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Abstract

Objective: The compound muscle action potential (CMAP) scan is a useful technique for 

examination of neuromuscular disorders. The objective of the study is to develop a novel analysis 

of CMAP scans from the perspective of information theory.

Methods: A novel index parameter called CMAP distribution index (CDIX) was developed to 

characterize CMAP scan based on calculation of the information entropy. The performance of 

CDIX was evaluated using CMAP scan data from healthy control and spinal cord injury (SCI) 

subjects, and compared with D50 and MScanFit motor unit number estimation (MUNE).

Results: CDIX was significantly lower for the SCI subjects compared with the healthy control 

subjects (p < 0.001). A significant correlation (R2 = 0.58, p < 0.001) was found between CDIX 

and MScanFit MUNE. Among all tested parameters (maximum CMAP, D50, MScanFit MUNE 

and CDIX), CDIX achieved the smallest relative width of the overlapping zone (WOZ%) between 

SCI and healthy control subjects.

Conclusion: CDIX can be inferred as a useful index reflecting motor unit loss and muscle fiber 

reinnervation changes.
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I. Introduction

Significant efforts have been made in developing motor unit number estimation (MUNE) 

methods for diagnosis and follow-up of neuromuscular disease since the first report in 

1971 [1]. MUNE methods routinely rely on calculating the ratio of the compound muscle 

action potential (CMAP) amplitude (or area) to the mean surface recorded motor unit 

potential (SMUP) amplitude (or area). The mean SMUP is usually estimated from a small 

sample of motor units. In fact, different strategies used to obtain the sampled motor units 

characterize or lead to various MUNE methods [2][3], such as incremental stimulation 

MUNE, multipoint stimulation MUNE, spike triggered averaging MUNE, F wave MUNE, 

high density surface electromyography (EMG) MUNE, etc. However, a key issue in these 

MUNE methods is how well the sampled motor units can represent the whole motor unit 

pool, especially given the distribution characteristics of small and large motor units [4]. The 

uncertainty of this representativeness has contributed to considerable variance in reported 

MUNE outcomes.

In contrast to most MUNE methods that rely on a small sample of motor units, the 

CMAP scan can be more representative of the motor unit population through generating 

a detailed stimulus-response curve involving hundreds of stimuli to the motor nerve [5]

[6]. These stimuli are from subthreshold to supramaximal intensity in fine current steps, 

so an examination of low to high threshold motor units can be performed. CMAP scan 

has promoted MUNE development, leading to the Bayesian MUNE [7] and the MScanFit 

MUNE [8][9]. The former requires very complex computation and substantial time, limiting 

its wide application. The latter is based on a simplified model, quick and convenient to 

implement, more applicable in clinical settings [10].

In addition to estimated motor unit number, a variety of parameters, such as “D50”, “step 

number”, “step percentage %”, “number of returners”, etc. [11–15], can be used to quantify 

the CMAP scan data. Although these parameters do not provide a direct measure of absolute 

motor unit number, they can be a useful indicator of motor unit loss and muscle fiber 

reinnervation. Very recently, Nandedkar et al. reported a novel index parameter derived from 

CMAP scan called step index (STEPIX) to reflect the number of motor units [16]. The tested 

amyotrophic lateral sclerosis (ALS) patient data demonstrated the expected disease pattern.

In fact, the difference between typical CMAP scans of normal muscles and diseased muscles 

can be obvious upon visual inspection. In normal muscles, the CMAP scan usually shows 

a relatively continuous or smooth sigmoid pattern. The CMAP scan shows large steps 

with motor unit loss and muscle fiber reinnervation. From a signal processing point of 

view, various features can be potentially useful to quantify or discriminate different CMAP 

scan patterns. In this study, we proposed a novel strategy to process CMAP scan data in 

the nonlinear dynamic domain. A novel index parameter called CMAP distribution index 
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(CDIX) was developed to characterize CMAP scan based on calculation of the information 

entropy. The novel index was evaluated using CMAP scan data from healthy subjects and 

individuals with spinal cord injury (SCI). The performance of CDIX was also compared 

with D50 [14] and MScanFit MUNE [8][9]. The findings indicate that CDIX provides a 

useful analysis of CMAP scans for examination of neuromuscular injures with motor unit 

loss and muscle fiber reinnervation.

II. Methods

A. CMAP Distribution Index

As demonstrated in Fig. 1, calculation of CMAP distribution index (CDIX) includes three 

procedures. Raw CMAP scan data is segmented by removing pre- and post-scan data 

and then discretized using an adaptive grid size. Both information entropy and CDIX are 

calculate based on the discrete CMAP scan data.

A1. Segmentation—Pre-scan refers to the data segment in which the CMAP scan 

amplitudes are smaller than a preset percentage (named pre-scan threshold or t1 = 2%) of 

the maximum CMAP amplitude. Post-scan refers to the data segment in which the CMAP 

scan amplitudes are larger than another preset percentage (named post-scan threshold or 

t2 = 95%) of the maximum CMAP amplitude. The calculation of information entropy is 

performed on the data segment between pre-scan and post-scan (named mid-scan). In order 

to determine the boundaries (denoted as b1 and b2) of mid-scan segment while minimizing 

its sensitivity to alternation and noise, segmentation is performed on smoothed CMAP scan 

data E = E1, E2, …, EN , which are obtained by filtering the amplitudes of raw CMAP scan 

data A = A1, A2, …, AN  using a 3rd-order Butterworth low-pass filter with cutoff frequency 

Fc = 50π/N rad per sample, where N is the number of stimuli, AN is the CMAP amplitude 

evoked by the maximum current stimulus, and A1 is the amplitude evoked by the minimum 

current stimulus. The mid-scan data are therefore Ab1, Ab1 + 1, …, Ab2 , where the boundary b1
equals to the largest n that satisfies (1), and the boundary b2 equals to the smallest n that 

satisfies (2). Fig. 2a illustrates the segmentation result of a healthy control subject.

En < min E + max E − min E × t1

(1)

En > min E + max E − min E × t2

(2)

A2. Discretization—The mid-scan data are discretized so that information entropy can 

be calculated. The grid size used by discretization is adjusted automatically based on the 

data. More specifically, there are three steps to determine the value of grid size. First, the 

absolute values of amplitude differences (named “steps” and denoted as S) are calculated 

based on mid-scan data using (3).
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S = ( Ab1 − Ab1 + 1 , Ab1 + 1 − Ab1 + 2 , …, Ab2 − 1 − Ab2 )

(3)

Fig. 2b show the histogram of S obtained from a healthy control subject. There is no 

restriction on the magnitude of amplitude difference when defining steps, while in previous 

CMAP scan studies steps usually refer to large amplitude changes [14].

Next, the steps are analyzed using Gaussian mixture model (GMM) with two components. 

The “small-step” component (SS) is used to model small amplitude differences, which 

are usually noise or observed when two or more motor units cancel each other out. 

And the “large-step” component (LS) is used to model the rest of data, i.e. large steps. 

The peak of probability density of the small-step component is supposed to be around 0 

according to experimental data (Fig. 2b). Therefore, the mean and variance of the small-step 

component are estimated using a vector concatenating S and −S, while those of the large-

step component are estimated based on S itself. A mirrored LS with the opposite mean and 

the same variance as LS is also introduced in order to model the mirrored large steps in −S. 

The algorithm iterates until the change of LS’s mean falls below 1%. Each step in S is then 

assigned to either SS or LS according to the posterior probability. The minimum step that 

is assigned to LS is taken as the grid size (denoted as G). Fig. 2b shows an example of the 

model output as well as the grid size.

Finally, mid-scan data are discretized by using the grid size as in (4), where D refers to the 

discrete scan data with its length L = b2 − b1 + 1, and x  refers to the nearest integer less 

than or equal to x. Fig. 2c illustrates the grids and the discretization.

D = Ab1
G , Ab1 + 1

G , …, Ab2
G

(4)

Grid count is defined as the minimum number of grids that are required in the discretization, 

and can be calculated using (5).

Grid count = max D − min D + 1

(5)

A3. Information Entropy and CDIX Calculation—Information entropy (denoted as 

H) of D is calculated using (6), where F i is the number of instances of i in D.

H = −
i

F i
L log2

F i
L

(6)

In order to facilitate the readability of H values, we define CDIX as:
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CDIX = 2H

(7)

An example of the histogram of D and the corresponding CDIX value are shown in Fig. 2d. 

The bins in Fig. 2d correspond to the grids in Fig. 2c.

B. Experimental Data

The CMAP scan data sets used for testing the proposed analysis were reported in a previous 

study [17]. A brief description of subjects and experiment procedures is provided below, 

while the details can refer to [17].

B1. Subjects—Thirteen individuals with SCI tetraplegia (10 males and 3 females) and 

13 healthy control subjects (8 males and 5 females) participated in the study. For the 

SCI group, one subject was left-handed and the other 12 subjects were right-handed, the 

neurological level ranged from C1 to C7, American Spinal Injury Association (ASIA) 

Impairment Scale ranged from A to D [18], post injury time ranged from 1 to 24 years. 

The Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) [19] 

test was performed, which is an upper limb clinical impairment measure after tetraplegia, 

including three domains for describing hand function. The full range of GRASSP is from 

0 to 116, with lower values indicating more severe impairment. In this study, GRASSP of 

the SCI subjects ranged from 0 to 108, covering mild, moderate and severe deficits. The 

pinch force of each subject was measured. Six SCI subjects did not show a measurable pinch 

force, while the rest 7 SCI subjects had a pinch force ranged from 1.4 to 11.3 kg. For the 

control group, one subject was left-handed and the other subjects were right-handed. Ulnar 

nerve conduction studies were performed for all the control subjects and confirmed that their 

latency, amplitude and conduction velocity were in a normal range. The detailed individual 

subject information can be found in [17].

For the SCI group, the right hand was tested. For the control group, the test was performed 

on the individual’s dominant hand. The experimental protocols were approved by the 

Committee for Protection of Human Subjects (CPHS) at University of Texas Health Science 

Center at Houston (UTHealth) and TIRR Memorial Hermann Hospital (Houston, TX). All 

these subjects gave written informed consent in accordance with the Declaration of Helsinki.

B2. Experimental Protocols—The subject was seated comfortably in a chair or 

wheelchair with shoulder and elbow flexed 90°. The forearm was in semi-prone position 

on a height-adjustable table. The first dorsal interosseous (FDI) muscle was tested. After 

cleansing the skin with alcohol pads, the active electrode was placed on the motor point of 

the FDI muscle, the reference electrode was placed on the distal phalanx of thumb, and the 

ground electrode was placed on the dorsal side of the hand (Ag-AgCl disposable electrodes, 

10 mm in diameter). The stimulating electrode was placed 1–2 cm proximal to the wrist 

that delivered electrical stimuli to the ulnar nerve. It has two contact surfaces 20 mm apart, 

9 mm in diameter each, and the cathode electrode was positioned distally. The stimulating 

electrode was firmly attached to the skin with surgical tapes and coban self-adherent wraps. 
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The examined hand was restrained in supination during recording to minimize movement 

artifacts.

All the CMAP scan data were collected under the CMAP scan program of the UltraPro S100 

EMG system (Natus Neurology Incorporated, Middleton, WI, USA). An automatic search 

procedure was performed first to determine S0 and S100, defined as stimulation intensities 

required to elicit the lowest threshold motor unit and the highest threshold motor unit 

respectively. Accordingly, stimulation intensities were adjusted to cover the entire range. 

Then the CMAP scan started using a protocol of a 0.1 ms stimulus pulse duration, 500 steps 

(stimulus number) and 2 Hz stimulus frequency. The stimulation started from the highest 

intensity and declined linearly to the lowest intensity. Each CMAP scan took less than 5 

minutes to complete.

C. Performance Evaluation

C1. Evaluation Parameters—CDIX of each CMAP scan recording was calculated 

using a customized Matlab (MathWorks Inc., Natick, MA) program. CDIX values of 

individuals in the control group are expected to be larger than those in the SCI group. 

Therefore, the relative width of the overlapping zone (WOZ%) of CDIX between the two 

groups are defined as (8). CDIXc and CDIXs refer to the CDIX values of all the subjects in 

the control and SCI group, respectively.

W OZ% of CDIX = min max CDIXc , max CDIXs

− max min CDIXc , min CDIXs

/ max max CDIXc , max CDIXs

− min min CDIXc , min CDIXs

(8)

The WOZ% falls into the range of [−1,1]. A positive value indicates the relative size of the 

overlapping area, and a negative value indicates the relative size of the gap between the two 

groups. In addition to WOZ%, we define a parameter called percentage of subjects in the 

overlapping zone (POZ%). If WOZ% is positive, POZ% is calculated as the percentage of 

subjects whose CDIX falls into the overlapping area. Otherwise, POZ% is set to 0.

In addition to CDIX, WOZ% and POZ% of other parameters (D50, MScanFit MUNE, 

maximal CMAP), defined similarly, were also calculated. D50 is the number of largest 

consecutive differences that are needed to build-up 50% of the maximum CMAP [14], which 

proved to be a useful parameter for quantifying CMAP scan discontinuities. MScanFit is 

a program that estimates motor unit number based on a muscle’s CMAP scan [8][9]. The 

program implements a mathematical model to simulate the recorded CMAP scan and adjusts 

sequentially to minimize its discrepancy (percentage error < 7%) from the experimental 

CMAP scan. Default parameter assignment was used for MScanFit MUNE calculation.

C2. Statistical Analysis—Two-sample t-test with unequal variances was applied to 

analyze normally distributed data such as the grid size. Otherwise, Wilcoxon rank sum 
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test was applied. Both tests, as well as correlation analysis, were performed using Matlab. 

Statistical significance was set as p < 0.05.

III. Results

CDIX, D50 and MScanFit MUNE values were calculated from each CMAP scan and the 

results are presented in this section. Fig. 3 shows the CDIX calculation procedures of a 

representative SCI subject. Compared with a typical healthy subject (Fig. 2), the SCI subject 

had similar grid size, but smaller grid count and CDIX.

Across SCI and control subjects, all of the 7596 steps obtained from the CMAP scan data 

sets were below 3 mV with only one exception (3.11 mV). The initial mean values of the 

two components used in GMM were therefore set to 0 and 3 mV, respectively. And the 

initial values of standard deviation were 0.2 mV and 1 mV, respectively. On average, 6.7 ± 

5.0 iterations were performed before GMM converged, and no significant difference in the 

number of iterations was observed between the SCI and healthy control groups (p = 0.698). 

Fig. 4 shows a comparison of the grid parameters between the two groups, calculated based 

on GMM. There was no significant difference in grid size between SCI and healthy control 

groups (p = 0.397), but larger individual difference was observed in the SCI group. Grid 

count was significantly smaller in the SCI group compared with the healthy control group (p 

< 0.001).

Fig. 5 shows the CDIX and MScanFit MUNE of each of the individual SCI and healthy 

control subjects derived from the CMAP scans. Both CDIX and MUNE were significantly 

lower for the SCI subjects compared with the healthy control subjects. CDIX was found 

to be significantly correlated with MScanFit MUNE R2 = 0.58, p < 0.001 , and maximum 

CMAP amplitude R2 = 0.68, p < 0.001 . From the figure it can be observed that there was 

an overlapping in MUNE between the SCI and healthy control subjects, while there is no 

overlapping in CDIX between the two groups.

Similarly, Fig. 6 shows the D50 and maximum CMAP of each of the subjects. The 

maximum CMAP amplitude was significantly lower for the SCI subjects compared with 

the healthy control subjects. But there was no significant difference in D50 between the two 

groups. An overlapping was observed in both maximum CMAP amplitude and D50 between 

the SCI and healthy control subjects.

Table 1 summarizes the performance of different CMAP scan parameters for examination of 

SCI and control subjects, including group difference, WOZ% and POZ% of D50, maximum 

CMAP amplitude, MScanFit MUNE, grid count and CDIX. Among these parameters, CDIX 

achieved the smallest WOZ% and POZ%.

In terms of computation efficiency, the average latency of CDIX calculation was (5.6 ± 3.3) 

ms using Matlab running on Windows 10 (Intel i5–11320, 16GB memory). No significant 

difference in latency was observed between the SCI and healthy control groups (p = 0.698).
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IV. Discussion

This study presents a novel analysis of CMAP scans from perspective of information 

theory, and further demonstrates its application in examination of muscles paralyzed by 

SCI. Compared with a small motor unit sample in previous MUNE methods, CMAP scan 

has advantages of providing information about a full recruitment range of motor units. In 

general, there are two categories of MUNE efforts [20]: toward direct estimation of absolute 

motor unit number or toward development of an indirect index measurement associated 

with motor unit number changes. Typical developments include most traditional MUNE 

methods for the former and motor unit number index (MUNIX) [21][22] for the latter. Both 

categories of efforts have been made in CMAP scan processing including Bayesian MUNE, 

MScanFit MUNE, D50 and STEPIX, etc.

The novel CDIX parameter represents an effort toward development of an indirect index 

measurement from CMAP scans. Each point of the CMAP scan curve can be viewed as a 

combination of recruited motor units. A muscle that has a large number of motor units is 

able to generate sufficient combinations of recruited motor units to output a continuous or 

smooth CMAP scan curve (and muscle force as well). For a diseased muscle with motor unit 

loss and muscle fiber reinnervation, the number of combinations of recruited motor units can 

decrease dramatically, resulting in discontinuity of the CMAP scan curve (and deterioration 

in muscle function). Therefore, CMAP scan properties can be characterized by the number 

of combinations of recruited motor units, which is appropriate to be examined from the 

perspective of information theory.

In the design of CDIX, each CMAP amplitude of the CMAP scan curve can be interpreted 

as a symbol that contains information of the examined muscle. The amount of information 

is quantified by calculating information entropy of the CMAP scan. A larger value 

of information entropy indicates higher complexity of motor unit recruitment, usually 

associated with larger number of motor units or their combinations. The complexity of 

muscle information can decrease with motor unit loss, which is reflected by reduced 

information entropy (as demonstrated in the SCI subjects compared with heathy control 

subjects). For the datasets used in this study, most values of information entropy fell within 

the range of 3 to 5. The purpose of defining CDIX using an exponential function (2 as 

base, information entropy as exponent) was to facilitate a better comparison between the two 

groups.

The CDIX or information entropy calculation was based on the mid-CMAP scan data 

instead of the whole scan for two considerations. On one hand, both pre- and post-scan 

data carry little information since they tend to be a constant (0 for pre-scan and maximum 

CMAP amplitude for post-scan). Given this, the information entropy is expected to decrease 

if its calculation is based on the whole CMAP scan data. On the other hand, in practical 

applications the range of the CMAP scan is usually determined by the operator, thus the 

lengths of pre- and post-scans are sensitive to human factors, which may affect CDIX. 

Therefore, in the design only the mid-scan data are used for CDIX calculation to facilitate its 

objectivity and robustness.
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In order to calculate information entropy of a CMAP scan, discretization of the scan is a 

required step, where grid sizes can be constant or determined by a variety of algorithms. 

In this study, an appropriate grid size is expected to be smaller than the action potential 

amplitude generated by typical motor units but larger than noise, so that the calculated 

information entropy or CDIX can achieve a high resolution in reflecting motor unit number 

changes and meanwhile maintain a reasonable noise tolerance. GMM was employed toward 

this purpose, where both motor unit action potential and noise distributions were modeled to 

help determine the appropriate grid size. The grid size depends on many factors including 

the CMAP amplitude and the shape of the CMAP scan. Abnormal large grid sizes (e.g. > 0.7 

mV) are usually associated with CMAP scans demonstrating large steps. Abnormal small 

grid sizes (e.g. < 0.3 mV) are usually associated with CMAP scans having a continuous 

pattern but with small CMAP amplitudes. As a result, the range of grid size obtained from 

the SCI group was wider than that of the healthy control group. The information entropy or 

CDIX derived from this grid size was able to discriminate healthy control and SCI subjects.

Pathological alterations in motor unit properties after SCI have been reported in different 

electrophysiological studies [23], including varying degrees of motor unit loss [24–27]. 

The current study provides further evidence of paralyzed muscle changes after SCI. Of 

particularly note, WOZ% and POZ% of CDIX were the smallest among all the examined 

CMAP scan parameters. CDIX was the only index that had no overlapping between the 

healthy control and SCI groups, while there was more or less an overlapping zone in other 

CMAP scan parameters. This implies its sensitivity in detecting paralyzed muscle changes 

after SCI.

CMAP scan protocol is noninvasive, and can be performed automatically and quickly. The 

data processing of CDIX usually takes less than 10 ms, and can be implemented without 

user interaction or tuning. For example, mid-scan data can be extracted automatically by 

smoothing the raw data and then performing the segmentation using preset thresholds. CDIX 

is insensitive to the number of stimuli because information entropy, by definition, does not 

rely on the length of observations. These advantages make it a clinically applicable method 

for examining or tracking neuromuscular disorders.

Finally, although the current cross-sectional study demonstrates that CDIX provides a valued 

measurement to examine paralyzed muscle changes after SCI, we acknowledge it remains to 

be determined whether CDIX offers a significant benefit in studying disease progression in 

patients with ALS or other neuromuscular disorders. Therefore, there is a need for further 

work to assess the potential of CDIX, including quantification of reliability and sensitivity 

in tracking motor unit number and size changes, detailed comparisons with other often used 

methods (such as MScanFit MUNE, STEPIX, MUNIX), and application to different muscles 

and a larger number of patients with different neuromuscular disorders.
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Fig. 1. 
Cascade of CDIX calculation algorithm
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Fig. 2. 
Demonstration of CDIX calculation procedures (using a typical CMAP scan of a healthy 

control subject)
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Fig. 3. 
An example of CDIX calculation from CMAP scan of an SCI subject
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Fig. 4. 
Comparison of grid size and grid count between the SCI and healthy control groups
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Fig. 5. 
CDIX and MScanFit MUNE of all the subjects. Each marker represents CDIX or MUNE of 

one subject. Rectangles refer to overlapping areas (grey) or gaps (no fill color) between the 

control and SCI groups.
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Fig. 6. 
Maximum CMAP and D50 of all the subjects. Each marker represents maximum CMAP 

amplitude or D50 of one subject. Rectangles refer to overlapping areas (grey) between the 

control and SCI groups.
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