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Abstract 
The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates 
the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/
or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of 
the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression 
after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 
protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian 
follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embry-
onic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly 
and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary 
heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty 
and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses 
on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embry-
onic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro 
derived embryos in cattle.

Lay Summary 
The pleomorphic adenoma gene1 (PLAG1) produces PLAG1 protein which, by binding to specific regions on DNA, influences the activity of 
other genes that regulate many body functions. One gene is insulin-like growth factor 2 (IGF2) which controls cell metabolism and growth. The 
PLAG1 gene is particularly active during embryonic and fetal growth, and through IGF2 determines stature later in life. IGF2 protein is also very 
important in early embryonic development. This review explores the hypothesis that PLAG1 is an important determinant of embryonic survival 
and the establishment of pregnancy in mammals.
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Introduction
The major cause of reproductive loss in cattle is the failure of 
embryos to progress to implantation and pregnancy. Fertil-
ization rates in both beef and dairy cattle are in the order of 
85% to 100%; however, only 40% to 60% of embryos estab-
lish a pregnancy (Diskin et al., 2016; Lockhart et al., 2023). 
In recent reviews, we have argued that the next transforma-
tional change in reproductive efficiency will require a deeper 
understanding of the biology of early embryo development 
in cattle (D’Occhio et al., 2019b, 2020a, b; Campanile et al., 

2021). This applies to both natural mating and assisted repro-
duction. A critically important feature of early embryo devel-
opment is the dialogue between embryo and uterus in the 
period before embryo attachment and during implantation 
(Hantak et al., 2014; Rizos et al., 2017; Sponchiado et al., 
2017, 2019, 2020; Aguilera et al., 2022; Binelli et al., 2022; 
Cajas et al., 2022; Tesfaye et al., 2022). Factors involved in 
 embryo-uterine communication include the transforming ß 
superfamily (D’Occhio et al., 2020a), cell-cell adhesion mol-
ecules (D’Occhio et al., 2019b), kisspeptin (D’Occhio et al., 
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2020b) and immune factors (Campanile et al., 2021), among 
others. Our reviews, and those of others, have noted the com-
plexity of events associated with early embryo development, 
attachment of the conceptus to the uterine epithelium, and 
implantation. The reviews have identified major gaps in our 
understanding of early embryo development in cattle. The 
gaps in knowledge largely explain the relatively modest prog-
ress over the past 40 yr in reducing high embryo loss in cattle. 
High embryo loss applies to both in vivo and in vitro derived 
embryos. Embryo loss is comparable after natural mating, 
artificial insemination, or embryo transfer (Hansen, 2020). 
The transfer of a bovine embryo to a recipient at day 7 of 
development avoids the relatively large loss of embryos that 
occurs in the first 7 d after fertilization. However, there is still 
considerable loss between the transfer on day 7, and day 21, 
when embryo attachment has commenced (Hansen, 2020). 
Therefore, the transfer of a bovine embryo on day 7 of early 
development does not overcome all the embryo losses in cat-
tle that occur before implantation.

The present review seeks to build on our earlier articles 
and looks at the potential role of the pleomorphic adenoma 
gene1 (PLAG1) in early embryonic development. The PLAG1 
gene encodes a DNA-binding, C2H2 zinc-finger protein which 
acts as a transcription factor that regulates the expression of 
diverse genes across different organs and tissues (Voz et al., 
2004; Abdollahi, 2007; Wagner and Zhang, 2011; Adnani 
et al., 2018). The most notable expression of PLAG1 occurs 
during embryonic and fetal development with lesser expres-
sion after birth (Hensen et al., 2004; Tang et al., 2013; Habib 
et al., 2018; Madissoon et al., 2019; Li et al., 2020a). There 
is a paucity of information on the transcriptional regulation 
of the PLAG1 gene. The neurogenic factor Hmga2 induces 
expression of PLAG1 in neuronal progenitor cells (Sakai et al., 
2019) while microRNA-141 shows translational regulation of 
PLAG1 mRNA (Tang et al., 2013). In early embryos, PLAG1 
protein was reported to act at conserved Alu/B1 elements in 
the promotor region of over 1,000 genes associated with ribo-
somal assembly and protein synthesis (Madissoon et al., 2019). 
Rearrangements of the PLAG1 gene, and/or overexpression, 
are associated with benign tumors and neoplasia in differ-
ent tissues (Matsuyama et al., 2011). This is best described 
for pleomorphic adenomas of the salivary glands in humans, 
which gave the gene its name (Voz et al., 1998, 2000; Åström 
et al., 1999; Debiec-Rychter et al., 2001; Hensen et al., 2002; 
Declercq et al., 2005; Asp et al., 2006; Van Dyck et al., 2007; 
Skálová et al., 2021). There is evidence of a role for PLAG1 
protein in normal early embryonic development and placenta-
tion. In mice, oocytes with low amounts of maternal PLAG1 
transcripts showed a delay in zygotic genome activation, and 
2-cell-stage embryonic development (Madissoon et al., 2019). 
The PLAG1 gene is maternally imprinted and an ongoing 
role for PLAG1 protein during embryonic development may 
depend on the expression of paternal PLAG1 (Moore & Haig, 
1991; O’Doherty et al., 2012; Barlow & Bartolomei, 2014; 
Plasschaert & Bartolomei, 2014; Adhami et al., 2015; Jiang 
et al., 2015; Lafontaine et al., 2020). In cattle, minor activa-
tion of the embryonic genome occurs at the 2-cell embryo 
stage, with major activation at the 4- to 8-cell stage (Telford 
et al., 1990; Memili et al., 1998; Memili & First, 1999, 2000; 
Dean et al., 2001; Kaňka et al., 2003; Meirelles et al., 2004; 
Ruddock et al., 2004; Gad et al., 2012; Ozawa et al., 2012; 
Graf et al., 2014a, b; O’Doherty et al., 2015; Jukam et al., 
2017; Jiang et al., 2018; Lavagi et al., 2018; Duan et al., 2019; 

Halstead et al., 2020; Ivanova et al., 2020; Figure 1). PLAG1 
is polymorphic in cattle and any potential action of PLAG1 
protein on ongoing embryonic development may depend on 
the nature of the paternal PLAG1 allele. PLAG1 can influence 
the production of ike growth factor 2 (IGF2), H19, leukemia 
inhibitory factor (LIF), ß-catenin, and cytokines. These factors 
are all variously associated with embryonic development, uter-
ine attachment, and implantation (Niemann & Wrenzycki, 
1999; Han et al., 2003; Gabory et al., 2009; Agrogiannis et al., 
2014; Jiang et al., 2015; Smith et al., 2015;  Sferruzzi-Perri 
et al, 2017; Campanile et al., 2021; Llobat, 2021; Willhelm 
et al., 2021; Zhou et al., 2021; Sandovici et al., 2022). The 
role of LIF and other cytokines, and the LIF receptor, in 
embryonic development and implantation is comprehensively 
discussed in earlier reviews which are complemented by the 
present review (Guzeloglu-Kayisli et al., 2009; Robertson 
et al., 2018; Campanile et al., 2021; Namiki et al., 2023). The 
role of catenins during early vertebrate development through 
cell adhesion in association with cadherins (Stepniak et al, 
2009; D’Occhio et al., 2019b) and intracellular signaling in 
the Wnt/β-catenin pathway (Valenta et al., 2012; Liu et al., 
2022) also have been well documented. In cattle, polymor-
phisms of the PLAG1 gene are linked with fetal and postnatal 
growth and adult phenotypes including fertility (PLAG1 and 
Phenotype in Cattle below).

The approach adopted in the present review is to first pro-
vide a general background on the PLAG1 gene and PLAG1 
protein. We then consider relationships between PLAG1 
polymorphisms and phenotypes in cattle. This is followed 
by a focus on the role of PLAG1/PLAG1 in early embryonic 
development. In keeping with our earlier reviews, this review 
seeks to build awareness of the complex biology of embryonic 
development. Our consistent argument has been that a deeper 
understanding is needed of the factors that impact early 
embryo development before a meaningful transformational 
change can be made in the efficiency of both natural mating 
and assisted reproduction in cattle.

Discovery of PLAG1 Gene and PLAG1 Protein
The PLAG1 gene and PLAG1 protein were described from 
1997 to 1998 (Table 1). The seminal report showed the 
PLAG1 gene to be associated with a chromosome translo-
cation at 8q12 that was linked with pleomorphic adeno-
mas of the salivary glands in humans (Kas et al. 1997a, b). 
The same laboratory described two related human proteins, 
PLAGL1 and PLAGL2. The protein PLAGL2 also binds to 
DNA and has similar properties as PLAG1 protein (Kas 
et al. 1998). The PLAG1/PLAG1 family members were sub-
sequently assigned various names based on the association 
of PLAG1 mutations with different phenotypes in different 
species (Table 1). In the absence of PLAG1 gene rearrange-
ment, and/or overexpression of PLAG1, PLAG1 protein can 
have antiproliferative activity and tumor suppression. Hence, 
the regulated expression of PLAG1 is associated with normal 
cellular function in different tissues, while overexpression is 
linked with benign tumors and malignancies (Zatkova et al., 
2004). Overexpression of PLAG1 leads to overproduction of 
PLAG1, rather than changes in the structure of PLAG1 pro-
tein. PLAG1 stimulates the IGF2 gene and excess production 
of IGF2 is considered one mechanism linked to tumors and 
cancers (Voz et al., 2000, 2004; Zatkova et al., 2004; Akhtar 
et al., 2012).
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In humans, the PLAG1 gene comprises 6 exons and 5 
introns. PLAG1 has yet to be fully described in cattle and 
is presently thought to comprise 3 introns and 4 exons (Van 
Dyck et al., 2007; Figure 2). In cattle, a 19-base pair inser-

tion/deletion (19-bp indel) at Exon 1, and single-nucleotide 
polymorphisms at Exons 3 and 4, are associated with growth, 
stature, and carcass traits (Karim et al. 2011; Littlejohn et al. 
2011; Zhong et al., 2019; Figure 2). PLAG1 mutations were 

Figure 1. Zygotic genome activation in cattle. PLAG1 is maternally imprinted and PLAG1 protein derived from paternally expressed PLAG1 could 
potentially be present in embryos from the 2 to 4 cell stage.
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also associated with age at puberty and circulating levels of 
IGF1 in heifers (Fortes et al., 2013). PLAG1 is located within 
the same quantitative trait loci as the coiled-coil-helix-coiled-
coil-helix domain containing 7 (CHCHD7) gene, which is 
also associated with growth and stature in several species 
including cattle (Li et al., 2020a; Xu et al., 2020). Both genes 
share the same bi-directional promoter and SNPs known to 
influence the transcriptional activity of the promoter impact 
the expression of PLAG1 and CHCHD7 (Karim et al., 2011; 
Fink et al., 2017; Figure 2). PLAG1 protein is comprised of 
three regions with distinct functions: a region with nuclear 
translocation signals for the transfer of PLAG1 to the nucleus; 
C2H2-like zinc-finger domains that interact with DNA to 
influence transcription; a serine-rich region that has transcrip-
tional activation activity (Braem et al., 2002; Hensen et al., 
2002; Figure 2).

PLAG1 and Phenotype in Cattle
The most studied relationships between PLAG1/PLAG1 
and phenotype in cattle are for growth and stature (Karim, 
et al., 2011; Pryce et al., 2011; Visscher & Goddard, 2011; 
Boitard et al., 2016; Takasuga, 2016; Taye et al., 2017; Utsu-
nomiya et al., 2017; Bouwman et al., 2018). As noted above, 
PLAG1 is most noticeably expressed during fetal develop-
ment and PLAG1 polymorphisms are linked with differences 
in birth weight and calving ease in cattle (Littlejohn et al., 
2011; Pausch et al., 2011; Utsunomiya et al., 2013). PLAG1 
polymorphisms are also associated with growth, mature 
body size, and stature, in different breeds of cattle including 
Holstein-Friesian (Littlejohn et al., 2011; Zhao et al., 2015), 
Holstein Friesian × Jersey (Karim et al., 2011), Chinese (Xu 
et al., 2018; Hou et al., 2019; Zhong et al., 2019; Zhou et al., 
2019; Li et al., 2020b), European (Randhawa et al., 2015; 
Zhao et al., 2015), African (Randhawa et al., 2015), and Jap-
anese Black (Hoshiba et al., 2013; Sasaki et al., 2013). Other 
commercially important production traits in cattle linked 
with PLAG1 polymorphisms are carcass weight and meat 
yield (Nishimura et al., 2012; Hoshiba et al., 2013; Bolor-
maa et al., 2015; Song et al., 2016; Hay & Roberts, 2018; 
Zhang et al., 2019), milk quality (Zhao et al., 2015; Fink 
et al., 2017), and adaptation (Porto-Neto et al., 2014; Boi-
tard et al., 2016). PLAG1 influences growth and production 
traits in goats (Wei et al., 2021) and sheep (Wu et al., 2019; 
Pan et al., 2022).

A major target for PLAG1 protein is the IGF2 gene and 
PLAG1 binding sites are present in the promoter of IGF2 

(Voz et al., 2000, 2004; Zatkova et al., 2004; Van Dyck 
et al., 2007; Akhtar et al., 2012; Wang et al., 2013). IGF2 
codes for the IGF2 protein which is an important fetal mito-
gen (O’Dell & Day, 1998; Curchoe et al., 2005; Berkowicz 
et al., 2010; Bergman et al., 2013). It is generally accepted 
that growth in cattle is at least partly associated with vari-
ants of PLAG1, and differential regulation of IGF2 by 
PLAG1 protein (Bolormaa et al., 2015). IGF2 is produced by 
placental tissue and acts in both the placenta and fetus (Con-
stância et al., 2002; Figure 3). The developing fetus likewise 
produces IGF2 which acts at the fetus and placenta (Akhtar 
et al., 2012; Agrogiannis et al., 2014; Sandovici et al., 2022). 
Inactivation of PLAG1 is associated with reduced IGF2 and 
fetal growth retardation (Hensen et al., 2004; Varrault et al., 
2006; Habib et al., 2018). Aberrant imprinting of PLAG1 
and overexpression is associated with the large fetus syn-
drome (Chen et al., 2015). Relationships between PLAG1, 
IGF1 and phenotype have been described for cattle (Fortes 
et al., 2013).

PLAG1/PLAG1 and Reproduction
Puberty
Age at puberty is a highly important trait which is linked to 
lifetime fertility in female cattle (Hawken et al., 2012; Wathes 
et al., 2014; D’Occhio et al., 2019a). Mutations on chromo-
some 14 (BTA14), in proximity to PLAG1, were reported 
to be associated with puberty in Zebu (Bos indicus) heif-
ers including Brahman (Hawken et al., 2012; Fortes et al., 
2013) and Nellore (Mota et al., 2020). Heifers with delayed 
puberty linked to various PLAG1 mutations are heavier at 
puberty. Over 36 yr, we have subjected a herd of Brahman 
(Bos indicus) females to uncompromising selection for fertil-
ity (Collins Belah Valley [CBV] Brahman, Belah Valley Cat-
tle Station, Marlborough, Central Queensland, Australia). 
Females remain in this herd only if they conceive, wean a 
calf, and reconceive in successive years starting with their 
first mating (Collins A. Snr., J. E. Kinder, and M. J. D’Occhio, 
unpublished). Days-to-calving (DTC), defined as the number 
of days from the start of mating to subsequent calving, is the 
most important measure of fertility in Brahman and the key 
driver of profit in beef production. Herd records are used 
to calculate estimates of genetic differences between animals 
for DTC and these are expressed as estimated breeding value 
(EBV) or estimated progeny difference. Female cattle with 
a low DTC EBV show early puberty as heifers and resume 
cyclic ovarian function sooner after calving. The DTC EBV 

Table 1. Discovery of the pleomorphic adenoma gene (PLAG1) family members

Name Function described Year Species Reference

PLAG1: pleomorphic adenoma gene Activation in salivary gland tumorigenesis 1997 Human Kas et al. 1997a, b
*LOT1: lost-on-transformation Decreased or lost expression in transformed ovar-

ian epithelia cells that developed into malignant 
ovarian tumors

1997 Rat Abdollahi et al. 
1997a, b; see also 
Abdollahi 2007

*ZAC/ ZAC1: zinc-finger protein 
found to regulate apoptosis and cell 
cycle arrest

Induction of apoptosis and G1 cell cycle arrest and 
inhibition of tumor growth

1997 Mouse Spengler et al. 1997

*PLAGL1: PLAG1 like zinc-finger 1
PLAGL2: PLAG1 like zinc-finger 
protein 2

Identified by screening mouse embryo and human 
fetal kidney cDNA libraries using PLAG1 open 
reading frames (ORF)

1998 Human, Mouse Kas et al. 1998

*Same PLAG/PLAG family member.
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for the CBV Brahman herd is −16.8 d compared with the 
Australian Brahman breed average DTC EBV of −3.2 d. The 
latter demonstrates a strong genetic component for high fer-
tility of the CBV Brahman herd. It was recently shown that 
maiden heifers in the CBV Brahman herd that were homozy-
gous for the PLAG1 variant rs109815800 (G > T) conceived 
earlier and had greater fertility than contemporary heifers 
with either one or no copies of the variant (Engle & Hayes, 
2022). Heifers with two copies of the variant had a smaller 

stature than heifers with one or no copies (Engle & Hayes, 
2022).

Ovarian follicles and embryonic and fetal 
development
In addition to an effect on age at puberty, PLAG1/PLAG1 
have been broadly associated with reproductive function in 
fish and mammals (Pendeville et al., 2006; Juma et al., 2016, 
2017, 2018; Wong et al., 2020a, b). The relationship between 

Figure 2. The putative structure of the PLAG1 gene in cattle and variants of PLAG1 associated with different phenotypes. Indel, insertion/deletion; 
SNPs, single-nucleotide polymorphisms (top); the common bi-directional promoter of the PLAG1 and CHCHD7 genes. QTLs/SNPs in the promoter 
influence the transcriptional activity of PLAG1 and CHCHD7 and phenotypes in cattle including growth and stature. QTLs, quantitative trait loci; SNPs, 
single-nucleotide polymorphisms (middle); and the structure of PLAG1 protein and domains associated with translocation to the nucleus and binding to 
DNA. PLAG1 typically binds to the promoter of target genes to influence transcription (bottom).
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PLAG1 and IGF2 in growth and development, which is dis-
cussed above, can be extended to ovarian function and embry-
onic development in cattle (Neirijnck et al., 2019). IGF2 is 

expressed in growing ovarian follicles and has important mito-
genic actions on both the follicle and oocyte (Hunter et al., 
2004; Spicer & Aad, 2007; Brogan et al., 2010; Aad et al., 
2013; Baumgarten et al., 2015; Tkachenko et al., 2021; Figure 
4). Oocytes also produce IGF2 which influences the function 
of oocytes and follicles (Willhelm et al., 2021; Figure 4). IGF2 
is additionally expressed by early embryos and the uterus and 
is involved in autocrine, paracrine, and endocrine events asso-
ciated with embryonic growth, attachment, and implantation 
(Robinson et al., 2000; Willhelm et al., 2021; Figure 5). IGF2 
is maternally imprinted similar to PLAG1 (DeChiara et al., 
1991; Giannoukakis et al., 1993; Dindot et al., 2004; Gebert 
et al., 2006, 2009; Sandovici et al., 2022). As noted above, in 
early embryos PLAG1 protein acts at the promotor region of 
over 1,000 genes including IGF2 (Madissoon et al., 2019). 
Mouse embryos lacking maternal PLAG1 transitioned slowly 
from the 2- to 4-cell stage of development (Madissoon et al., 
2019). Embryos that transition through early cell divisions in 
a timely manner have a greater likelihood of surviving and 
establishing a pregnancy. In mice that lacked maternal PLAG1 
the gene was expressed ectopically from the paternal allele 
earlier than would otherwise occur (Madissoon et al., 2019).

MicroRNAs (miRNAs) have been implicated in the func-
tion of PLAG1/PLAG1 in early development (Maccani & 
Marsit, 2011; Kochhar et al., 2021). For example, miRNA-
141 downregulates PLAG1 translation which is associated 
with fetal growth retardation (Tang et al., 2013). Based on 
the relationship between PLAG1 and expression of the IGF2 
gene discussed above, it was concluded that miRNA-141 
downregulation of PLAG1 results in reduced IGF2, and sup-
pressed fetal growth (Varrault et al., 2006; Tang et al., 2013; 
Saha et al., 2015). There is a lack of information on the spe-
cific localization of PLAG1 expression in the embryos and 
uterus and this is an area that warrants investigation.

Figure 3. Insulin-like growth factor 2 (IGF2) is produced by the fetus and 
placenta and has both local and reciprocal action between the fetus and 
placenta. IGF2 can bind to both IGF1 and IGF2 receptors on target cells.

Figure 4. Insulin-like growth factor 2 (IGF2) is produced by oocytes and granulosa cells of follicles and has a local and reciprocal action in oocytes and 
follicles. IGF2 is an important mitogen and can bind to both IGF1 and IGF2 receptors at target cells. The IGF2 gene is influenced by PLAG1 protein 
which provides a mechanism for PLAG1 to be associated with oocyte and follicular function.
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PLAG1/PLAG1 and Embryos Survival in Cattle
As noted above, the failure of embryos to progress to implan-
tation and pregnancy is the major cause of reproductive loss 
in cattle. A deeper understanding of the factors which support 
embryonic development, attachment, and implantation, is key 
to improving embryo survival and achieving a transforma-
tional increase in reproductive success in female cattle. The 
factors are both genetic and non-genetic, although these are 
clearly interrelated. As noted above, Brahman (Bos indicus) 
heifers homozygous for the PLAG1 variant, rs109815800 
(G > T), show greater fertility than contemporary heifers with 
either one or no copy of the variant. Greater fertility in heif-
ers homozygous for rs109815800 could be due to an earlier 
age at puberty and/or an increased propensity for embryo 
survival. The latter would mean that homozygous heifers 
require fewer matings to achieve pregnancy; typical embryo 
loss in cattle is in the order of 40% to 60%. Another PLAG1 
variant, rs109231213, appears to be associated with central 
mechanisms of puberty in heifers (Fortes et al., 2013, 2016; 
DeAtley et al., 2018). Based on the information provided in 
this review, it is plausible that PLAG1/PLAG1 have a role in 
embryonic development and survival in cattle. This is sup-
ported by the important roles of IGF2 in follicles/oocytes, 
embryos, and fetuses, and the regulation of IGF2/IGF2 by 
PLAG1. A role in central mechanisms associated with puberty 
in cattle is also plausible.

Notwithstanding the body of evidence that links PLAG1/
PLAG1 with IGF2 and embryonic development and repro-
duction generally, it is noted that some of the relationships 
in this review could be considered associations and further 
research is needed to demonstrate additional cause-and-effect 
relationships.

Summary
The present review has looked at the emerging roles of PLAG1/
PLAG1 in embryonic development, placentation, and fetal 
growth. The most notable expression of PLAG1 occurs during 
embryonic and fetal development, with lesser expression after 

birth. Overexpression of PLAG1 is associated with the large 
calf syndrome in cattle and under-expression is linked to fetal 
growth restriction in cattle and humans. The overexpression of 
PLAG1 later in life is typically associated with the formation 
of solid tumors and cancers. Hence, the expression of PLAG1 
is finely balanced, and disruption in expression at different 
stages in life shifts PLAG1 from having beneficial effects to 
adverse outcomes. PLAG1/PLAG1 influence the expression of 
the IGF2 gene, and the IGF2 protein is an important mitogen 
in reproduction. The PLAG1-IGF2 axis, therefore, provides a 
mechanistic basis for an effect of PLAG1 on ovarian follicles/
oocytes, embryos, and fetuses. Our own work involving the 
selection of Brahman (Bos indicus) female cattle for fertility 
over a period of 35 yr has led to a herd in which heifers homo-
zygous for the PLAG1 variant, rs109815800, have greater 
fertility than contemporary heifers with either one or no copy 
of the variant (Collins A. Snr, J. E. Kinder, B. J. Hayes, and M. 
J. D’Occhio, unpublished). PLAG1/PLAG1 would therefore 
appear to have important roles in embryonic development and 
pregnancy in cattle similar to other mammals.
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