-μm) to perform cell invasion assays. 
About 2.8 × 105 cells were plated in the upper chamber. The 650 μL 
medium with 10% FBS was in the lower chamber for 48 h. Then, 
cells on the up and lower side of chambers were treated using the 
method above.

2.8  |  Enzyme-linked immunosorbent assay (ELISA)

CCL13 human ELISA kit (EHCCL13) was purchased from Invitrogen 
(ThermoFisher scientific). The protein level in the cell culture super-
natant was detected according to the manufacturer's protocol.

2.9  |  Construction of stable knockdown cell lines

For construction of knockdown stable cell lines, shRNAs were in-
serted into pLKO.1-TRC plasmid, according to the Addgene instruc-
tions. After lentivirus package and infection, cells were selected 
with 1 μg/mL puromycin. Knockdown efficiency in the stable cell 
lines was verified by western blot using anti-CCR2 antibody (Abcam, 
ab313463).

2.10  |  Xenograft mice model

Animal experiments were performed by the Institutional Animal 
Care and Use Committee of Beijing Viewsolid Biotechnology Co. 
Ltd. 2 × 106 wild SKOV3 cells or SKOV3 cells stably expressing CCR2 
shRNA or scrambled shRNA in 200 μL PBS were injected subcutane-
ously into the flank region of Balb/c nude mice (female, six-week-old). 
The mice were randomly divided into groups and injected intrave-
nously with 100 μL different cell co-incubation supernatant medium 
or CCL13 recombinant protein solution (50 μg/kg) every 3 days. After 
4 weeks, tumours were excised and measured. Tumour volume was 
calculated using this formula: tumour volume = 0.5 × width2 × length.

2.11  |  Statistical analysis

Graphs were constructed by using GraphPad Prism software (ver-
sion 8.0). All data are presented as mean ± standard deviation. 
Differences between two groups were compared using the chi-
square test and t-test. Two-sided p < 0.05 was considered statisti-
cally significant (*p < 0.05; **p < 0.01; ***p < 0.001).

3  |  RESULTS

3.1  |  SNHG17 is upregulated in ovarian cancer and 
oestrogen-induced ovarian cancer-derived exosomes

Analysis of GSE119054 revealed that SNHG17 was highly ex-
pressed in ovarian cancer tumour group compared to normal control 
(p < 0.001; Figure 1A,B). Since increasing studies reported that oes-
trogen plays an important role in ovarian cancer,4,32,33 we found that 
the expression of SNHG17 was also increased with the increasing 
duration and concentration of oestrogen treatment in ovarian can-
cer cell lines SKOV3 and ES2 (Figure 1C,D). Additionally, we also ob-
served that exosome secretion by SKOV3 and ES2 were increased 
with oestrogen treatment, as the expression of exosomal markers 
CD63, CD9 and CD81 was elevated (Figure  1E,F). Furthermore, 
SNHG17 was also found to be abundantly expressed in the SKOV3 
and ES2-derived exosomes with oestrogen treatment (Figure 1G,H). 
These results suggest that oestrogen treatment could promote the 
expression of ovarian cancer-derived exosome lncRNA SNHG17.

3.2  |  Oestrogen-induced increase of exosomal 
lncRNA SNHG17 promotes macrophage M2 
polarization

To address the potential function of oestrogen-induced increase of 
exosomal lncRNA SNHG17 in ovarian cancer, we used 100 ng/mL 
phorbol 12-myristate 13-acetate (PMA)-induced differentiation of 
THP-1 monocyte cells to M0 macrophages as a model to analyse 
the role of exosomal lncRNA SNHG17 in macrophage polarization. 
We treated M0 macrophages with different sources of exosomes. 
The markers of M2 macrophage including arginase-1 (Arg1), CD163 
and CD206 were significantly increased whereas the M1 marker 
iNOS was almost no change in the group of exosomes with oestro-
gen treatment compared to control (exosomes without oestrogen 
treatment), as well as the increased expression of M2-released cy-
tokines such as transforming growth factor (TGF-β), interleukin-10 
(IL-10) and vascular endothelial growth factor (VEGF) in SKOV3 and 
ES2, respectively (Figure 2A–D). SNHG17 was obviously increased 
in SKOV3 and ES2 with oestrogen treatment (Figure 2E). To further 
assess the role of SNHG17 in M2 polarization, we knocked down 
SNHG17 in SKOV3 and ES2 by transfecting SNHG17-small interfer-
ing RNA (siRNA). SNHG17 was decreased in both cell lysates and 
exosomes (Figure 2F). We observed that SNHG17 knockdown could 

F I G U R E  5 Oestrogen-induced exosomal SNHG17 promotes ovarian cancer tumour growth and metastasis via macrophage M2 
polarization in vivo. SKOV3 cells were transfected with si-SNHG17 or si-NC for 48 h and then treated with or without 50 nM oestrogen for 
another 48 h. The above extracted exosomes (30 μg/mL) were added to the macrophages for another 24 h. The obtained supernatants were 
used to inject into the xenograft mice. (A) Representative image of xenograft tumours from different groups. (B) The tumour volume was 
measured and calculated at the indicated time points. (C) The tumour volume at Day 28 was recorded as the column chart. (D) The tumours 
were obtained after mice were sacrificed and weighed at Day 28. (E) The morphological change of the lungs was observed in different 
groups as shown in the left. The metastatic nodes in the lungs were calculated in different groups as shown in the right (n = 5). *p < 0.05, **p 
< 0.01, ***p < 0.001.
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reduce the M2 polarization induced by oestrogen compared to con-
trol (si-NC), as the decreased expression of Arg-1, CD163, CD206, 
TGF-β, IL-10 and VEGF (Figure  2G,H). These results indicate that 
oestrogen may accelerate the M2 polarization of macrophages by 
promoting SKOV3 and ES2 cells' exosomal SNHG17 release.

3.3  |  Oestrogen-induced exosomal SNHG17 
modulates macrophage M2 polarization via 
PI3K/AKT pathway

To further investigate the mechanism by which oestrogen-induced 
exosomal SNHG17 modulate macrophage M2 polarization, we ex-
amined the PI3K/AKT signalling pathway, which has been reported 
to be involved in the regulation of M2 polarization.34 We observed 
that exosomes from SKOV3 and ES2 cells with oestrogen treat-
ment could enhance the phosphorylation of PI3K and Akt in mac-
rophages compared to the exosomes from non-oestrogen-treated 
cells (Figure  3A,B). However, knockdown of SNHG17 suppressed 
this process (Figure 3A,B). Preliminary results suggest that oestrogen 
treatment may promote M2 polarization via the PI3K/Akt signalling 
pathway by increasing exosomal SNHG17 secretion. Furthermore, 
we verified the hypothesis by using PI3K/AKT pathway inhibitor 
LY294002 in macrophages. The promotion of M2 polarization (high 
expression of Arg-1, CD163, CD206, TGF-β, IL-10 and VEGF) resulted 
from oestrogen treatment was significantly inhibited by LY294002 
treatment (Figure 3C–F). Consistently, western blot showed that the 
increased phosphorylated level of PI3K and Akt induced by oestro-
gen could be suppressed with LY294002 treatment (Figure  3G,H). 
These results reveal that oestrogen-induced exosomal SNHG17 
could promote macrophage M2 polarization via PI3K/Akt pathway.

3.4  |  Oestrogen-increased exosomal SNHG17 
facilitates ovarian cancer tumour behaviour via M2 
polarization in vitro

Next, we explored the biological effect of the M2 polariza-
tion triggered by oestrogen-increased exosomal SNHG17. We 

collected the supernatant of the co-culture of macrophages and 
exosomes with different treatment; then, we added the above 
supernatant in SKOV3 and ES2 cells. We performed CCK-8, tran-
swell and transwell-matrigel assays. The results showed that the 
increased cell viability, cell migratory and invasive abilities caused 
by the culture of supernatant from the co-culture of macrophage 
and exosomes with oestrogen treatment could be blocked by the 
supernatant from the co-culture of macrophage and SNHG17-
knockdown exosomes with oestrogen treatment (Figure  4A–C). 
The western blot analysis of epithelial-mesenchymal transition 
(EMT)-related proteins was consistent with the above results, 
as the increased N-cadherin and Snail expression and decreased 
E-cadherin expression induced by the supernatant from the 
co-culture of macrophage and exosomes with oestrogen treat-
ment were blocked by the supernatant from the co-culture of 
macrophage and SNHG17-knockdown exosomes with oestro-
gen treatment (Figure  4D). These data suggest that oestrogen-
increased exosomal SNHG17 could promote ovarian cancer 
tumour behaviour including proliferation, migration, invasion and 
EMT via M2 polarization in vitro.

3.5  |  Oestrogen-increased exosomal SNHG17 
promotes tumour growth and metastasis in the 
xenograft nude mouse model

Furthermore, we confirmed the supernatant effect on tumour 
growth and metastasis in  vivo using the murine tumour xeno-
graft model. Compared to the controls, the larger and heavier 
tumours caused by the supernatant from macrophages with the 
exosome from SKOV3 were much more significantly increased 
additively with oestrogen treatment (Figure  5A–D). Meanwhile, 
the tumour growth promoting effects were reduced by exosomes 
with SNHG17-knockdown (Figure  5A–D). Moreover, the severe 
pulmonary metastasis induced by oestrogen treatment was also 
significantly abrogated by SNHG17-knockdown (Figure 5E). These 
results suggest that oestrogen-increased exosomal SNHG17 pro-
motes tumour growth and metastasis via macrophage M2 polari-
zation in vivo.

F I G U R E  6 Oestrogen-induced exosomal SNHG17 facilitates ovarian cancer cell proliferation, migration, invasion and EMT by promoting 
M2 macrophage releasing CCL13. (A) Macrophages were incubated with PBS or exosomes from SKOV3 or ES2 cells with or without 
oestrogen treatment. The relative mRNA level of macrophage cytokines was performed by RT-PCR. (B) CCL13 content in the supernatant 
of macrophages was measured by ELISA. (C) SKOV3 or ES2 cells were transfected with si-SNHG17 or si-NC for 48 h and then treated with 
or without oestrogen treatment for 24 h. CCL13 content was measured in the supernatant from macrophages incubated with exosomes. 
(D) Macrophages were incubated with exosomes from SKOV3 or ES2 cells with or without oestrogen treatment, and/or with anti-CCL13 
antibody (1.5 μg/mL). Cell proliferation of SKOV3 and ES2 treated with the above supernatants was analysed by CCK-8. (E) Cell migration 
and cell invasion were analysed. (F) EMT-related proteins were measured. (G) SKOV3 or ES2 cells were transfected with si-SNHG17 or 
si-NC for 48 h and then treated with or without oestrogen treatment for 24 h, and/or with CCL13 recombination protein (30 ng/mL). The 
supernatants were obtained from the macrophages incubated with the exosomes from above groups. SKOV3 or ES2 were treated with the 
above supernatants. Cell proliferation (G), cell migration (H), cell invasion (I) and EMT-related proteins were analysed. *p < 0.05, **p < 0.01, 
***p < 0.001.



12 of 16  |     LIANG et al.



    |  13 of 16LIANG et al.

3.6  |  Oestrogen-induced M2 polarization by 
promoting the release of exosomal SNHG17 promotes 
proliferation, migration and invasion of ovarian cancer 
by releasing CCL13

Based on the above findings, we hypothesized that factors secreted 
by macrophages co-cultured with exosomes with oestrogen treat-
ment could promote ovarian cancer tumour growth and metastasis 
in vitro and in vivo. To identify the factor, we tested the macrophage-
related cytokines including IL-10, TGF-β, VEGF, Arg-1, CCL1, CCL2, 
CCL13, CCL16, CCL18, CCL22 and CCL24. As shown in Figure 6A,B, 
CCL13 was verified and validated to be upregulated in superna-
tant of the macrophages incubated with exosomes with oestrogen 
treatment in both SKOV3 and ES2 cells. What's more, the release 
of CCL13 was reduced when the supernatant was from the mac-
rophages incubated with SNHG17-knockdown exosomes with oes-
trogen treatment (Figure 6C). Then, we investigated the biological 
effects of CCL13 on cell proliferation, migration, invasion and EMT. 
The strengthening effect on tumour behaviour induced by oestro-
gen treatment could be blocked when co-treatment with CCL13 
neutralizing antibody (anti-CCL13, Figure 6D–F). Next, we assessed 
whether oestrogen-induced exosomal SNHG17 could promote the 
effects via CCL13. The increased proliferation, migration, invasion 
and EMT caused by the supernatant of co-treatment with oestro-
gen and CCL13 could be significantly reduced by the supernatant of 
co-incubation with SNHG17 knockdown (Figure 6G–J). These results 
show that oestrogen-induced exosomal SNHG17 has the facilitating 
effect on ovarian cancer by promoting M2 releasing CCL13.

3.7  |  The CCL13-CCR2-M2 macrophage axis 
is involved in oestrogen-induced ovarian cancer 
tumour growth

It has been known that CCR2 is the chemokine receptor of 
CCL13.35–37 To clarify whether CCL13–CCR2 was involved in the 
oestrogen-induced exosomal SNHG17 on ovarian cancer tumour 
growth, we knocked down CCR2 in SKOV3 and ES2 cells and added 
CCL13 recombination protein. Firstly, we observed that CCR2 ex-
pression was elevated in CCL13-treated group compared with the 
control group, and oestrogen treatment cells showed a more substan-
tial facilitation effect. Whereas the CCR2 level was significantly de-
creased in si-CCR2-transfected cells compared to si-NC-transfected 
cells treated with CCL13 (Figure 7A), the CCR2 expression was also 
obviously downregulated in CCR2-knockdown cells compared to 

control group treated with oestrogen (Figure 7A). Next, we explored 
whether CCR2 was involved in the enhanced effect of CCL13 on 
ovarian cancer cell growth in vitro. As shown in Figure 7B–D, the 
increased proliferation, migration and invasion caused by CCL13 
treatment could be reduced by CCR2 knockdown both in SKOV3 
and ES2 cells (Figure 7B–D), and CCR2 knockdown could also elimi-
nated the oestrogen-induced effects. Furthermore, we constructed 
stable CCR2-knockdown SKOV3 cell lines and confirmed the si-
lence of CCR2 expression in established cell lines (Figure 7E). In the 
xenograft mouse model, the supernatant from the co-incubation 
of macrophages and oestrogen-treated SKOV3 exosomes could 
promote tumour growth, as well as CCL13 treatment, which were 
suppressed by CCR2 knockdown (Figure 7F). These results suggest 
that oestrogen-induced exosomal SNHG17 could promote ovarian 
cancer tumour growth via macrophage M2 polarization, and that 
CCL13-CCR2 was responsible for these effects.

To further confirm that CCR2 was involved in oestrogen-
induced exosomes on ovarian cancer tumour growth, we intro-
duced RS504393, a CCR2 antagonist.38 When SKOV3 or ES2 cells 
were treated with RS504393, the protein level of CCR2 was ob-
viously decreased than the corresponding control (Figure  S1A). 
Moreover, downregulation of CCR2 could weaken the promoting 
role of CCL13 on cell proliferation, cell migration and cell invasion 
(Figure S1B–D), and CCR2 downregulation could also partially re-
duce the oestrogen-induced effects (Figure S1B–D). Thus, we con-
cluded that CCR2 played a vital role in the accelerative effects of 
oestrogen-induced exosomal SNHG17 on ovarian cancer tumour 
growth in vitro.

4  |  DISCUSSION

Oestrogen is one of the risk factors for ovarian cancer development, 
progression and metastasis.39,40 However, the underlying molecu-
lar mechanisms remain elusive. Therefore, elucidating the molecular 
mechanism underlying oestrogen-induced ovarian cancer tumori-
genesis is making sense for the development of potential therapeutic 
strategies for improving the survival of patients with oestrogen-
related ovarian cancer. In this study, we revealed that oestrogen-
induced exosomal lncRNA SNHG17 facilitated tumour growth and 
metastasis in vitro and in vivo. Oestrogen-induced exosomal lncRNA 
SNHG17 could promote macrophage M2 polarization via PI3K/Akt 
signalling pathway. Furthermore, we also identified that exosomal 
lncRNA SNHG17 promoted ovarian cancer via CCL13-CCR2-M2 
macrophage axis.

F I G U R E  7 CCL13-CCR2 axis is involved in oestrogen-induced ovarian cancer tumour behaviours in vitro and in vivo. SKOV3 or ES2 
cells were transfected with si-CCR2 or si-NC for 48 h and then treated with or without oestrogen treatment for 24 h, and/or with CCL13 
recombination protein (30 ng/mL). (A) The protein level of CCR2 was detected by western blot. Cell proliferation (B), cell migration (C) and 
cell invasion (D) were analysed. (E) The protein level of CCR2 in SKOV3 cells transfected with sh-NC or sh-CCR2 was examined by western 
blot. (F) Mice were inoculated with SKOV3 cells transfected with sh-NC or sh-CCR2 and then injected with or without CCL13 recombination 
protein (45 μg/kg), or the supernatants from macrophages incubated with oestrogen-treated SKOV3 cell exosomes, or PBS. The tumour 
volume was measured and calculated at Day 28. *p < 0.05, **p < 0.01, ***p < 0.001.
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Increasing studies showed that lncRNAs are important regula-
tors of tumorigenesis and development in various cancers.41–43 In 
the present study, we discovered that SNHG17 was upregulated in 
ovarian cancer. Upon oestrogen treatment, the exosomes derived 
from SKOV3 and ES2 cells and the exosome-delivered SNHG17 
were significantly increased. These results indicate that exosomal 
SNHG17 may act as ‘oncogene’ in ovarian cancer. It was reported that 
SNHG17 silence could inhibit the tumorigenesis of epithelial ovarian 
cancer via the miR-485-5p/AKT1 axis.44 Besides, SNHG17 was also 
found to play oncogenic roles in prostate cancer,15 rectal cancer,17 
lung adenocarcinoma18 and ovarian cancer.19,20 Consistently, our re-
sults confirm the oncogenic role of SNHG17 in ovarian cancer, that is 
exosomal SNHG17 could promote ovarian cancer cell proliferation, 
migration, invasion and EMT in vitro and tumour growth and metas-
tasis in vivo.

The vital roles of TAMs, as one of key components of TME, have 
been studied in the regulations of tumour progression, development 
and metastasis. Multiple research projects showed that tumour-
derived exosomes could promote tumours development by regu-
lating the M1/M2 polarization of TAMs.45–47 It was reported that 
exosomal microRNAs could induce tumour-associated macrophages 
via PPARγ during tumour progression in SHH medulloblastoma.48 It 
was studied that loss of XIST could activate MSN-c-Met via exoso-
mal miRNA to promote brain metastasis in breast cancer.49 Exosomal 
miR-181a-5p derived from SAOS-2 cells was found to promote mac-
rophage M2 polarization by targeting RORA.50 However, there is still 
little research on the function of ovarian cancer-derived exosomes in 

TAM polarization and tumour development. In this study, we discov-
ered that exosomes from SKOV3 and ES2 cells could promote the 
M2 polarization of macrophages. Moreover, with oestrogen treat-
ment, exosomes could accelerate the effects by increasing exosomal 
SNHG17 expression. PI3K/Akt signalling pathway has been reported 
to be involved in the macrophage activation and M1/M2 polariza-
tion.51 Herein, we observed that ovarian cancer cells secreted 
exosomes could enhance the M2 polarization of macrophages by 
activating PI3K/Akt signalling pathway. Oestrogen treatment could 
aggravate the effect by upregulating exosomal SNHG17 expression.

Accumulating evidence suggests that M2 macrophages could 
modulate tumour behaviours by secreting factors in tumour mi-
croenvironment. For example, M2 phenotype-macrophages could 
secrete IL-4, IL-5 and IL-6 to enhance angiogenesis, immunosup-
pression and matrix remodelling during tumour progression.52 In 
this study, CCL13 was identified to be the factor released by M2 
macrophages exposed to oestrogen. In addition, we confirmed that 
oestrogen-induced exosomal CCL13 could promote CCL13 release 
to regulate ovarian cancer cell proliferation, migration, invasion 
and EMT. Furthermore, we verified that CCR2 was the receptor of 
CCL13 when ovarian cancer with oestrogen treatment. The CCL13-
CCR2 axis in ovarian cancer tumour growth was investigated in vitro 
and in vivo. These results indicate that oestrogen-induced ovarian 
cancer exosomal SNHG17 could promote tumour growth by regulat-
ing M2 polarization via CCL13-CCR2 axis.

To sum up, our work demonstrates that oestrogen treatment 
promoted ovarian cancer exosomes SNHG17 secretion, of which 

F I G U R E  8 The graphic illustration for role of oestrogen-induced exosomal SNHG17-CCL13-CCR2-M2 macrophage axis in ovarian cancer. 
Oestrogen treatment promotes ovarian cancer exosomes SNHG17 secretion, of which facilitates the macrophage M2 polarization via 
PI3K/Akt pathway. The activated M2 macrophage releases CCL13, binding to CCR2 and thus promotes ovarian cancer tumour growth and 
metastasis in vitro and in vivo.
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facilitated the macrophage M2 polarization via PI3K/Akt pathway. 
The activated M2 macrophage released CCL13, binding to CCR2 
and thus promoted ovarian cancer tumour growth and metastasis 
in  vitro and in  vivo (Figure  8). Our results provide novel insights 
of the mechanisms underlying the roles of exosomes lncRNAs in 
oestrogen-related ovarian cancer.
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