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Abstract

Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping 

algorithms (e.g.: SuSiE, FINEMAP, ABF, and COJO-ABF) are widely used, but assessing 

posterior probability calibration remains challenging in real data, where model misspecification 

likely exists, and true causal variants are unknown. We introduce Replication Failure Rate (RFR), 

a metric to assess fine-mapping consistency by down-sampling. SuSiE, FINEMAP and COJO-

ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that 

non-sparse genetic architecture can lead to miscalibration, while imputation noise, non-uniform 
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distribution of causal variants, and quality control filters have minimal impact. We present SuSiE-

inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer 

larger causal effects. Our methods exhibit improved calibration, RFR and functional enrichment, 

competitive recall, and computational efficiency. Notably, using our methods’ posterior effect 

sizes substantially increases PRS accuracy over SuSiE and FINEMAP. Our work improves causal 

variant identification for complex traits, a fundamental goal of human genetics.

Introduction

Over the past two decades, genome-wide association studies (GWAS) have successfully 

identified thousands of loci that are associated with various diseases and traits1. However, 

refining these associations to identify causal variants remains challenging, due to extensive 

linkage disequilibrium (LD) among associated variants2. Many approaches can be taken 

to help nominate causal variants from associations, such as overlapping GWAS signals 

with coding or functional elements of the genome3, with eQTLs4, and across populations 

having different ancestries and patterns of LD5–7. Complementary to and in conjunction 

with these approaches, Bayesian sparse regression and variable selection methods, which 

aim to identify causal variants and quantify their uncertainty based upon a statistical model 

(e.g.: SuSiE8, FINEMAP9,10, ABF11, and COJO12-ABF) are widely applied in practice13–19.

The appeal of Bayesian approaches to fine-mapping is two-fold. First, these methods 

determine a posterior inclusion probability (PIP) for each variant, quantifying the probability 

that the variant is causal under the model, which can reflect uncertainty due to LD. For 

example, two variants in strong LD and harboring a strong association with the phenotype 

may each have PIP close to 50%, representing confidence that there is a causal signal 

but uncertainty about which variant(s) is/are causal. Second, these methods incorporate 

assumptions about genetic architecture -- namely, the relative probabilities of different 

numbers of and configurations of causal SNPs, as reflected by a Bayesian prior -- to improve 

statistical power for identifying high-confidence variants.

Bayesian fine-mapping methods are correctly calibrated when the PIPs accurately reflect the 

true proportions of causal variants, e.g., 9 out of 10 variants having PIP 90% are truly causal 

for the trait. Calibration (i.e. whether or not the posterior probability of causality reflects the 

true proportion of causal variants) is ensured when the linear model for genetic effects and 

Bayesian prior for genetic architecture across loci are both correctly specified, and accurate 

calibration has also been demonstrated empirically in simulations to be robust under mild 

model misspecifications20. However, the actual calibration and false discovery rates of these 

methods in real data applications are not easily determined, as true causal variants and the 

sources of model misspecification may be unknown.

Here, we propose the Replication Failure Rate (RFR) to assess the stability of fine-mapping 

methods by evaluating the consistency of PIPs in random subsamples of individuals from 

a larger well-powered cohort. We found the RFR to be higher than expected across traits 

for several Bayesian fine-mapping methods. Moreover, variants that failed to replicate at the 

higher sample size were less likely to be coding. Together these analyses suggest that SuSiE, 

FINEMAP, and COJO-ABF may be mis-calibrated in real data applications. In other words, 
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they may return a disproportionately large number of false discoveries among high-PIP 

variants.

We performed large-scale simulations to assess the effects of several plausible sources of 

model misspecification on calibration. These simulations — which include, among other 

factors, varying levels of non-sparsity and stratification — suggest that a denser and more 

polygenic architecture of genetic effects may be a major contributor to PIP mis-calibration. 

We thus propose incorporating a model of infinitesimal effects when performing Bayesian 

sparse fine-mapping, recasting the goal of fine-mapping as the identification of a sparse set 

of large-effect causal variants among many variants having smaller effects. We develop and 

implement fine-mapping tools SuSiE-inf and FINEMAP-inf that extend the computational 

ideas of SuSiE and FINEMAP to model additional infinitesimal genetic effects within each 

fine-mapped locus.

Applying SuSiE-inf and FINEMAP-inf to 10 quantitative traits in the UK Biobank 

shows improved RFR. SuSiE-inf high-PIP variants are more functionally enriched than 

SuSiE high-PIP variants. Cross-ancestry phenotype prediction using SuSiE-inf/FINEMAP-

inf shows significant improvement over SuSiE/FINEMAP across 7 traits and 6 diverse 

ancestries. These results suggest that explicit modeling of a polygenic genetic architecture, 

even within individual genome-wide significant loci, may substantially improve fine-

mapping accuracy.

Results

Current methods are likely mis-calibrated in real data

Real-data benchmarking of fine-mapping methods is challenging due to the lack of ground 

truth. However, down-sampling large cohorts allows assessment of the methods’ stability. 

We chose 10 well-powered quantitative phenotypes (Methods) in the UK Biobank and 

computed the Replication Failure Rate (RFR) for SuSiE, FINEMAP as follows (see 

Supplementary Note A for results related to ABF and COJO-ABF). Our group previously 

performed fine-mapping20 on a cohort of 366,194 unrelated “white British” ancestry 

individuals defined in the Neale Lab UKBB GWAS21. We down-sampled this cohort 

to a random subsample of 100,000 and performed fine-mapping with the same pipeline 

(Methods). RFR is defined as the proportion of high-confidence (PIP > 0.9) variants fine-

mapped in the 100K subsample that failed to replicate (PIP < 0.1) in the full 366K cohort. 

This RFR is an estimate of the conditional probability Pr(PIP366K < 0.1 |   PIP100K > 0.9)
for a randomly chosen variant. In a truly sparse causal model, assuming that the method is 

well-powered at sample size N=366K to detect true causal variants which are identified with 

high confidence at 100K, the RFR is an approximate lower bound for the false discovery rate 

Pr not   causal |PIP100K > 0.9  (see Supplementary Note B).

Across all 10 traits, we observed different levels of RFR for different phenotypes, and an 

aggregated RFR of 15% for SuSiE and 12% for FINEMAP (Fig. 1a–b; see Extended Data 

Fig. 1 for different PIP thresholds). These values far exceed the false discovery rate expected 

in a correctly specified sparse Bayesian model (SuSiE 1.8%, FINEMAP 2.0%), which we 
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denote by EPN (Expected Proportion of Non-causal variants) and estimate from the mean 

reported PIPs exceeding 0.9. In contrast, ideal simulations under correctly specified models 

show close agreement between RFR and EPN (Fig. 1a, Methods, and Supplementary Note 

C).

To gain insight into whether non-replicating variants (PIP>0.9 at 100K and PIP<0.1 

at 366K) are causal, we examined the functional annotations, focusing on two distinct 

categories: coding and putative regulatory (Methods). We found a significant depletion of 

functionally important variants in the non-replicating set compared to the replicated set 

(P=1.7e-7) (Fig. 1c, Methods). This suggests that many non-replicating variants may be 

non-causal, and that SuSiE and FINEMAP may be miscalibrated when applied in real 

data (see Supplementary Note D for our investigation into other potential causes for high 

RFR). We found higher functional enrichment in the set of non-replicating variants than 

the background, suggesting some PIPs at N=366K may be too conservative. However, here 

we focus on investigating the more concerning under-conservative PIPs which can lead to 

elevated false discovery rate.

Un-modeled non-sparse effects can lead to miscalibration

Bayesian sparse variable selection approaches to fine-mapping, including SuSiE and 

FINEMAP, commonly rely on some of the following assumptions: (1) Within each genome-

wide significant locus, one or a small number of variants have a true causal contribution to 

the phenotype. (2) All true causal variants within the locus are included in, or tagged by a 

sparse subset of, the analyzed genotypes. (3) The distribution of causal variant effect sizes 

is well-approximated by a simple, oftentimes Gaussian, prior. (4) There is no uncorrected 

confounding, and the residual error is uncorrelated with the genotype. (5) There is no 

imputation noise or error in the genotypes. Violations of any of these assumptions can, 

in principle, cause miscalibration, although the severity of such miscalibration under the 

degrees of violation that are present in fine-mapping applications is unclear a priori.

We designed large-scale simulations to investigate how SuSiE and FINEMAP may be 

affected by these five sources of misspecification. Our simulations use UK Biobank 

genotypes (N=149,630 individuals of white British ancestry) and BOLT-LMM22 for GWAS, 

incorporating (1) varying amounts of unmodeled non-sparse causal effects (varying both 

the coverage of non-sparsity, i.e., the proportion of variants with non-zero effects, and the 

amount of heritability the non-sparse component explains), (2) missing causal variants that 

are removed by quality-control filtering prior to fine-mapping, (3) effect size distributions 

for the large and sparse causal variants that reflect estimates from fine-mapping of real 

traits, (4) varying amounts of uncorrected population stratification, and (5) imputation noise 

in the input genotypes (see Methods for detailed description of our simulations and other 

misspecifications we considered). In previous work20 by our group, we found that quality 

control filters and imputation noise did not contribute to miscalibration in simulations; here 

we continued to include them while adding non-sparsity, effect size estimates from real 

data, and uncorrected population stratification as additional sources of miscalibration. Note 

that we simulated a single cohort, without the heterogeneity that often comes with meta-

analysis where quality control and imputation are important contributors to miscalibration23. 
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Moreover, we did not consider error in the probabilities outputted by standard imputation 

software or different types of genotyping error, which could contribute to miscalibration 

even in the absence of heterogeneity.

Our simulations show that missing causal variants due to quality control (QC), use of a 

realistic non-Gaussian effect size distribution estimated from real data, and imputation error 

did not induce miscalibration, consistent with and extending previous results20.

SuSiE and FINEMAP were both miscalibrated in simulations with non-sparse effects. For 

example, when non-sparse causal effects explain 75% of the total SNP-heritability, only 

about 80% of variants with PIP ≥ 0.9 are causal, far below the rate of approximately 

97% that we would expect given the variants’ mean PIP. Miscalibration increased and 

recall decreased as we increased the proportion of total SNP-heritability (set at 0.5; 

for comparison, see Supplementary Table 1 for common-SNP heritability in real traits) 

explained by non-sparse effects from 58% to 100% (Fig 2a–b, Table 1) while fixing the 

coverage to 1%. This trend was consistently observed at different levels of coverage, see 

Methods, Extended Data Fig. 2 for results at 0.5% and 5% coverage. We emphasize that 

calibration was measured against the set of all causal variants, including the non-sparse 

causal effects.

To further support that unmodeled non-sparse causal effects, among all the misspecification 

we incorporated, formed the primary driver of the observed miscalibration, we decomposed 

the simulated genetic component Xβ of the phenotype into the sum of four sub-components 

representing sparse causal effects, missing causal variants, uncorrected stratification, and 

unmodeled non-sparse causal effects. Regressing each of these four sub-components on the 

true and false positive variants (respectively defined as causal and non-causal variants with 

PIP ≥ 0.9), false positive variants were more correlated with the non-sparse causal effects 

than true positive variants (Fig. 2c, Methods).

Our simulated population stratification in the standard pipeline (Methods) where BOLT-

LMM was used for association mapping failed to induce miscalibration. Replacing BOLT-

LMM with ordinary least squares (OLS) for association mapping allowed us to induce 

higher levels of uncorrected confounding (Supplementary Table 2) that did lead to 

miscalibration (Fig. 3) but are less true to the pipeline used in our real data applications. 

See Methods for interpretation and more discussion on these results.

In conclusion, the presence of non-sparse effects is a driver of miscalibration for SuSiE 

and FINEMAP. The stratification we simulated only induced miscalibration when using 

OLS for association mapping but not when using BOLT-LMM. None of the other sources 

of misspecification incorporated in our simulations caused miscalibration within our fine-

mapping pipeline.

Modeling infinitesimal effects in addition to sparse effects

To address PIP miscalibration that may arise from non-sparse causal effects, we propose 

to explicitly incorporate a model of broad infinitesimal genetic effects when fine-mapping 
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causal variants. Here, we describe two specific implementations of this idea that extend 

FINEMAP and SuSiE. We call the resulting methods FINEMAP-inf and SuSiE-inf.

FINEMAP-inf and SuSiE-inf are based on a random-effects linear model y = X β + α + ϵ
for observed phenotypes y across n samples, where X is a n by p genotype matrix for p
variants, β is a vector of sparse genetic effects of interest, α is an additional vector of dense 

infinitesimal effects, and ϵ is residual error. In the context of such a model, we define the 

primary goal of fine-mapping as inferring the non-zero coordinates of the sparse component 

β. We will refer to these coordinates as the “causal model” and the “causal variants”, 

although in this model, every variant may have an additional small causal effect on y through 

the infinitesimal component α.

We model coordinates of α and of the residual error ϵ as independent and identically 

distributed (i.i.d.) with normal distributions N 0, τ2  and N 0, σ2  respectively, where τ2

is the effect size variance for the infinitesimal effect. For FINEMAP-inf, coordinates 

of the sparse effects β are also modeled as i.i.d., with point-normal distribution 

π0N 0, s2 + 1 − π0 δ0. We use a shotgun-stochastic-search (SSS) procedure as in FINEMAP 

for performing approximate posterior inference of the sparse component β, marginalizing its 

posterior distribution over both the infinitesimal effects α and the residual errors ϵ. The SSS 

is divided into several epochs, and we propose a method-of-moments approach to update 

estimates of the variance components σ2,   τ2  between epochs.

For SuSiE-inf, we follow the approach of SuSiE and instead parametrize the sparse causal 

effects as a sum of single effects β = ∑l = 1
L β l  for a pre-specified number of causal variants 

L. As in SuSiE, we perform posterior inference for β using a variational approximation for 

the joint posterior distribution of β 1 , …, β L , again marginalizing over both α and ϵ. The 

approximation is computed by iterative stepwise optimization of an evidence lower bound 

(ELBO), where updated estimates of the variance components σ2, τ2  are computed within 

each iteration using a method-of-moments approach.

The resulting models are similar to linear mixed models commonly used in contexts of 

association testing and phenotype prediction22,24–26. See Discussion for an explanation of 

why we do not apply existing methods for fitting linear mixed models.

Both methods take as input either the GWAS data y, X  or sufficient summary statistics 

given by the un-standardized per-SNP z-scores z = (1/ n)XTy, the in-sample LD correlation 

matrix LD = (1/n)XTX, and the mean-squared phenotype y 2 = 1/n yTy. Both methods 

output estimates of σ2,   τ2  for each locus fine-mapped, together with a posterior-inclusion-

probability (PIP) and posterior-mean effect size estimate for each SNP. Computational cost 

is reduced by expressing all operations in terms of the eigenvalues and eigenvectors of 

LD, which may be pre-computed separately for each fine-mapped locus (Fig. 4). Details of 

the methods and computations are provided in Supplementary Note E. We have released 

open-source software implementing these methods (see Code availability).
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SuSiE-inf and FINEMAP-inf show improved performance

In our simulations, we find that SuSiE-Inf and FINEMAP-Inf have improved calibration 

over SuSiE and FINEMAP, respectively, except for simulations using ordinary least squares 

(OLS) that introduced uncorrected population stratification, which are less relevant to our 

findings in real data using BOLT-LMM (Fig. 2a, 3a, Methods). Recall of SuSiE-Inf and 

FINEMAP-Inf was very similar to, but slightly lower than, that of SuSiE and FINEMAP, 

respectively (Fig. 2b, 3b). With improved performance in simulations having non-sparse 

genetic effects, and similar performance in simulations with stratification using BOLT-LMM 

(Fig. 3a), we turned to real data benchmarking to assess whether SuSiE-inf and FINEMAP-

inf improve performance in practice.

Real data benchmarking shows improvements by several metrics. RFR was substantially 

decreased for SuSiE-inf (Fig. 5a). SuSiE-inf-specific high-PIP variants (variants that 

are assigned a high PIP by SuSiE-inf but not by SuSiE) are 58% more enriched in 

functionally important categories than SuSiE-specific high-PIP variants (P=6e-4); the 

analogous difference in functional enrichment for FINEMAP vs. FINEMAP-inf was non-

significant (38% more for FINEMAP-inf specific variants, P=0.07, Fig. 5b–c). In additional 

to high-PIP variants identified with PIP>0.9, we also observed better functional enrichment 

for top N (N=500, 1000, 1500, and 3000) variants (Extended Data Fig. 3a), demonstrating 

better prioritization of variants by our methods. Similar improvements were observed when 

using OLS for GWAS instead of BOLT-LMM (Extended Data Fig. 3b–c), upon correcting 

for stratification using PCA. Compared to SuSiE and FINEMAP, we obtained fewer high-

PIP variants (16% reduction aggregated between SuSiE and FINEMAP); however, the 

reduction is smaller for high-confidence variants, characterized either by replicated variants 

(11% reduction), or variants achieving PIP>0.9 for both SuSiE-Inf and FINEMAP-Inf/both 

SuSiE and FINEMAP (11% reduction) (Extended Data Fig. 3d). We observed a more 

substantial reduction of 42% in the number of credible sets when using SuSiE-inf; however, 

the reduction for smaller credible sets (number of variants < 10) was somewhat smaller 

(36% reduction). Credible sets generated by SuSiE-inf are smaller on average than those 

generated by SuSiE (Extended Data Fig. 3e). Together, these results demonstrate both 

that SuSiE-inf and FINEMAP-inf allow for more confident identification of likely causal 

variants than the current state of the art, and that there is room for further methodological 

improvement.

In simulation, estimates of the infinitesimal variance τ2 were higher on average for 

simulation settings with higher true infinitesimal variance (Extended Data Fig. 4a–b). 

Estimates of τ2 were also higher in the presence of more residual stratification in the 

simulations, fixing all other simulation parameters (Extended Data Fig. 4c). In UKBB data, 

estimates of τ2 varied across traits, with height showing the highest estimates and LDL 

showing the lowest estimates (Extended Data Fig. 5a–b). We also found that estimates of 

τ2 increased, on average, as the number of credible sets in a locus increased (Extended 

Data Fig. 5c). Estimates of τ2 varied across loci for a given trait, due either to differences 

in genetic architecture, residual stratification, or estimation noise. We caution against the 

interpretation of τ2 as a direct reflection of trait heritability or genetic architecture, without 

further investigations into these factors that may contribute to the τ2 estimates.
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To further validate our methods in real data, we performed cross-ancestry Polygenic Risk 

Score (PRS) prediction27,28, using posterior effect sizes estimated on 366K samples from 

the “white British” cohort in UK Biobank to predict phenotypes in six held-out cohorts 

of different ancestries29: AFR (N=6637), AMR (N=982), CSA (N=8876), EAS (N=2709), 

EUR test (N=54,337) and MID (N=1599). Prediction accuracy is measured by “delta R2” 

which is the difference in R2 from a model that includes both the covariates and genotype 

effects relative to a model that includes the covariates alone. Using posterior mean effect 

size estimates for the sparse component β in SuSiE-inf/FINEMAP-inf yields, on average, 

a near 10-fold increase in delta R2 over SuSiE/FINEMAP across all held-out cohorts and 

traits (Methods, Fig. 5c–d, Supplementary Table 3). Here we compute PRS using only the 

sparse component, to provide a validation metric for the fine-mapped SNPs. We leave an 

exploration of improving PRS accuracy by integrating estimated infinitesimal effect sizes to 

future work.

Our group has shown previously that combining SuSiE and FINEMAP can yield more 

reliable PIPs30. Here we recommend using the minimum PIP between SuSiE-inf and 

FINEMAP-inf (minPIP-inf) for each fine-mapped variant. Compared to minPIP (minimum 

PIP between SuSiE and FINEMAP), minPIP-inf retains more high confidence variants, 

showing better agreement between SuSiE-inf and FINEMAP-inf (Extended Data Fig. 6). 

We observed substantially improved RFR for minPIP-inf over minPIP (Extended Data 

Fig. 7a). Functional enrichment for the top N variants, simulation and PRS performance 

for minPIP-inf is comparable to either SuSiE-inf or FINEMAP-inf individually (Extended 

Data Fig. 7b–d, Fig. 2a–b). As examples of the improved effectiveness of the minPIP-inf 

method over minPIP, we examined two loci. At the PCSK9 locus for LDLC (low density 

lipoprotein cholesterol), in addition to the well-known causal variant rs11591147, SuSiE-inf 

and FINEMAP-inf consistently identified two intronic variants: rs499883 and rs7552841 

with high confidence, replicating a previous finding using functionally informed priors31, 

whereas SuSiE did not identify variant rs499883. At the AK3 locus for Plt (platelet 

count), a known causal missense variant, rs7412, is in high LD with variant rs1065853. 

Only FINEMAP-inf captured rs7412 while SuSiE, SuSiE-inf and FINEMAP-inf captured 

another known causal variant, rs429358. MinPIP between SuSiE and FINEMAP missed 

both, whereas minPIP-inf captured one (Extended Data Fig. 8–9).

Discussion

We propose fine-mapping methods that control for infinitesimal causal effects while fine-

mapping sparse causal effects. Using our methods, we observed significant improvements in 

simulations with non-sparse genetic architecture. Our results when simulating uncorrected 

stratification were ambiguous: when using BOLT-LMM, stratification did not lead to 

miscalibration and our methods performed similarly to the previous methods; however, 

when using OLS, stratification led to substantial miscalibration that was similar between 

FINEMAP and FINEMAP-inf and worse for SuSiE-inf than SuSiE. In contrast, real data 

benchmarking demonstrated an unambiguous improvement in performance, e.g., decreased 

RFR, improved functional enrichment of top variants, and large gains in polygenic risk 

prediction. Put together, the accuracy of identifying sparse causal variants is greatly 
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improved when incorporating the infinitesimal model, although our results show that there is 

also room for further methodological improvement.

The models we propose here are similar to models that have been used previously to 

model genome-wide genetic architecture for risk prediction, heritability estimation, and 

association mapping22,24,26,32. Fine-mapping differs from these other applications in that (a) 

fine-mapping requires inclusion of a denser set of variants with higher LD in each locus, 

so that the causal variants are likely to be included; (b) fine-mapping requires accurate 

inference of posterior inclusion probabilities; (c) fine-mapping is often performed at very 

large sample sizes; and (d) fine-mapping does not require joint modeling of genome-wide 

data, which would be computational challenging given the density of variants and typical 

sample sizes. To emphasize the distinction between fine-mapping and risk prediction, if 

two variants are in perfect LD with large marginal effect sizes, a risk prediction method 

would perform equally well upon attributing this effect to either variant, whereas the 

desired outcome in fine-mapping is a more precise quantification of uncertainty for which 

variant(s) harbors the true effect. Because of these factors, we do not apply existing 

methods for fitting linear mixed models in other contexts. We instead extend algorithmic 

ideas in the fine-mapping literature to better estimate and quantify uncertainty for a sparse 

genetic component in the presence of strong LD, while estimating an infinitesimal variance 

component separately for each genome-wide significant locus. Our model incorporates 

infinitesimal effects for variants in LD with those of the sparse component, which we believe 

is important for obtaining improved calibration and fine-mapping accuracy. With careful 

translation, we anticipate that methodological innovations in risk prediction may continue to 

lead to advances in fine-mapping and vice versa.

We view our methods as complementary to a body of recent statistical developments 

that seek to accurately quantify and control false discoveries under weaker modeling 

assumptions, using constructions of knock-off variables and related conditional re-

randomization ideas33,34. Such methods have been applied to GWAS and genetic fine-

mapping applications in35–37. Our perspective differs in the following ways: We choose not 

to assume a sparse causal model or test null hypotheses of exact conditional independence, 

and instead aim to accurately identify large effects that drive observed GWAS associations in 

a model where every variant may be causal. To yield adequate statistical power for detecting 

causal variants at fine-mapping resolutions, we rely on a strong assumption about genetic 

architecture, as reflected by a Bayesian prior probability for each candidate model, rather 

than testing a null hypothesis for each variant that allows for an arbitrary genetic architecture 

excluding that variant. Thus, our methods remain largely dependent on relatively strong 

assumptions of the underlying genetic architecture, and we view the potential integration 

of these ideas into a more model-robust framework as an important direction for future 

research.

While our work improves fine-mapping accuracy, further advances are needed. First, 

exploring the effects of stratification and different association mapping methods on fine-

mapping should be a priority. Second, our methods improve on RFR over previous methods, 

but RFR is still elevated compared to ideal simulations, suggesting room for improved 

modeling. In addition to better modeling, independent replication in another biobank30 
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and incorporation of functional evidence such as annotations and eQTLs20 can help boost 

accuracy of discovery. Further methodological advancements, which may come from more 

flexible models of genetic architecture or further study of uncorrected confounding, may 

also contribute to further improvements in cross-population polygenic risk prediction.

Methods

Our research complies with all relevant ethical regulations. Our data source is the UK 

Biobank. UK Biobank has approval from the North West Multi-centre Research Ethics 

Committee (MREC) as a Research Tissue Bank (RTB) approval. This approval means 

that researchers do not require separate ethical clearance and can operate under the RTB 

approval. Data for this work was obtained under application number 31063. Additional 

ethical approval was not required.

Statistics & Reproducibility

The UK Biobank contains 500,000 participants with various ancestries. Our research 

analyzed the ancestry with the largest sample size: 366,194 unrelated “white British” 

individuals. QC of this cohort is previously done by Neale Lab GWAS (https://github.com/

Nealelab/UK_Biobank_GWAS). The individuals of British ancestry were determined by 

the PCA-based sample selection criteria (https://github.com/Nealelab/UK_Biobank_GWAS/

blob/master/ukb31063_eur_selection.R45), and were further filtered to self-reported “white 

British”, “Irish”, or “white”. Our down-sampling analysis consists of randomly selected 

100,000 individuals from the 366,194 individuals. High replication failure rates across 

multiple quantitative traits are reproducible with other subsets of randomly selected 100,000 

individuals from this cohort.

Selection of UKBB phenotypes and down-sampling analysis

To select the 10 phenotypes for which to perform down-sampling analyses, we used results 

from30 and computed the combined number of high-PIP (PIP > 0.9) variants fine-mapped 

at N = 366K samples using both SuSiE and FINEMAP. From the top 15 phenotypes (out 

of 94) with the highest number of high-PIP variants (Supplementary Table 13) we selected: 

height, estimated heel bone mineral density (eBMD), platelet count (Plt), hemoglobin A1c 

(HbA1c), red blood cell count (RBC), alkaline phosphatase (ALP), insulin-like growth 

factor 1 (IGF1), low density lipoprotein cholesterol (LDLC), lymphocyte count (Lym), 

and estimated glomerular filtration rate based on serum creatinine (eGFR) to perform down-

sampling analyses.

We down-sampled from N=366K to a random subset of N=100K twice (to increase the 

number of discoveries and therefore statistical power for RFR analyses) and performed 

GWAS and fine-mapping on both set of the N=100K individuals using the same pipeline 

used at N=366K (see below for pipeline description). The sample size N=100K was chosen 

to resemble the UK Biobank interim release dataset of total N=150K with N=107K white-

British individuals.
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Fine-mapping pipeline

GWAS and fine-mapping in this paper were performed following the pipeline described 

in our group’s previous work30. Briefly, GWAS summary statistics were computed using 

BOLT-LMM (v2.3.2) with covariates including sex, age, age2, age and sex interaction term, 

age2 and sex interaction term, and the top 20 genotype Principal Components (PCs). Fine-

mapping regions were defined using a 3Mb window around each lead GWAS variant, with 

merging of overlapping regions. Fine-mapping was performed with in-sample LD computed 

using LDstore v2.038.

Excessively large regions (consequence of merging) that could not be fine-mapped due to 

computational limitations were tiled with overlapping 3Mb loci, with 1Mb spacing between 

the start points of consecutive loci. For these tiled regions, we computed a PIP for each 

SNP based on the 3Mb locus whose center was closest to the SNP. This tiling approach was 

previously described and applied in31.

Although BOLT-LMM is the GWAS method-of-choice in our group’s previous work30, we 

also used ordinary least squares (OLS) regression for some of our simulations and real data 

applications.

We then performed fine-mapping using the following tools: multiple causal variant methods: 

SuSiE8 v894ba2f and FINEMAP9,10 v1.3.1, single causal variant method: ABF11, and 

conditional association (COJO12 v1.93.0beta) plus ABF fine-mapping method, which we 

denote COJO-ABF. Fine-mapping pipeline scripts are available in39.

Ideal simulations

To establish reference Replication Failure Rate (RFR) and calibration for all tested 

methods, we performed ideal simulations without model misspecification using UK Biobank 

genotypes. For simulating RFR, we performed two sets of simulations each at sample size 

N = 366K and subsample size N = 100K. We used UK Biobank imputed dosages as true 

genotypes, and only selected “white British” individuals defined previously in the Neale lab 

GWAS21 https://github.com/Nealelab/UK_Biobank_GWAS). We drew 1000 causal variants 

per simulation uniformly randomly from a total of 6.6 million common (MAF ≥ 1%) 

imputed variants genome-wide. We standardized genotypes to mean 0 and variance 1 and 

drew per-standardized-genotype causal effect sizes from the same normal distribution N (0, 

0.5/1000) for all selected causal variants. We then added errors randomly drawn from a 

normal distribution N (0, 0.5) to simulate phenotypes. For comparison of calibration with 

our simulations under model misspecifications, three additional sets of ideal simulations at a 

matching sample size N = 150K were performed. Phenotypes were generated similarly, with 

700 uniformly sampled true causal variants having effect sizes drawn from N (0, 0.5/700).

Functional enrichment

We analyzed functional annotations to gain insights into the potential causal status of 

non-replicating variants (defined in the main text and in the next paragraph). We define 

three main disjoint functional categories: coding, putative regulatory, and non-genic. These 

categories are derived from the seven main functional categories defined in30. The “coding” 
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category is the union of pLoF and missense categories; the “putative regulatory” category 

is the union of synonymous, 5’ UTR, 3’ UTR, promoter, and cis-regulatory element (CRE) 

categories. We compare the proportion of non-genic variants in the following groups of 

variants:

1. Non-replicating, the group of variants with PIP ≥ 0.9 at N = 100K and PIP ≤ 0.1 

at N = 366K.

2. Replicated, the group of variants with PIP ≥ 0.9 at N = 100K and PIP ≥ 0.9 at N 

= 366K.

3. Matched on PIP at 100K, a group of replicated variants chosen to match the non- 

replicating variants on PIP at N = 100K. For each non-replicating variant with 

PIP<1, we find a replicated variant whose PIP is the closest as its match, and 

the matched variant is removed for future matches. If the non-replicating variant 

has PIP = 1, we match a random (if there are multiple) replicated variant with 

PIP = 1. If there are more non-replicating variants with PIP = 1 than there are 

replicated variants with PIP = 1, we do not remove the matched replicated variant 

from future matches, resulting in repeated matches.

4. Matched on PIP at 366K, a group of low-PIP variants (PIP ≤ 0.1 at N=366K) 

chosen to match the non-replicating variants on PIP at N = 366K. Matching is 

performed the same way as described above, except that there are no repeated 

matches.

5. Background, defined as the union of all variants included in fine-mapping from 

all 10 phenotypes.

P-values are reported when assessing the significance of the difference between proportions 

of non-genic variants in different groups of variants. Fisher’s exact test was performed using 

the R (version 4.2.1) function fisher.test, and one-sided p-values were reported from the 

output of this function.

Large-scale simulations with misspecification

We selected 149,630 UK Biobank individuals from a set of 366,194 unrelated “white 

British” individuals defined previously in the Neale lab GWAS21 for our large-scale 

simulations. We performed simulations under models that are misspecified in the following 

ways: (1) genotype imputation noise, (2) non-uniform probabilities for the identities 

of causal variants, (3) non-sparsity of true causal effects, (4) uncorrected population 

stratification, and (5) missing causal variants. We performed 9 sets of simulations. All 

simulations included the same amount of (1) imputation noise, (2) non-uniform prior 

causal probabilities, and (5) missing causal variants. The first simulation, “baseline 

misspecification” in Table 1, included a small amount of (4) uncorrected stratification. 

Another four simulations varied, in addition, (3) the level of non-sparsity of causal effects. 

Finally, four additional simulations varied (4) the amount of simulated stratification and the 

methods for correcting this stratification (see Population stratification below).
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Simulated genotypes

To simulate genotypes for 149,630 individuals, we randomly drew true genotypes for 

all autosomes based on the imputed genotype probabilities in the “bgen” files provided 

by UKBB. Briefly, probabilistic true genotypes (pGT  s) for a given variant i, denoted 

pGT i, were computed via pGT i = ui − GP Xi = 0 + ui − GP Xi = 0 − GP Xi = 1 , where 

GP Xi = k ,   k ∈ 0, 1, 2  represents the genotype probability of having k copies of 

alternative alleles and ui Uniform 0, 1  represents a uniform random variable. Phenotypes 

were generated using the pGTs. In downstream GWAS and fine-mapping, we use imputed 

genotype dosages provided by UKBB, thus simulating imputation noise. We only included 

variants with minor allele count > 10, INFO score > 0.2, and Hardy-Weinberg equilibrium 

p-value > 1e-10 in our simulations.

Causal variants simulation

To incorporate a more realistic non-uniform distribution over causal variants, we simulated 

sparse causal effects from the SuSiE posterior distribution for UKBB Height, as computed in 

the larger 366K sample in30. Specifically, in each locus, for each credible set CSi, i ∈ I, 

where I indexes all credible sets outputted by fine-mapping Height with SuSiE, we 

chose a causal variant according to normalized posterior inclusion probabilities within 

the corresponding SuSiE single effect (denoted αik for k ∈ CSi). We then drew the chosen 

variant’s raw effect size (to be scaled later) from a normal distribution with mean and 

standard deviation given by the SuSiE posterior mean and standard deviation conditional on 

inclusion in the model. In total, 1434 sparse causal variants were chosen.

For the simulations that investigated non-sparsity of causal effects, we drew additional 

causal variants uniformly at random such that x% (x ∈ 0.5, 1, 5 ) of all simulated variants 

have a non-zero effect. For each selected variant, we sampled its raw effect size (to be 

scaled later) from N 0, v  where v = 2p 1 − p α, p represents the MAF, and α = − 0.38. 

The value alpha is estimated in40. For all simulation settings, simulated non-sparse effects 

had an overall effect size standard deviation approximately on the order of 1e-4 units per 

normalized genotype.

We simulated 3 settings of non-sparsity coverage: 0.5%, 1% and 5%, where coverage is 

the percentage of variants with non-zero effects on the phenotype. For the simulations 

with 1% coverage, we varied the heritability explained by the non-sparse causal variants, 

it was set to be 58%, 75%, 83% and 100%, corresponding to heritability ratios between 

sparse and non-sparse causal effects of 1-to-1.4, 1-to-3, 1-to-5, and 0-to-1. To achieve these 

heritability proportions, we scaled all the simulated sparse and non-sparse causal effect 

sizes by corresponding constants. We observed that, for all simulation settings, simulated 

large effects had an overall effect size standard deviation approximately on the order of 

1e-2 units per normalized genotype. For the simulations with 0.5% coverage and one set 

of simulations with 5% coverage we fixed the heritability ratio to 1-to-3. We performed an 

additional set of simulations with non-sparsity coverage of 5% and heritability ratio between 

sparse and non-sparse causal effects of 1-to-15. The purpose of this setting is to match the 

simulated per-SNP heritability with the 1% coverage 1-to-3 ratio simulations. See Table 1 
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for a summary of the different settings. We set the total SNP heritability to be 0.5. Note that 

the 0.5 heritability accounts for all simulated causal SNPs and not just the common SNPs. 

We have computed s-LDSC estimates of common SNP heritability for all the simulations 

and all 10 UK Biobank phenotypes, and the results are available in Supplementary Table 

1–2.

Interestingly, changing the coverage of non-sparsity from 0.5% to 1% then to 5% 

while fixing the proportion of heritability explained by non-sparse effects showed a non-

monotonic behavior in the level of mis-calibration. This is likely due to multiple factors 

influencing calibration: per-SNP heritability of non-sparse effects and LD between non-

sparse and sparse causal variants. We observed increased mis-calibration when per-SNP 

heritability is fixed and coverage changes from 1% to 5%. Similarly, when coverage is fixed 

at 1% and per-SNP heritability increases by 50% calibration also worsens (Fig. 2, Extended 

data Fig. 2).

Simulated population stratification

To simulate population stratification, we first regressed UKBB Height on the top 20 

principal components (PCs) of the genotyped variants for N = 360,415 individuals. We then 

added the sum of the principal component scores multiplied by their respective regression 

coefficients to the simulated phenotype, scaling this sum by a factor to vary the amount of 

simulated stratification. We assessed the amount of stratification by running s-LDSC41 on 

the resulting GWAS summary statistics (without using any in-sample PCs as covariates) and 

examining the fitted intercept (Supplementary Table 2). As expected, we see higher s-LDSC 

intercept as we increase the PC scaling factor.

For the stratification simulations referenced in the main text and Table 1, we scaled 

PC effects by a factor of 5 (resp. 8) for moderate (resp. severe) stratification with 

BOLT, yielding a phenotype with 16.4% (resp. 42.9%) of its variance explained by 

stratification. For stratification with OLS, we scaled PC effects by 1 and 2 for moderate 

and severe stratification, yielding phenotypes with 0.6%, 2.6% of their variance due to 

stratification, respectively. s-LDSC intercepts of the stratification simulations are available in 

Supplementary Table 2.

Simulated phenotype

Phenotypes were generated as y = Xβ + Cζ + ϵ, where X is the above true genotype (pGT ) 

matrix, β is a vector of the (sparse and non-sparse) causal effects, C is a matrix with top 20 

principal components with corresponding effects ζ, and ϵ N 0, σ2In  where σ2 was chosen to 

yield total phenotypic variance equal to 1.

Incorporating missing causal variants

After generating phenotypes and before performing GWAS and fine-mapping, we applied 

variant-level quality-control criteria as previously defined in the Neale lab GWAS21, which 

retained 13,364,303 variants after filtering for: INFO > 0.8, MAF > 0.001, and Hardy-

Weinberg equilibrium P value > 1e-10, with exception for the VEP-annotated coding 
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variants where we allowed MAF > 1e-6. Notably, this QC step resulted in the exclusion 

of approximately 71% of the simulated “non-sparse” causal variants.

GWAS and fine-mapping for simulations

We performed GWAS on N = 149,630 individuals using BOLT-LMM22 v2.3.2, with 

corresponding imputed variant dosages from UKBB. We used the top 19 principal 

components computed in-sample as covariates in the GWAS, except in the population 

stratification simulations, which included no covariates. For some of the population 

stratification simulations, we performed GWAS with ordinary least squares regression, 

rather than BOLT-LMM. We performed OLS using the linear regression rows method in 

Hail42 v0.2.93. For fine-mapping we used the pipeline previously described in section 

Fine-mapping pipeline.

Interpreting population stratification simulation results

When scaling PC effects by a factor of 5 and computing GWAS summary statistics using 

BOLT-LMM, we observed an s-LDSC intercept of 1.07, which is comparable to s-LDSC 

intercepts estimated in real complex traits (Supplementary Table 1), and we did not observe 

significant miscalibration in the downstream fine-mapping results. When we simulated a 

higher level of uncorrected stratification, scaling PC effects by a factor of 8 (s-LDSC 

intercept of 1.16, see “Severe stratification with BOLT” in Table 1), PIPs obtained in 

downstream fine-mapping remained well-calibrated (Fig. 3).

We hypothesize that the use of BOLT-LMM in our standard fine-mapping pipeline helped 

to correct for the simulated stratification effects, even though the in-sample PCs were 

not explicitly provided as covariates. This also likely explains the prima facie surprising 

recall results in Fig. 3 where the severe stratification simulations with BOLT have higher 

recall than the moderate stratification simulations with BOLT. In the severe simulations, 

stratification accounts for 42.9% of the phenotypic variance, whereas in the moderate 

simulations, stratification accounts for only 16.4% of phenotypic variance. Because BOLT-

LMM likely corrects for much of this simulated stratification, it effectively reduces the 

residual noise in the associations by much more for the severe simulations than for the 

moderate ones, allowing fine-mapping to nominate more causal variants.

To investigate stratification effects without using an LMM procedure, we performed 2 

additional sets of simulations where GWAS summary statistics were instead computed using 

ordinary least squares (OLS). In these simulations, scaling PC effects by factors of 1 and 2 

yielded average s-LDSC intercepts of 1.055 and 1.295, respectively (Supplementary Table 

2), and induced significant miscalibration across all methods. This miscalibration was more 

severe for SuSiE-inf and FINEMAP-inf than for SuSiE and FINEMAP (Fig. 3).

It is unclear to us which of these simulation settings may be closer to reflecting the possible 

effects of uncorrected stratification in real fine-mapping applications, given that common 

methods of computing GWAS summary statistics do use LMM procedures and, in addition, 

explicitly control for in-sample PCs as covariates. Our real-data results, including functional 

enrichment and PRS analyses, in UKBB show evidence that SuSiE-inf and FINEMAP-inf 

outperform existing methods in real data. We leave to future work a fuller investigation 
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of the possible effects of uncorrected stratification on downstream fine-mapping, and a 

potential extension of these methods to address uncorrected stratification.

Regression of phenotype components on high-PIP variants

To identify which of several simulated model misspecifications were responsible for 

observed miscalibration, we decomposed the simulated genetic component Xβ of the 

phenotype into the sum of four sub-components representing sparse causal effects, non-

sparse causal effects, non-sparse causal effects due to QC, and the effects of stratification. 

That is,

Xβ = Xβsparse + Xβnonsparse + Xβmissing.nonsparse + XW ζ

where W  is an n × 20 matrix of UKBB PC loadings computed at a sample size of 360,415 

and ζ is a 20 × 1 vector of regression coefficients for the top 20 PCs on UKBB Height at 

360,415. For each simulation, we regressed each of the four genetic effect sub-components 

on each of the PIP > 0.9 variants independently, with 19 in-sample (n=149,630) PCs as 

covariates in the regression (i.e., the same covariates we use in GWAS in our simulations). 

For example, for the sparse genetic effect component, we compute the regression coefficient 

b and its associated F-statistic for the following equation:

Xβsparse = Xib + CA

where variant i is the index of a PIP > 0.9 variant and C is a matrix of 19 in-sample PCs. We 

then compare the F-statistics of truly causal and non-causal variants.

Polygenic Risk Score (PRS) cohort assignment

We used six ancestry groups derived by the Pan UKBB project29: EUR = European ancestry 

(N=420,531, training=366,194, testing=54,337), CSA = Central/South Asian ancestry 

(N=8,876), AFR = African ancestry (N=6,636), EAS = East Asian ancestry (N=2,709), MID 

= Middle Eastern ancestry (N=1,599), and AMR = Admixed American ancestry (N=980). 

The 1000 Genomes Project and Human Genome Diversity Panel (HGDP) were used as 

reference panels to assign continental ancestry.

PRS weights

We chose seven phenotypes: HbA1c, Height, LDLC, Lym, Plt, RBC and eBMD for PRS 

predictions. We fine-mapped these seven phenotypes on the training cohort: EUR (QC’ed 

from N=420531 to N=366,194 unrelated “white British” individuals). SuSiE, FINEMAP, 

SuSiE-inf and FINEMAP-inf posterior effect sizes were obtained. Due to differences in 

computational efficiency, not all variants that are eligible for fine-mapping were able to 

be fine-mapped by all methods. To ensure fair comparison between SuSiE and SuSiE-inf 

(resp. FINEMAP and FINEMAP-inf), we include only variants that were fine-mapped 

by both SuSiE and SuSiE-inf (resp. FINEMAP and FINEMAP-inf) in the PRS analyses 

(Supplementary Table 3). PLINK2.043 was then used to compute polygenic risk scores for 

the six held-out cohorts using these posterior effect sizes. For SuSiE-inf and FINEMAP-inf 
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we assigned weights to variants using the estimated posterior effect sizes from the sparse 

effects β and did not add the estimated posterior effect sizes of the infinitesimal effects α.

In case of minPIP or minPIP-inf, we use the posterior mean of a variant outputted by 

methods whose PIP was taken as the minPIP for the weight of that variant. For example, if 

SNP1’s PIP is 0.1 for SuSiE and 0.5 for FINEMAP; posterior mean for SNP1 is 0.01 for 

SuSiE and 0.05 for FINEMAP, then the minPIP for SNP1 is 0.1 and the weight we will use 

for SNP1 in PRS analysis for minPIP is 0.01.

PRS accuracy metric

We use delta R2 as our accuracy metric for PRS predictions, as in44. To obtain delta R2, we 

fit two models:

- Model 0: a linear model using only covariates as predictor, denoted model0.

- Model 1: a linear model using true phenotype as target and both the PRS generated 

from multiplying the fine-mapped posterior effect size estimates with the genotypes 

and the covariates (sex, age, age2, age and sex interaction term, age2 and sex 

interaction term) as predictors.

We applied the function lm in R to obtain adj.r.squared. The difference: 

summary(model1)$adj.r.squared - summary(model0)$adj.r.squared is delta R2.

Data availability

The main fine-mapping results at N=100K sample size produced by this study are publicly 

available at https://doi.org/10.5281/zenodo.7055906. The fine-mapping results at N=366K 

previously produced by our group is available at https://www.finucanelab.org/data. The 

UKBB individual-level data is accessible on request through the UK Biobank Access 

Management System (https://www.ukbiobank.ac.uk/). The UKBB analysis in this study was 

conducted via application number 31063.

Code availability

Software implementing SuSiE-inf and FINEMAP-inf are publicly available: https://

github.com/FinucaneLab/fine-mapping-inf45. All scripts for figure generation as well as 

simulation scripts are available at https://github.com/cuiran/improve-fine-mapping46.
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Extended Data

Extended Data Fig. 1. Replication failure rates at different PIP thresholds
Replication failure rates at four different PIP thresholds: 0.9 (default), 0.93, 0.95, 0.99, for 

SuSiE, FINEMAP, SuSiE-inf, and FINEMAP-inf aggregated across 10 UKBB quantitative 

phenotypes, contrasted with RFRs in ideal simulations and with EPN. Error bars represent 

one SD of the corresponding binomial distribution Binom(n, p), where n is the total number 

of high-PIP variants at sample size N=100K, and p is the RFR. Bar plot data is presented as 

RFR +/− SD. Numerical results are available in Supplementary Table 14.

Extended Data Fig. 2. Calibration in different non-sparsity coverage settings
Calibration for SuSiE, SuSiE-inf, FINEMAP and FINEMAP-inf in simulations with 

different non-sparsity coverage settings: 0.5%, 1%, and 5% (see Table 1 for more parameter 

settings in these simulations). Heritability ratio between small and large effects is fixed at 

3:1 for three simulation scenarios, while the fourth scenario we set the coverage at 5% and 

heritability ratio at 15:1 to match the per-SNP heritability in simulations where 1% SNPs are 

causal and heritability ratio is 3:1. Error bars correspond to 95% Wilson confidence interval. 

Numerical results available in Supplementary Table 15.
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Extended Data Fig. 3. Additional evidence of performance improvements in real data
a-b. Functional enrichment of top N (N=500, 1000, 1500, and 3000) highest PIP variants 

from SuSiE, SuSiE-inf, FINEMAP, and FINEMAP-inf. GWAS summary statistics computed 

using BOLT-LMM and OLS. c. Functional enrichment of the set differences between SuSiE 

and SuSiE-inf high-PIP (PIP>0.9) variants and FINEMAP and FINEMAP-inf high-PIP 

variants. Error bars represent one SD of the corresponding binomial distribution Binom(n,p), 

where n is the total number of variants in each set and p is the corresponding proportion of 

annotated variants). Bar plot data is presented as proportion +/− SD. d. The proportion 

of reduction for the number of variants in three categories when using the SuSiE-inf 

and FINEMAP-inf compared to using SuSiE and FINEMAP. The three categories are: 

High-PIP (PIP>0.9 for either method, reduced from 1876 to 1578), Replicated (PIP>0.9 at 

both sample sizes N=100K and N=366K, reduced from 665 to 595), and Shared high-PIP 

(PIP>0.9 for both method, reduced from 723 to 646). e. Credible set sizes in all regions 

fine-mapped by SuSiE and SuSiE-inf. Box plot lower and upper hinges correspond to 1st and 

3rd quantiles, whiskers extend no further than 1.5*IQR from the hinges, outliers are plotted 

as individual points, solid line in the boxes show medians. Numerical results available in 

Supplementary Table 16–20.
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Extended Data Fig. 4. Estimated infinitesimal variance (tau squared) in simulations
a. The mean estimated tau squared aggregated across all regions fine-mapped in each 

non-sparse simulation settings +/− SD, where SD is the in-sample standard deviation of 

estimated tau squared in the corresponding simulation setting. See Table 1 for simulation 

parameters. b. Estimated tau squared when OLS/BOLT-LMM is used to perform GWAS, 

and true tau squared in three sets of simulation settings are plotted. “Large-scale, inf model” 

represents the set of large-scale simulations (described in Methods) with 100% causal 

coverage setting and no missing causal variants are introduced. “One region, h2g=0.05” 

represents the set of simulations using imputed genotypes in one region on Chromosome 1, 

with 100% causal coverage, no missing causal variants, and no exclusion of variants in the 

fine-mapping pipeline. The total SNP heritability is set to be 0.05. “One region, h2g=0.1” 

is similar except with total SNP heritability set to be 0.1. c. Estimated tau squared in 

four stratification simulation settings with no non-sparse effects, see Table 1 for simulation 

parameters. Box plot lower and upper hinges correspond to 1st and 3rd quantiles, whiskers 

extend no further than 1.5*IQR from the hinges, outliers are plotted as individual points, 

solid line in the boxes show medians. Numerical results available in Supplementary Table 

21–23.
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Extended Data Fig. 5. Estimated infinitesimal variance (tau squared) in UK Biobank
a. Estimated tau squared in all fine-mapped regions for 10 UK Biobank phenotypes at 

sample size N=366K. Box plot lower and upper hinges correspond to 1st and 3rd quantiles, 

whiskers extend no further than 1.5*IQR from the hinges, outliers are plotted as individual 

points, solid line in the boxes show medians and the red dot denotes the mean. b. Comparing 

mean tau-squared estimates between traits. Heatmap shows the results of pair-wise Welch 

two-sample T-test with alternative hypothesis: mean of estimated tau squared in all regions 

for trait 1 (x-axis) is greater than that of trait 2 (y-axis). The test is one-sided. Multiple-

testing adjusted p-value significance cutoff is set to be 0.05/90 = 5.5e-4, correcting for the 

total number of trait pairs tested. Stars indicate p-value has passed the significant threshold. 

c. Correlation between number of credible sets and the estimated infinitesimal variance (tau 

squared). Regions with the same number of credible sets are aggregated, and the median 

estimated tau squared are obtained from these regions. Scatter plot shows these medians. 

The best fitted line is plotted using ggscatter. R is the Pearson correlation, and p is the 

two-sided correlation p-value. The 95% confidence interval is shown on the plot as the gray 

shaded area. Numerical results available in Supplementary Table 24–26.
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Extended Data Fig. 6. Agreement between SuSiE and FINEMAP PIPs; SuSiE-inf and 
FINEMAP-inf PIPs
a-b. Density plots of PIPs from fine-mapping 10 UK Biobank traits at sample size N=366K. 

X-axis shows PIPs from running SuSiE (or SuSiE-inf), y-axis shows PIPs from running 

FINEMAP (or FINEMAP-inf). Only variants with PIP>=0.1 for either method are shown 

on the plots. c. Number of high-PIP variants identified by SuSiE, SuSiE-inf, FINEMAP, 

FINEMAP-inf, minPIP, minPIP-inf, meanPIP and meanPIP-inf, where meanPIP(-inf) is 

defined as taking the average PIP between SuSiE and FINEMAP (resp. SuSiE-inf and 

FINEMAP-inf). Data aggregated across 10 UKBB traits fine-mapped at N=366K. Numerical 

results available in Supplementary Table 27.
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Extended Data Fig. 7. minPIP-inf performance
a. Replication failure rates of minPIP and minPIP-inf in real data and in ideal simulations. 

Numerical results available in Supplementary Table 4. Error bars represent one SD of the 

corresponding binomial distribution Binom(n, p), where n is the total number of high-PIP 

variants at sample size N=100K, and p is the RFR. Bar plot data is presented as RFR 

+/− SD. b. Functional enrichment of top N (N=500, 1000, 1500, and 3000) highest PIP 

variants from SuSiE-inf, FINEMAP-inf and minPIP-inf. Error bars represent one SD of the 

corresponding binomial distribution Binom(n,p), where n is the total number of variants in 

each set and p is the corresponding proportion of annotated variants). Numerical results 

available in Supplementary Table 16. c-d. PRS accuracy, in terms of delta R2, when applying 

SuSiE-inf sparse component of the posterior effect sizes vs. minPIP-inf sparse component 

of the posterior effects sizes as weights; similarly, for FINEMAP-inf and minPIP-inf. PRS 

were computed for 2 out-of-sample cohorts and 7 traits. For descriptions of PRS weights, 

see Methods. Numerical results available in Supplementary Table 11–12.
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Extended Data Fig. 8. AK3 locus for Plt
4kbp window near the AK3 gene is shown on the plot. GWAS -log10 p-values from BOLT-

LMM for the trait platelet count (Plt) are plotted on the top panel, PIPs from 4 fine-mapping 

methods and 2 aggregated methods are plotted on the subsequent panels. Variant rs12005199 

and rs409950 are highlighted with dashed lines.
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Extended Data Fig. 9. PCSK9 locus for LDLC
23kbp window at the PCSK9 gene location is shown on the plot. GWAS -log10 p-values 

from BOLT-LMM for trait low density lipoprotein cholesterol (LDLC) are plotted on the 

top panel, PIPs from 4 fine-mapping methods and 2 aggregated methods are plotted on the 

subsequent panels. The well-known putative causal variant rs11591147 is highlighted with 

dash line, as well as two intronic variants: rs499883 and rs7552841.
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Extended Data Fig. 10. PRS comparison with standard errors
a-b. Points represents the same values as in Fig. 5 c–d, standard errors represent 0.95 level 

confidence intervals of delta R2. First, standard errors for the R2 of Model 0 and Model 1 

(defined in Methods) are computed separately using R function CI.rsq, then combined into 

the SE (standard error) of delta R2 by taking the square root of the sum of squared. Data is 

presented as delta R2 +/− SE for both axes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Replication failure rates and functional enrichments.
a. RFRs for SuSiE and FINEMAP aggregated across 10 UKBB quantitative phenotypes, 

contrasted with RFRs in ideal simulations and with Expected Proportion of Non-causal 

variants (EPN). b. Trait-separated RFRs for SuSiE and FINEMAP. The 10 UKBB traits 

are: Height, estimated heel bone mineral density (eBMD), platelet count (Plt), hemoglobin 

A1c (HbA1c), red blood cell count (RBC), alkaline phosphatase (ALP), insulin-like growth 

factor 1 (IGF1), low density lipoprotein cholesterol (LDLC), lymphocyte count (Lym), 

and estimated glomerular filtration rate based on serum creatinine (eGFR) c. Functional 

annotations in 3 disjoint categories: coding, putative regulatory and non-genic (see Methods 

for detailed definitions). Variants are aggregated between SuSiE and FINEMAP. Non-

replicating: the group of non-replicating variants (PIP>0.9 at N=100K and PIP<0.1 at 

N=366K); Replicated: the group of replicated variants (PIP>0.9 at both N=100K and 

N=366K); Background: the group of all variants included in the fine-mapping analysis, 

aggregated across 10 traits. See Supplementary Fig. 1 for method-separated plots and more 

sets of variants. Error bars represent one SD of the corresponding binomial distribution 

Binom(n,p), n is the total number of variants (for a-b, n is the total number of high-PIP 

variants at sample size N=100K; for c, n is the total number of variants in each group), 

p is the corresponding proportion (RFR in a-b and proportion of annotated variants in 

c). Bar plot data is presented as proportion +/− SD. Numerical results are available in 

Supplementary Table 4,5.
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Fig. 2 |. Simulations with non-sparse effects.
a. Calibration for SuSiE, FINEMAP, minPIP, and corresponding “inf” methods under 

non-sparsity simulation settings detailed in Table 1, Methods. minPIP and minPIP-inf are 

aggregating methods: minPIP-inf = min(PIP) between SuSiE-inf and FINEMAP-inf; minPIP 

= min(PIP) between SuSiE and FINEMAP. The colored markers show true proportion of 

causal variants, and the short black lines show the expected proportion of causal variants in 

each PIP bin for each method. b. Recall for the same methods, defined as the percentage 

of simulated large effects among the top N variants when ranked by PIP. Error bars on 

calibration and recall plots correspond to 95% Wilson confidence interval. Note that “No 

large effects” simulations are not shown on the recall plot because there are zero simulated 

large effects. c. Regressing sub-components of “high non-sparsity” phenotype on true vs. 

false positives (variants with PIP > 0.9 that are either causal or non-causal). Numerical 

results are available in Supplementary Table 6–8.
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Fig. 3 |. Simulations with uncorrected stratification.
a. Calibration plot for SuSiE, FINEMAP, minPIP, and corresponding “inf” methods in four 

stratification simulation settings (Table 1). The colored markers show true proportion of 

causal variants, and the short black lines show the expected proportion of causal variants in 

each PIP bin for each method. b. Recall for the same methods and simulations, defined as 

the percentage of simulated large effects among the top N (N=50, 100, 500, 1000, and 5000) 

variants when ranked by PIP. Error bars correspond to 95% Wilson confidence interval. 

Numerical results are available in Supplementary Table 6–7.
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Fig. 4 |. Runtime comparison.
a. Runtime for SuSiE, FINEMAP, as well as SuSiE-inf and FINEMAP-inf with/without 

provided eigen-decomposition of the LD matrix. We took all fine-mapped loci across the 10 

phenotypes we examined in UK Biobank and grouped them into 10 quantiles based on the 

number of SNPs in the locus. Each point in the plot represents the average runtime for a 

method in a quantile. b. Distribution of fine-mapped locus sizes in terms of number of SNPs 

in the locus, aggregated across 10 UKBB phenotypes and across two sample sizes: N=100K 

and N=366K. Numerical results available in Supplementary Table 9.
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Fig. 5 |. Real data performance improvements.
a. Replication Failure Rates for SuSiE, FINEMAP, SuSiE-inf and FINEMAP-inf aggregated 

across 10 UKBB traits (Supplementary Table 4). b. Functional enrichment of the set 

differences between SuSiE and SuSiE-inf high-PIP variants (PIP>0.9), and FINEMAP and 

FINEMAP-inf high-PIP variants. Error bars represent one SD of the corresponding binomial 

distribution Binom(n,p), n is the total number of variants (for a, n is the total number of 

high-PIP variants at sample size N=100K; for b, n is the total number of variants in each 

set), p is the corresponding proportion (RFR in a and proportion of annotated variants in 

b). Bar plot data is presented as proportion +/− SD. Numerical results are available in 

Supplementary Table 10. c-d. PRS accuracy, in terms of delta R2, when applying SuSiE 

posterior effect sizes vs. SuSiE-inf sparse component of the posterior effect sizes as weights; 

as well as PRS accuracy when applying FINEMAP posterior effect sizes vs. FINEMAP-inf 

sparse component of the posterior effect sizes as weights. PRS were computed for 6 out-

of-sample cohorts and 7 traits (for cohort and trait definitions please see Methods). For 
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PRS accuracy plots with standard errors, see Extended Data Fig. 10. Numerical results are 

available in Supplementary Table 11–12.
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Table 1 |
Parameter settings for large-scale simulations.

Different parameter settings for ten sets of simulations mentioned in the main text. Note that PCs corrected in 

GWAS used in-sample (N=150K) PCs as covariates for phenotypes generated with full sample (N=366K) PCs. 

See Methods for details on how each misspecification is incorporated.

Imputation 
noise

Sparse causal 
prior

20 PC effects 
multiplier

PCs corrected in 
GWAS

Non-sparse 
causal effects

Missing 
causal 
effects

Ideal No Uniform 0 0 None None

Baseline 
misspecification

Yes SuSiE Height 
posterior

1 19 out of 20 None None

Moderate stratification 
w/ BOLT

Yes SuSiE Height 
posterior

5 0 out of 20 None None

Severe stratification w/ 
BOLT

Yes SuSiE Height 
posterior

8 0 out of 20 None None

Moderate stratification 
w/ OLS

Yes SuSiE Height 
posterior

1 0 out of 20 None None

Severe stratification w/ 
OLS

Yes SuSiE Height 
posterior

2 0 out of 20 None None

Moderate non-sparsity Yes SuSiE Height 
posterior

1 19 out of 20 58% of h2, 1% 
coverage

Yes

High non-sparsity Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2, 1% 
coverage

Yes

Very high non-sparsity Yes SuSiE Height 
posterior

1 19 out of 20 83% of h2, 1% 
coverage

Yes

No large effects Yes SuSiE Height 
posterior

1 19 out of 20 100% of h2, 1% 
coverage

Yes

0.5% coverage, ratio 3:1 Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2, 0.5% 
coverage

Yes

5% coverage, ratio 3:1 Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2, 5% 
coverage

Yes

5% coverage, ratio 15:1 Yes SuSiE Height 
posterior

1 19 out of 20 94% of h2, 5% 
coverage

Yes
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