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Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation 
of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic 
powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in 
photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the 
role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new 
sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular 
components undergo in different environmental conditions, including changes in gene expression and alternative splicing. 
This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular 
and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our 
discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits 
in these adaptations in D. melanogaster.
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Introduction

Animals adapt their physiology and behavior in anticipa-
tion of seasonal changes in environmental conditions (Den-
linger 2022; Lincoln 2019). These seasonal adaptations offer 
a survival advantage and vary greatly across species. Some 
animals, for example, engage in long migrations (Alerstam 
and Bäckman 2018; Chowdhury et al. 2021; Reppert et al. 
2016) while others enter prolonged states of developmental 
arrest (i.e., diapause) (Denlinger 2022, 2023). Although the 
nature of these adaptations may seem very different, they 
all rely on the successful organismal interpretation of envi-
ronmental cues.

In temperate regions of the planet, daylength (i.e., pho-
toperiod) serves as a universal signal for these adaptations 

largely due to its reliability and marked difference across 
seasons (Saunders 2020; Saunders and Bertossa 2011). For 
overwintering animals, for instance, late summer and early 
autumn present shorter and shorter days, and these photo-
periodic changes are responsible for triggering seasonal 
adaptations. Nonetheless, seasonal adaptations are known 
to occur in organisms living in tropical regions with little to 
no photoperiodic changes (Dani and Sheeba 2022; Denlinger 
1986; Pollock et al. 2019; Wenda et al. 2023). This begs 
the question of which other environmental cues are used to 
produce and regulate seasonal adaptations.

The ability of organisms to integrate and interpret sea-
sonal cues has been discussed for almost a century. In 1936, 
Erwin Bünning proposed that one of the functions of the 
circadian clock, the mechanism responsible for maintaining 
daily rhythms, is working as a photoperiodic timer (Bün-
ning 1936, 1960). Shortly after, and following Bünning’s 
ideas, Colin Pittendrigh pioneered work in insects to sup-
port an involvement of the circadian clock in photoperiodism 
(Pittendrigh et al. 1958; Pittendrigh and Minis 1964). Since 
then, much of our understanding of the molecular and neu-
ronal basis of photoperiodism, and the role of the circadian 
clock in this process, comes from extensive work conducted 
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on several insects including the bean bug Riptortus pedestris 
(Hasebe and Shiga 2021, 2022; Ikeno et al. 2014; Koide 
et al. 2021; Shimokawa et al. 2008), the flesh fly Sarcophaga 
argyrostoma (Saunders 1971, 1973, 1975), and in several 
Drosophila species (Breda et al. 2020; Collins et al. 2004; 
Kyriacou et al. 2008; Majercak et al. 1999; Menegazzi et al. 
2017; Pittendrigh 1954; Saunders et al. 1989; Saunders and 
Gilbert 1990; Schiesari et al. 2011; Shearer et al. 2016).

In this review, we discuss our current understanding of 
the molecular pathways and neuronal circuits associated 
with seasonal adaptations, with a special focus on the obser-
vations made in D. melanogaster. We also discuss our under-
standing of how photoperiod and temperature are integrated 
by the circadian clock, and how this could induce seasonal 
adaptations.

Diapause or quiescence?

An important distinction has been observed regarding the 
nature of seasonal adaptations that animals experience in 
response to photoperiod. Diapause can be defined as a pro-
grammed developmental arrest that can be irrespective to 
the environmental conditions (i.e., obligatory diapause) or 
can occur in response to a sustained change in environmental 
conditions, namely photoperiod (i.e., facultative diapause). 
Regarding the latter, some animals seem to have a strong 
facultative diapause response at high temperatures of around 
20 °C, like S. argyrostoma (Saunders 1973) or the white 
butterfly Pieris brassicae that can diapause at even higher 
temperatures of around 28 °C (Bünning and Joerrens 1962). 
Others, like D. melanogaster, require temperatures as low as 
12 °C to trigger this process (Saunders and Gilbert 1990). 
This marked difference in temperature requirement has led 
to redefining the diapause response of D. melanogaster as 
quiescence instead (Denlinger 2023; Lirakis et al. 2018; 
Saunders 2020).

Organisms that undergo diapause have a critical day-
length or critical photoperiod, which is the photoperiod at 
which 50% of the animals in a given population enter into 
diapause. In contrast, quiescence is an immediate reaction to 
changes in conditions, such as temperature. Descriptive stud-
ies in the late 90s by Saunders and Gilbert (1990) showed 
the sensitive nature of the photoperiodic response in D. 
melanogaster. Under cold temperatures (< 12 °C), the effect 
of photoperiod is almost negligible and almost all females 
enter reproductive dormancy, which is characterized by the 
predominance of pre-vitellogenic, underdeveloped eggs. 
Some groups have argued that this response is akin to qui-
escence or better profiled as a stress response (Lirakis et al. 
2018). Although this conclusion is tempting, the effect of 
photoperiod itself cannot be ignored. With increasing tem-
peratures up to 12 °C, the proportion of females exhibiting 
reproductive dormancy considerably decreases, however, 
the critical photoperiod is still visible in photoperiods of 
around 12–14 h of light (Fig. 1a). Furthermore, a study using 
constant, low temperature and long photoperiod have shown 
that D. melanogaster fails to enter diapause, as evidenced by 
the presence of big ovaries with developed eggs (Abrieux 
et al. 2020). Finally, there are many shared characteristics 
of quiescence in D. melanogaster with diapause in other 
species that show stronger photoperiodic control, including 
stress resistance and increased lipid storage (Kubrak et al. 
2014; Schmidt and Paaby 2008; Sinclair and Marshall 2018). 
For these reasons, we will continue our discussion below 
by referring quiescence in Drosophila species as a type of 
diapause response that shows high sensitivity to temperature.

Interestingly, the modulation of the diapause response by 
temperature is observed across many animals, but the extent 
varies greatly. In the flesh fly S. argyrostoma, for example, 
diapause is achieved at temperatures as high as 20 °C, and 
decreasing the temperature to 15 °C increases the amplitude 
of the response, meaning the peak percentage of diapause 
at a given critical daylength, without changing the critical 

Fig. 1   The effect of temperature on daylength-dependent diapause 
incidence in insects. Diapause incidence across different photophases 
is shown for a  Drosophila melanogaster at 10 °C (red line) and at 
12 °C (purple line), b for Sarcophaga argyrostoma at 15 °C (grey 
line) and at 20 °C (green line), and c for Drosophila auraria at 15 

°C (blue line) and at 19 °C (black line). The degree to which tem-
perature and day-length affect diapause incidence is species-specific. 
Adapted from Minami et al. (1979), Saunders (1971)   and Saunders 
et al. (1989) 
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daylength (Fig. 1b) (Saunders 1971). Considering that these 
temperatures are often encountered in nature, it is possible 
that both signals are interpreted by the seasonal timer to 
regulate diapause. Moreover, in some insects, photoperiod 
seems to be irrelevant. Rather, it is the exposure to different 
temperatures that induces overwintering, like in the cabbage 
beetle Colaphellus bowringi (Wang et al. 2007; Xue et al. 
2002).

The idea that both photoperiod and temperature con-
tribute to seasonal adaptations is not new (Saunders 2014). 
Several studies showed that small variations in temperature 
can have an immense effect on diapause incidence. In D. 
melanogaster, both amplitude of the diapause response (i.e., 
percentage of the population entering diapause) and criti-
cal daylength are greatly affected by temperature, with little 
diapause occurring at 13 °C and almost complete diapause 
at short days at 10 °C; this is a minor difference of only 
3 °C (Saunders and Gilbert 1990). A similar sensitivity is 
displayed by the fly Drosophila auraria (Fig. 1c) and the 
knotgrass moth Acronicta rumicis that shortens its critical 
daylength with lower temperatures (Kimura 1990; Minami 
et al. 1979; Saunders and Gilbert 1990). In contrast, the 
white butterfly P. brassicae shows remarkable temperature-
compensation across a wide range of temperatures such that 
diapause can be induced at temperatures as high 28 °C (Bün-
ning and Joerrens 1962). Therefore, the effect of temperature 
on the photoperiodic timer seems to be rather variable across 
species.

It is possible that in some geographical regions, this 
sensitivity difference might be of significant importance. 
For instance, tropical regions show little to no variation in 
photoperiod across the calendar year, yet seasonal breeding 
patterns and other adaptations are still widespread (Den-
linger 1986). As little photoperiodic information is available 
to distinguish seasons in these regions, small variations of 
temperature and humidity could have a huge impact on dia-
pause incidence. For instance, a difference of 3°–5° can be 
observed across monthly average temperatures throughout 
the calendar year, which seems to be enough to modulate 
some insects’ diapause response, as discussed above (Den-
linger 1986, 2023). Thus, differences in thermal sensitivity 
observed across species could be a function of geographical 
localization as well as local adaptations. D. melanogaster 
is considered to be of tropical origin (Lachaise et al. 1988); 
thus its photoperiodic response might be a more recent event 
that is highly impacted by a more variable, less predictable, 
and ancient temperature-driven timer. This also explains 
the recent polymorphisms that have not achieved fixation 
in some D. melanogaster populations across temperate 
regions like l-tim and ls-tim alleles that affect photoperiodic 
responses, as we will discuss later (Tauber et al. 2007; Trotta 
et al. 2006). Conversely, other species that originated in 
temperate regions, like P. brassicae, evolved to have robust 

temperature compensation in a seasonal timer highly driven 
by photoperiodism (Spieth and Cordes 2012).

Given these observations, it is likely that temperature 
might serve as a seasonal cue in conjunction with photo-
period and that temperature sensitivity is a function of the 
geographical origin of the species, giving a special prepon-
derance to photoperiodic cues in temperate regions (Hut 
et al. 2013; Trotta et al. 2006). This is clear when comparing 
the clinal effect on diapause incidence across different popu-
lations of D. melanogaster (Pegoraro et al. 2017; Schmidt 
et al. 2005; Schmidt and Paaby 2008) and other species (Han 
and Denlinger 2009; Saunders 2021; Yamada and Yama-
moto 2011), including the seminal work of Lankinen (1986, 
1993) and Takamura and Pittendrigh (Pittendrigh et al. 
1991; Pittendrigh and Takamura 1989). It seems that both 
temperature and photoperiod act as either complementary or 
alternative environmental inputs to regulate seasonal adapta-
tions. In this case, it would be appropriate to re-evaluate the 
definitions of quiescence in D. melanogaster as diapause, but 
dependent on both temperature and photoperiod. But even if 
we consider this idea as a possibility, it is still unclear how 
these cues are integrated within the organism.

Modified coincidence model

The external coincidence model proposed by Bünning and 
refined by Pittendrigh and others (Pittendrigh 1972; Saun-
ders 1978) suggests that a photosensitive process laying in 
the scotophase (dark phase) during short days, coincides 
with the photophase in long days, inducing development and 
preventing diapause (Pittendrigh 1966). On the other hand, 
the internal coincidence model suggests the existence of two 
independent oscillators that track dawn and dusk, and that 
the phase relationship between these two, regulated by pho-
toperiod, determines entry or exit to overwintering processes 
(Pittendrigh 1972). Both models have proved to be useful in 
explaining the functioning of the seasonal timer in some spe-
cies. However, in some species like D. melanogaster, which 
also relies on temperature, these models seem to be insuf-
ficient as changes in solely photoperiod at high temperatures 
are unable to regulate diapause.

Taking this into account, a modified coincidence model 
can be proposed in which the photosensitive process, a dia-
pause-inducing or developmental landmark in the external 
coincidence model, is positioned over a threshold that is 
set depending on the species. For instance, let us consider 
the oscillation of a protein (Protein X) whose expression at 
a particular time-of-day (phase) and at a particular level is 
required to trigger a developmental landmark (e.g., diapause 
initiation; Fig. 2; yellow star). For this to occur, the inte-
gration of two independent processes is essential: a change 
in the phase of the daily oscillation and a change in the 
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overall levels of this protein. In the case of phase, changes 
in photoperiod might be sufficient to trigger advancement 
or delay in the phase at which the protein level is at its daily 
peak, (Fig. 2a; upper left panel). Now, as discussed before, 
changes in photoperiod are not enough for some species to 
trigger diapause. In that regard, we propose that temperature 
acts as an additional signal to modulate the overall levels of 
this protein leading it to surpass a threshold (Fig. 2a; lower 
left panel). Note that the change triggered by temperature 
can be either at the midline (i.e., the average or middle of the 
sinusoidal daily oscillation), meaning that the overall levels 
of the protein are increased without changes in the amplitude 
of the oscillation (as depicted in Fig. 2a, lower left panel) or 
with changes in the amplitude without change in the overall 
levels (i.e., same baseline). As separate cues, photoperiod 

and temperature might not be sufficient to reach the develop-
mental landmark; however, together they are able to tune the 
expression of Protein X to reach the required developmental 
mark (Fig. 2a; right panel). Although we present this model 
using diapause initiation as the developmental landmark, 
this model can also be easily adapted for development initia-
tion after exit from diapause.

This axial translation of protein expression, modulated 
by two environmental cues, temperature and photoperiod, 
can be represented by the popular 1960s kids’ toy Etch-
A-Sketch, in which the turns of two knobs moves a stylus 
horizontally and vertically, generating lines along the x and 
y axis (Fig. 2a; right panel). There are some examples in 
D. melanogaster where elements of the circadian clock and 
clock-controlled genes respond in this fashion. For instance, 

Fig. 2   The influence of temperature on the photoperiodic control of 
diapause. a The top graph depicts the effect of photoperiod on the 
peak phase of a clock-regulated protein (Protein X) that exhibits daily 
oscillation in expression level. Dark grey depicts dark period for long 
days and light grey and dark grey together depict dark period for 
short days. The solid line represents daily protein expression in long 
days while the dotted line denotes expression in short days. The pro-
tein oscillation in short days peaks at a time that is in phase required 
for a developmental landmark, in this case a diapause-inducing 
event (marked by the yellow star symbol). However, the insect does 
not enter diapause given the protein level has not reached a required 
threshold for diapause induction. The lower graph depicts tempera-
ture-dependent modulation of the median of this daily protein oscil-
lation, i.e. modulation of overall expression without changing the 
oscillation. The integration of photoperiodic and temperature effects 

allows the peak of daily expression to surpass a hypothetical thresh-
old, but the phase of the peak does not coincide with the diapause-
inducing event. The concurrence of both the optimal photoperiod and 
diapause-inducing temperature produces the overlap of the peak of 
the daily oscillation to the diapause-inducing event permitting initia-
tion of diapause (right panel). The nature of this axial modulation can 
be represented as the 1960’s kids toy Etch-A-Sketch. b If integrated 
into the external or internal coincidence model, it is appropriate to 
think of temperature as another axis. A 3-axis rendition of the model 
presented in a shows the course of change of the oscillation of Pro-
tein X required to generate diapause-inducing events (depicted by yel-
low star). As the season progress, a change from long days (day: light 
gray, night: dark gray shown on top of graph in 3D) to short days, 
with a decrease in temperature
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the amplitude of the oscillation of the clock gene period 
(per) increases with colder temperatures, while changing 
the photoperiod from 12 h light:12 h dark cycles (12:12 
LD) to 6:18 LD renders an advancement in the phase of per 
oscillation of about 6 h (Majercak et al. 1999). Addition-
ally, we showed that changing the photoperiod from 16:8 
LD to 8:16 LD causes an 8-hour delay in the peak of the 
protein EYES ABSENT (EYA), whose expression is key to 
triggering reproductive dormancy (describe in more detail 
later), from the middle of the day to the middle of the night. 
Consistent with the model, decreasing the temperature to 
10 °C alone generates an increase in the overall levels of 
EYA with marginal change in its phase (Abrieux et al. 2020). 
Finally, we recently showed that the clock output peptide 
Pigment Dispersing Factor (PDF) also responds to photo-
period and temperature albeit in an opposite manner to the 
one we described for EYA. This led us to hypothesize and 
show that PDF could be upstream of EYA to regulate sea-
sonal adaptations (Hidalgo et al. 2023).

It is important to note that our model does not conflict 
with either the external or internal coincidence model. 
Instead, our proposal takes into account a third axis, i.e., 
temperature, that can be applied to either model regardless 
(Fig. 2b). Investigating the role of temperature in photoperi-
odism might be important to uncover new mechanisms in 
which the clock participates in seasonal timing. This model 
might prove useful when analyzing the difference between 
different populations of a single species across different 
latitudes. For instance, this can be applied to explain the 
differences in temperature sensitivity, as measured by devel-
opmental times, in D. melanogaster populations expressing 
different alleles of the timeless gene (Andreatta et al. 2023).

Molecular and cellular mechanisms regulating 
seasonal adaptations

The role of the molecular circadian clock 
on photoperiodism

The first clear indications of the involvement of the circadian 
clock in photoperiodism came from experimental observa-
tions and protocols such as the Nanda-Hamner protocol 
(Nanda and Hamner 1958) (reviewed in Teets and Meuti 
2021). In this protocol, researchers keep organisms at dif-
ferent conditions varying only the length of the nights with 
a fixed length of the light phase. If the clock mediates pho-
toperiodism, an increase in short-day phenotype (i.e., dia-
pause incidence) is expected to appear once the length of the 
night reaches a multiple of 24 h. This approach was key to 
suggesting a possible role of the circadian clock in photo-
periodism in D. melanogaster (Saunders 1990). Since then, 
the bloom of the genetic era and access to modern genetic 
manipulation techniques have allowed us to investigate the 

specific role that molecular clock components play in sea-
sonal adaptations, if any.

Circadian clocks in animals and plants rely on transcrip-
tional-translational feedback mechanisms to regulate endog-
enous 24-hour rhythms (Patke et al. 2020). Key transcrip-
tional activators promote the expression of clock-controlled 
genes, including the expression of genes that encode tran-
scriptional repressors that feedback to negatively regulate 
the activators to maintain self-sustaining molecular rhythms. 
In D. melanogaster, the activators are clock (clk) and cycle 
(cyc), and the repressors are period (per) and timeless (tim) 
(Allada et al. 1998; Hamblen-Coyle et al. 1989; Hardin et al. 
1990; Rothenfluh et al. 2000; Sehgal et al. 1994). A light-
responsive intracellular photoreceptor CRYPTOCHROME 
(CRY), encoded by the cry gene, is responsible for light-
mediated TIM degradation, which is critical for photoen-
trainment (Busza et al. 2004; Emery et al. 1998; Koh et al. 
2006; Stanewsky et al. 1998). per, clk, and cyc are highly 
conserved between species, while some elements were sub-
stituted due to gene duplication and loss (Lam and Chiu 
2019). For instance, CRY was replaced by a light-insensitive 
CRY (mammalian CRY; m-CRY) that performs the function 
of TIM in several species including bees and humans (Cai 
and Chiu 2021; Goto 2022).

The contribution of molecular clock proteins to seasonal 
adaptations has been assessed extensively by genetic asso-
ciation studies. In D. melanogaster, diapause incidence 
varies by latitude, suggesting differential allele selections 
across different populations (Schmidt et al. 2005; Schmidt 
and Paaby 2008). Consistent with this, and highlighting the 
involvement of the circadian clock in diapause inducibility, 
two tim alleles were detected in different fly populations in 
Italy: ls-tim and s-tim (Sandrelli et al. 2007; Tauber et al. 
2007). The “ls” allele produces a full-length mRNA of 1421 
nucleotides (L-TIM) and a shorter variant of 1398 nucleo-
tides (S-TIM), while the “s” allele produces only the shorter 
variant S-TIM (Rosato et al. 1997a, b) (Fig. 3a). The ls-tim 
allele correlates with higher levels of diapause in Europe 
while the s-tim does not (Zonato et al. 2018), and the s-tim 
allele is associated with temperature-dependent decrease in 
developmental time and increased egg production (Andre-
atta et al. 2023). Clinal variation was also observed in other 
clock components, including per. The per gene has a vary-
ing number of threonine-glycine repeats, and the frequency 
of the allele containing 20 repeats changes across latitudes 
(Costa et al. 1992; Costa and Kyriacou 1998; Rosato et al. 
1997a, b). Changes in the number of repeats have been asso-
ciated with temperature compensation of the circadian clock, 
highlighting the role of this gene in the relationship between 
the clock and temperature. Studies in flesh-fly Sarcophaga 
bullata showed that non-diapausing strains have higher 
expression of per, suggesting a role of this gene in season-
ality (Goto et al. 2006). Additionally, a higher incidence of 
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diapause was observed in strains carrying a shorter PER 
C-terminal region, further supporting a role of these genes 
in seasonality (Han and Denlinger 2009).

Functional relationships between these genetic varia-
tions and the seasonal timer have also been investigated but 
yielded conflicting results. In 1989, Saunders et al. utilized 
the per mutants generated by the Benzer lab to directly test 
the influence of the circadian clock on diapause incidence 
(Saunders et al. 1989). The results of these experiments were 
ground-breaking. Four different per mutants were able to 
enter photoperiodic-dependent diapause at 12 °C, albeit with 
a different critical daylength. Further studies suggested that 
per is probably not important for photoperiodism or has a 
limited impact on this process (Emerson et al. 2009; Saun-
ders 1990). This indicated, in principle, that the circadian 
clock might not be important for seasonality. Nonetheless, 
other studies showed that per is important in other photo-
periodic-dependent traits in D. melanogaster as per mutants 
lose photoperiodic-dependent cold tolerance (Pegoraro et al. 
2014). This apparent conflict on the role of per in photo-
periodism in D. melanogaster highlights the complexity of 
the traits tested in this species. It is possible though that 
diapause and cold tolerance are two different outputs of sea-
sonal adaptations that are modulated by different mecha-
nisms. In this case, per would not be a fundamental gene for 
photoperiodism per se, instead, relevant in the downstream 
process of cold tolerance with no effect on diapause.

Evidence for the role of per in photoperiodism in other 
organisms is much stronger. In the bean bug R. pedestris, 
knocking down per promotes development, even under 
diapause-inducing conditions (Ikeno et al. 2010, 2011). A 
similar result was observed in the parasitoid wasps Nasonia 
vitripennis, in which a reduction in per expression produces 
females that remain in the active reproductive state even 
under short days (Mukai and Goto 2016). Similarly, work in 

the domestic silk moth Bombyx mori showed that knocking 
out per prevents response to short days (Ikeda et al. 2021; 
Tobita and Kiuchi 2022), and knocking down per by double-
stranded (ds) RNA in the mosquito Culex pipiens prevents 
adaptations to short photoperiod, including inhibiting dia-
pause and inhibiting an increase in lipid storage (Meuti et al. 
2015). Now, with all this information, it is safe to say that 
per is an important regulator of diapause in several insects. 
What remains unclear, however, is whether the role of per 
is due to a pleiotropic effect independent of its circadian 
clock function or whether it is a direct effect of the clock, as 
a modular entity for seasonality.

In D. melanogaster, tim null-mutants lose photoperiodic-
dependent development of cold tolerance, similar to per 
mutants (Pegoraro et al. 2014). Moreover, the same mutant 
show non-diapausing phenotypes even under short photo-
period at cold temperatures, as assayed by ovary size, while 
overexpression of tim generates small ovaries even during 
long days (Abrieux et al. 2020). In the cabbage beetle C. 
bowringi knocking down tim results in impaired lipid storage 
(Zhu et al. 2019), common in non-diapausing individuals, 
similar to what happens while knocking down tim in Cx. 
pipiens (Meuti et al. 2015). Thus, the negative elements of 
the clock, and potentially the clock itself, act as a module 
that seems to be indispensable for a correct photoperiodic 
response. Yet, there is still the issue as to whether tempera-
ture response is an integral part of the circadian clock, and 
by this definition, of the seasonal adaptation machinery.

The role of the molecular circadian clock on temperature 
integration: splicing as a driving force of seasonal 
adaptations

As discussed above, temperature seems to be a key fac-
tor necessary for inducing photoperiodic responses in D. 

Fig. 3   Different isoforms of clock gene timeless. a Alternative 
codon usage at the N terminal gives rise to two possible TIME-
LESS proteins from the ls-tim alleles differing in 23 amino acids. 
b Thermosensitive splicing gives rise to four different TIMELESS 
variants; TIM-MEDIUM in response to warm temperatures (TIM-M; 
Shakhmantsir et al. 2018), the canonical TIM-LONG (TIM-LONG), 

and TIM-SHORT COLD (TIM-SC) and TIM-COLD at cold tempera-
tures (Abrieux et al. 2020; Martin Anduaga et al. 2019). The specific 
roles of these isoforms in diapause incidence have not been function-
ally tested. Note that the “L” isoforms generated from N-terminal dif-
ferences are not the same as the ones described for the C-terminal, 
L-TIM and TIM-L, respectively
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melanogaster. Temperature on its own modulates D. mel-
anogaster locomotor activity, an effect of temperature-
dependent per splicing (Chen et al. 2007; Majercak et al. 
1999; Zhang et al. 2018). Under 12:12 LD cycles at 25 °C, 
D. melanogaster shows two well-defined peaks of activity: a 
morning peak and an evening peak. When temperature drops 
to 18 °C or lower, the evening peak of activity advances 
around 4 h into midday (Hidalgo et al. 2023; Majercak et al. 
1999). As an ectotherm, D. melanogaster adjusts its body 
temperature with the help of environmental temperature, 
driven by temperature preference (Hamada et al. 2008). 
Thus, this change in locomotor activity is believed to be a 
seasonal adaptation that promotes activity during the light 
phase at low temperatures. Associated with this change, an 
increase in per mRNA is observed at cold temperatures, 
produced by an increase in the splicing of an intron in the 
3′ end of the per transcript (Chen et al. 2007; Majercak 
et al. 1999). As a result, the accumulation of PER and TIM 
proteins occurs earlier, modulating the locomotor rhythms 
downstream.

Several thermosensitive splicing events also occur result-
ing in different tim isoforms (Fig. 3). Under cold conditions, 
an isoform that is 33 amino acids shorter than full-length 
TIM (TIM-L; not to be confused with L-TIM produced by 
N-terminus variations discussed above) is produced, termed 
TIM-cold (Boothroyd et al. 2007) (Fig. 3b). Both per and 
tim splicing events are also observed under natural condi-
tions with peak unspliced per and spliced tim observed in 
cold months from October through March (Montelli et al. 
2015). Another tim isoform, derived from an intron retention 
event that causes cleavage and polyadenylation of a short 
isoform termed tim-sc, was also recently described (Abrieux 
et al. 2020; Martin Anduaga et al. 2019; Shakhmantsir et al. 
2018) (Fig. 3b). Functional studies of this isoform are still 
being conducted. Martin Anduaga et al. (2019) showed that 
the overexpression of this isoform in a tim-null background 
modulates the evening peak of locomotor activity in a simi-
lar fashion as per splicing but less pronounced. Hence, it is 
possible that these splicing events work in concert to modu-
late seasonal adaptations, including locomotor adaptations.

It is interesting that many of these changes have a high 
impact on the structure of clock components. For instance, 
the difference in the proteins L-TIM and S-TIM produced by 
the ls-tim and s-tim alleles is about 23 amino acids, which 
is sufficient to modulate the interaction between TIM and 
CRY (Montelli et al. 2015). L-TIM has reduced interac-
tion with CRY that results in reduced light sensitivity. If we 
now consider the possible splicing events of these alleles, 
a staggering number of combinations of TIM isoforms are 
possible. Montelli et al. (2015) addressed this issue by test-
ing CRY interaction to L-TIM and S-TIM in its spliced and 
unspliced form (the splicing event that gives rise to tim-
cold and not tim-sc) using a yeast two-hybrid system. The 

unspliced S-TIM had a higher affinity for CRY compared 
to the other combinations. Likewise, unspliced S-TIM had 
a higher binding affinity to PER, especially during the dark 
phase. Interestingly, this in vitro approach seems to be func-
tionally relevant, as it shows that reduced light sensitivity of 
L-TIM enables D. melanogaster in northern Europe to adapt 
to long days in the summer (Deppisch et al. 2022; Lamaze 
et al. 2022). On the other hand, it is not known what the 
functional consequences are when other TIM isoforms are 
expressed within the molecular clock, particularly the func-
tional consequence of a shorter TIM (i.e., TIM-SC; Fig. 3b). 
Considering that the cytoplasmatic localization domain and 
a fragment of the second PER binding domain are missing, it 
is expected that subcellular localization and even the interac-
tion of TIM-SC and PER would be different (Cai and Chiu 
2021). This is also important considering that under cold 
conditions, the tim-sc isoform is predominant with little to 
no expression of the full-length canonical tim (Abrieux et al. 
2020; Martin Anduaga et al. 2019). Future research focusing 
on the functional consequences of these structural changes 
on the clock protein behavior is going to provide answers to 
these pressing questions.

From neuropeptides to hormones: integration 
of seasonal cues and downstream pathways

Seasonal adaptations come with a wide array of physi-
ological adaptations that rely on the regulation of hormonal 
changes. In D. melanogaster, these changes seem to start in 
a group of dorsal medial neurosecretory cells, called insu-
lin-producing cells (IPCs) (Schiesari et al. 2011; Sim and 
Denlinger 2013). These cells release insulin-like peptides 
(DILPS) down the recurrent nerve to the corpus allatum 
(CA) and the corpus cardiacum (CC) (Nässel and Zandawala 
2020). The IPCs are required for regulating diapause given 
that the ablation of these cells enhances diapause (Schiesari 
et al. 2016). Additionally, hyperactivating or reducing the 
electrical excitability of the IPCs prevents or induces dia-
pause, respectively (Schiesari et al. 2016). Consistent with 
this, overexpression of DILP2-5 peptides prevents diapause 
at 12 °C and short days while flies lacking dilp1-5 or 2, 3, 
and 5 have increased diapause incidence even after being 
transferred to higher temperatures (Schiesari et al. 2016). 
Double mutants for dilp2-3 and dilp5 have stronger diapause 
induction compared to control flies, further confirming the 
role of DILP in diapause inhibition (Kubrak et al. 2014). 
Nonetheless, contrary to what would be expected, independ-
ent studies showed that levels of dilp1, 2, 3, and 5 mRNAs 
are increased instead of decreased in diapausing flies 
(Kubrak et al. 2014; Liu et al. 2016; Schiesari et al. 2016). 
The nature of this paradox is not well understood. It has 
been suggested that this could be part of a feedback mecha-
nism in which a reduced activity/function of DILPS under 
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diapause-inducing conditions triggers an increase in the 
mRNA levels of these peptides (Schiesari et al. 2016) or that 
this state of hormonal imbalance could correspond to a new 
homeostatic state in which DILPS and other hormones, such 
as the adipokinetic hormone (Akh), are working concertedly 
to modulate metabolism (Kubrak et al. 2014). Nonetheless, 
as the author in the later study suggested, changes in dilp 
expression are not a direct indication of the release of the 
peptides. It is possible that the levels of the peptides (pro-
tein) are still low in diapause-inducing conditions despite 
the high levels of transcripts (mRNA). This is consistent 
with increased FOXO transcriptional activity, measured 
as a readout of the reduced DILP signaling, in diapausing 
flies (Schiesari et al. 2016). More studies are required to 
clarify this issue. Yet from functional studies, it is possible 
to suggest that under diapause-inducing conditions, reduced 
activity of the IPCs potentially could reduce the secretion of 
DILPs. The reduction of circulating DILPs in turn decreases 
the activation of the CA, consequently reducing the release 
of juvenile hormone (JH), a hormone that is key for vitello-
genesis and that is involved in diapause (Kurogi et al. 2021; 
Saunders et al. 1990). The IPCs do not express a functional 
clock (Barber et al. 2016; Cavanaugh et al. 2014), therefore, 
it is believed that the integration of seasonal cues occurs 
upstream, in the circadian clock neuronal network, and then 
relayed to these neurosecretory cells.

The circadian clock neuronal network is composed of 
~ 150 neurons organized in dorsal neurons (DN1anterior; 
DN1a, DN1posterior; DN1p, DN2, DN3), dorsal-lateral 
neurons (LNd), ventral-lateral neurons (LNvs), and lateral 
posterior neurons (LPN) (Beer and Helfrich-Förster 2020). 
These neurons form an interconnected network that signals 
through the co-transmission of small neurotransmitters and 
neuropeptides (Crespo-Flores and Barber 2022; Duhart et al. 
2020; Fujiwara et al. 2018; Goda et al. 2019; Hamasaka 
et al. 2007; Kunst et al. 2014; Reinhard et al. 2022; Shafer 
et al. 2008; Yao and Shafer 2014; reviewed in Nässel 2018). 
Of these clusters, a group of LNvs called the small LNvs 
(s-LNvs) are involved in diapause control. Activation of the 
s-LNvs prevents diapause even in dormancy inducing condi-
tions, making this cluster a candidate for seasonal integra-
tion (Nagy et al. 2019). Additionally, the s-LNvs express 
the peptide pigment dispersing factor (PDF) and the short 
neuropeptide F (sNPF) (Nässel 2018), both of which were 
shown to be important for diapause as overexpression of 
either one in the LNvs caused a reduction in diapause inci-
dence (Nagy et al. 2019). The s-LNvs directly signal to 
the IPCs, an effect that is mediated by the PDF receptor, a 
G-protein coupled receptor that increases cAMP levels upon 
activation (Lear et al. 2005; Nagy et al. 2019), highlighting 
the role of these peptides and the LNvs in seasonal control. 
Additionally, the exact mechanism by which the circadian 
clock, through PDF, regulates the hormonal cascade under 

diapause conditions is still unclear. Recently, we showed 
that expression of EYES ABSENT (EYA), a co-transcription 
factor and phosphatase, in the IPCs promotes reproductive 
dormancy (Abrieux et al. 2020). EYA level increases under 
diapause-inducing conditions. Importantly, overexpress-
ing or reducing eya in the IPCs promotes or inhibits dia-
pause, respectively. The opposite effect of EYA and PDF 
on diapause control suggests PDF negatively regulate EYA 
function. We showed that PDF reduces EYA level through 
a phosphorylation-dependent regulation mediated by the 
activation of PDFR and PKA function (Hidalgo et al. 2023) 
(Fig. 4). Thus, under diapause-inducing conditions, a reduc-
tion of PDF would allow EYA accumulation in the IPCs, 
which then triggers reproductive dormancy. Indeed, PDF 
levels are responsive to both photoperiod and temperature, 
providing seasonal integration through a circadian output. 
On warm and long days, PDF levels in the s-LNvs dorsal ter-
minals, the ones contacting the IPCs, are significantly higher 
compared to short and cold days (Hidalgo et al. 2023). These 
low levels in winter-like conditions are explained by a reduc-
tion in pdf mRNA, which can be subtly observed in D. mela-
nogaster at 18 °C in 3’ RNA-seq datasets (Martin Anduaga 

Fig. 4   Molecular basis of seasonal control in Drosophila mela-
nogaster insulin-producing cells (IPCs). Upon the arrival of the pep-
tide Pigment Dispersing Factor (PDF) to the IPCs, an increase in 
cAMP and activation of Protein Kinase A (PKA) lead to the phos-
phorylation and therefore degradation of the protein EYES ABSENT 
(EYA). EYA promotes diapause potentially by transcriptional regula-
tion of Drosophila insulin-like peptides (dILPs) that normally reach 
the corpus allatum and corpus cardiacum to induce ovarian develop-
ment and control of lipid storage (Hidalgo et al. 2023; Kubrak et al. 
2014; Schiesari et al. 2016)
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et al. 2019) and clearly in Drosophila suzukii at 10 °C using 
RNA-seq (Shearer et al. 2016). Although it is still unclear 
how this is achieved, it is possible that the changes in the 
molecular clock explained above serve as a conduit to reduce 
pdf during winter, but this needs to be investigated in future 
studies. Moreover, it is unclear exactly how EYA is con-
nected to the insulin pathway.

The LNvs and PDF have also been associated to the 
change in locomotor activity under different seasonal con-
ditions. As mentioned before, under cold conditions, there is 
an advancement of the evening peak of activity rhythm, reg-
ulated by per and tim splicing, an advancement that can be 
also observed in Pdf null mutants and in pdfr mutants at 25 
°C (Lear et al. 2005; Majercak et al. 1999; Renn et al. 1999). 
This, in addition to the fact that we observed a reduction in 
PDF levels under cold conditions, also supports the notion 
that changes in the molecular clock might drive changes in 
PDF, ultimately triggering seasonal adaptations (Hidalgo 
et al. 2023). Interestingly, PDF also serves as a key signal to 
regulate the delay of the evening peak under long day, warm 
days (Lear et al. 2009; Vaze and Helfrich-Förster 2021). This 
is mediated by l-LNvs and the s-LNvs, in contact with the 
LNds (Schlichting et al. 2016, 2019). Overall, these lines of 
evidence highlight the role of PDF in responding to seasonal 
cues, potentially offering a link between the circadian clock 
and seasonal adaptations in D. melanogaster.

It is important to note that the s-LNvs/PDF/IPCs axis is 
probably not the only pathway to modulate reproductive dor-
mancy. The neuropeptide allatostatin-C (AstC), expressed in 
DN1p, DN3, and LPN clusters has been shown to participate 
in circadian control and seasonality. Under warm conditions, 
DN3s are active and have high AstC levels, while the oppo-
site is observed in the cold (Meiselman et al. 2022). Activa-
tion of these neurons promotes egg production, an output of 
reproductive state, even under cold conditions. Thus, AstC 
expression in the DN3 cluster is required to inhibit diapause 
in a temperature-dependent manner, independent of the IPCs 
and through undetermined cholinergic neurons expressing 
the AstC receptor R2, one of two AstC receptors described 
in D. melanogaster (Kreienkamp et al. 2002; Meiselman 
et al. 2022). This seems to be a parallel pathway for regulat-
ing egg development as AstC released from the DN1p was 
shown to inhibit oogenesis through the decrease of DILP2 in 
the IPCs and a consequential reduction of JH, opposite to the 
reported role of PDF (Zhang et al. 2021, 2022). Interestingly, 
another IPC-independent pathway for modulating diapause 
in D. melanogaster has been recently uncovered involv-
ing midbrain neurons expressing the Diuretic hormone 31 
peptide (DH31), important in daily temperature preference 
rhythms among other functions (Goda et al. 2016, 2019; 
Kurogi et al. 2023). These neurons make direct contact with 
the CA, suppressing the production of JH under winter-like 
conditions, thus promoting reproductive arrest (Kurogi et al. 

2023). Connectomic data showed that these neurons connect 
with circadian clock neurons, including the s-LNvs, poten-
tially allowing the circadian clock to convey seasonal cues. 
It appears that direct and indirect pathways (i.e., through the 
IPCs) work concertedly to trigger seasonal adaptations, with 
upstream regulation by the circadian clock.

The circuits that integrate temperature into the brain 
relay this information to a few clock neuronal cell clusters 
(George and Stanewsky 2021). The absolute cold and hot 
temperatures are perceived by thermoreceptors in the anten-
nae (Gallio et al. 2011; Liu et al. 2015) and the chordotonal 
organs in the legs (Chen et al. 2015; Sehadova et al. 2009). 
This information travels through thermosensitive receptor 
neurons that form hot and cold adjacent glomeruli in the 
posterior antennal lobe (Frank et al. 2015). Thermal cues 
are then integrated and transferred by thermosensitive pro-
jection neurons (Alpert et al. 2020, 2022) and by internal 
thermosensitive neurons (Hamada et  al. 2008) to clock 
neuron clusters LPN, DN1a, and DN1p. The integration of 
thermal cues into the circadian clock suggests that seasonal 
cues, i.e., light and temperature, need to be pre-processed 
before conveying the information to the IPCs. The DN1a 
and DN1p neurons are modulated by PDF signaling (Im and 
Taghert 2010; Shafer et al. 2008; Yoshii et al. 2009) and 
project to the IPCs directly, where they can drive rhythms 
in their firing patterns in response to starvation (Barber et al. 
2016). Additionally, DN1p neurons have been involved in 
conveying thermal inputs to promote wakefulness (Jin et al. 
2021). Therefore, it is possible that temperature is conveyed 
to the IPCs through DN1a and/or DN1p with the input of 
PDF for photoperiodic signals. Importantly, DN1a neurons 
produce CCHamide1 (Fujiwara et al. 2018; Nässel 2018), a 
neuropeptide that modulates PDF in the s-LNvs, and DN1p 
are connected to PDF neurons to modulate adaptations to 
light intensity (Chatterjee et al. 2018; Kuwano et al. 2023). 
Thus, it is possible that reciprocal connections between 
DN1a/DN1p cell clusters and the s-LNvs are required before 
reaching the IPCs (Fig. 5). It seems evident that these two 
circadian neuropeptides, PDF and CCHamide1, and possibly 
others, could work in a concerted action to modulate season-
ality through the integration of photoperiod and temperature. 
Hence, understanding the interaction between the circadian 
control of peptides and the regulation of the IPCs and other 
neurosecretory cells will be key to untangling the circadian 
basis of seasonal physiology.

Concluding remarks

Seasonal adaptations are key for survival, but the exact 
molecular and neuronal underpinnings driving these 
adaptations are still under investigation. The use of 
genetic approaches has increased our understanding of 
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photoperiodism, but more research is still needed. Although 
the photoperiodic timer is considered temperature-compen-
sated, the small contribution of temperature to the critical 
photoperiod depends on the species and populations within 
those species. It is important to note that the predominant 
effect of temperature on the termination of diapause (Hodek 
2002), which is likely mediated by changes in the clock com-
ponents, was not discussed in this review. Thus, special care 
is needed when investigating diapause entry or exit.

Evidence gathered throughout the years suggests a modu-
lar contribution of the circadian clock in photoperiodism, 
supporting Bünning’s almost 100-year-old idea. The dif-
ferential splicing of clock components adds an exquisite 
layer of complexity to the control of photoperiodism by the 
circadian clock. Therefore, the advancement in long-read 
sequencing technologies is certainly a catalyzing develop-
ment to further our understanding of this process. Is it pos-
sible that other components of the clock, apart from tim and 
per, are affected by thermal- or light-sensitive splicing? Or 
is this process directed to just a few key genes? Future work 
in the field may reveal whether splicing is an integral process 
required for seasonal adaptations.

Finally, a large part of our understanding of seasonal 
adaptations comes from investigating variations observed 
by animals in temperate zones, which is just a fraction of 

the cases. Adaptation to seasons on tropical species is also 
prevalent, but our understanding of how the seasonal timer 
works at these latitudes is lacking. Future studies investigat-
ing a wider range of species will be the key to establishing 
general principles regarding the interplay between the circa-
dian clock, photoperiod, and temperature regulation.
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