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Systematic dissection of transcriptional regulatory 
networks by genome-scale and single-cell  
CRISPR screens
Rui Lopes1*†, Kathleen Sprouffske1†, Caibin Sheng1, Esther C. H. Uijttewaal1‡,  
Adriana Emma Wesdorp1§, Jan Dahinden1, Simon Wengert1||, Juan Diaz-Miyar1, Umut Yildiz1¶, 
Melusine Bleu1, Verena Apfel1, Fanny Mermet-Meillon1, Rok Krese1#, Mathias Eder1**,  
André Vidas Olsen2, Philipp Hoppe3, Judith Knehr3, Walter Carbone3, Rachel Cuttat3, 
Annick Waldt3, Marc Altorfer3, Ulrike Naumann3, Joachim Weischenfeldt2, Antoine deWeck1, 
Audrey Kauffmann1, Guglielmo Roma3, Dirk Schübeler4,5, Giorgio G. Galli1*

Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet 
their functional relevance in specific pathophysiological settings remains to be determined. This is critical to un-
derstand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs un-
derlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to 
functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in 
breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical 
downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work 
reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory 
networks, enabling to dissect the function of the noncoding genome of cancer cells.

INTRODUCTION
Transcription factors (TFs) impose gene expression programs tai-
lored to a diverse range of pathophysiological states. For example, 
specific tumors display exquisite dependency on transcriptional reg-
ulators to maintain their malignant phenotype (1). One such exam-
ple is estrogen receptor (ER)–alpha (ESR1), which is an oncogenic 
driver in a large fraction (≈70%) of breast tumors (2). ER binds at 
estrogen-responsive elements (EREs) and activates the expression 
of target genes to promote cell growth and survival (3–5). Over the 
past decade, the application of genomics contributed to elucidating 
the function of ER by correlating its binding sites with target genes 
(6, 7), and nascent RNA analysis identified ≈3000 genes regulated by 
ER (8). However, these studies can neither explain the mechanisms 
of ER-regulated enhancers nor identify functional target genes that 
drive the growth of cancer cells.

It became recently evident that transcriptional regulatory elements 
(TREs) are targeted by germline and somatic genetic alterations in 
cancer (9). However, the actual contribution of noncoding genetic 
variants to human disease remained largely open in the absence of 
functional assays. The advent of CRISPR-Cas9 systems filled a tech-
nological gap, and they were readily applied to study noncoding ele-
ments. In particular, CRISPR-Cas9 genetic screens tested thousands 
of TREs in different biological settings, such as the regulation of spe-
cific loci (10–13) or a focused set of TF binding sites (14, 15). This 
approach was also used to characterize regulatory interactions by 
coupling it with transcriptional reporters (16–19), single-cell RNA 
sequencing (scRNA-seq) (20, 21), and RNA–fluorescence in situ hy-
bridization (22). However, a systematic assessment of oncogenic reg-
ulatory networks in cancer is still missing.

Here, we combine genome-scale and single-cell CRISPR screens to 
perform a comprehensive survey of TREs upstream and downstream 
of ER in breast cancer cells. We tested ≈15,000 putative TREs and 
identified a small subset of them controlling the proliferation of cancer 
cells, which are enriched in GATA binding protein 3 (GATA3), tran-
scription factor AP-2 gamma (TFAP2C), and histone H3 lysine 27 
acetylation (H3K27Ac) signal. These ER-dependent TREs control a net-
work of downstream TFs, effectively branching out the transcriptional 
dependencies of ER+ breast cancer cells. We highlight the role of TFAP2C 
as a critical ER target gene and a potential biomarker in breast cancer. 
Our results provide a framework to characterize how oncogenic TFs 
can engage specific TREs to impose their pathogenic program.

RESULTS
High-resolution CRISPRi screen identifies critical TREs 
controlling ESR1 and CCND1
Expression of ER and its downstream target genes characterize and 
stratify the ER+ breast cancer subtype (23, 24). In addition, ESR1 
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and its target gene cyclin D1 (CCND1) are dependencies in such can-
cers (fig. S1A), hence critical therapeutic nodes (5, 25, 26). How 
ER+ breast cancer cells sustain the expression of such critical on-
cogenes is currently unknown. Therefore, we aimed to identify 
systematically TREs that control the expression of ESR1 and CCND1. 
We used CRISPR-Cas9 to integrate a transcriptional reporter in 
MCF7 cells by fusing HiBiT–green fluorescent protein (GFP) in frame 
with ESR1 or CCND1 to monitor gene expression changes (Fig. 1A). 
We observed a substantial reduction of fluorescence and lumines-
cence signal in MCF7-ESR1-HiBiT-GFP and MCF7-CCND1-HiBiT-
GFP cells upon knockdown of ESR1 and CCND1, respectively (fig. S1, 
B and C). This indicates that the HiBiT-GFP reporters faithfully re-
capitulate endogenous gene expression, and they are amenable for 
fluorescence-activated cell sorting (FACS)–based genetic screen-
ing. We designed a comprehensive CRISPR library to interrogate all 
putative TREs located within the topologically associating domains 
(TADs) of ESR1 and CCND1, as defined by publicly available deoxy-
ribonuclease I hypersensitivity (i.e., DHS) (27) and Hi-C (28) data 
(fig. S1D). In total, we cloned 34,755 single-guide RNAs (sgRNAs) and 
assembled a library designated here as oncogenic drivers of breast 
cancer (ODBC), which contains ≈9 sgRNAs/DHS upon filtering off-
targets and considering an even distribution of sgRNAs within candi-
date DHS (fig. S1, E and F). Of note, ≈25% of sgRNAs target putative 
TREs in ER+ breast cancer cells (fig. S1G), and a large fraction of these 
regions contain features that are indicative of promoters, enhancers, 
insulators, and actively transcribed regions (fig. S1H).

We started by testing the functional importance of candidate 
TREs of ESR1 and CCND1 by performing a cell proliferation–based 
CRISPRi screening. We transduced MCF7-CRISPRi cells with the 
ODBC library and measured the representation of sgRNAs by se-
quencing at three different time points (Fig. 1A and table S1). We 
observed a substantial number of sgRNAs consistently depleted in 
three independent replicates, and we defined “scoring sgRNAs” based 
on log fold change (logFC) < −1 at day 21 (Fig. 1B and fig. S2A). No-
tably, scoring sgRNAs were consistently decreased in their represen-
tation, whereas nontargeting sgRNAs remained largely unchanged 
over time (fig. S2B). In addition, we performed a small-scale valida-
tion screen in three cell lines to validate scoring sgRNAs identified 
in the ODBC screens (fig. S2C). We observed that scoring ODBC 
sgRNAs that dropout in ER+ cells (MCF7 and T47D) have a negligi-
ble effect in MDA-MB-231 (ER−), demonstrating how our approach 
identifies a subset of regulatory elements that specifically drive the 
proliferation of ER+ breast cancer cells.

To establish a causal relationship between the proliferative effect 
and the regulation of ESR1 or CCND1, we performed the ODBC screen 
in HiBiT-GFP reporter cells and used FACS to retrieve cells based on 
quartiles of GFP expression at day 7 (∆GFP) (Fig. 1A). We overlaid 
the reporter and proliferation screening data by evaluating the en-
richment score of sgRNAs in GFP-negative cells (i.e., “gene repres-
sion score”). We observed that the sgRNAs that have the strongest 
effect on cell proliferation are associated with decreased expression 
of the respective reporter gene (fig. S3, A and B). We found that the 
highest-scoring sgRNAs in the ESR1 TAD are associated with de-
creased expression of the CCND1-GFP reporter in MCF7 cells (fig. 
S3A). These results are in line with CCND1 being downstream of 
ESR1 and confirms that our screening method is suitable to iden-
tify both cis- and trans-regulatory events. In addition, scoring ODBC 
sgRNAs target regions that contain the highest level of H3K27Ac sig-
nal in ER+ cell lines and primary tumor xenografts (PTXs) (Fig. 1C), 

but not in triple-negative breast cancer (TNBC) models (Fig. 1C). 
This suggests that our screen can identify highly active TREs driving 
the expression of critical oncogenes in ER+ cells.

We then focused on scoring sgRNAs in the ESR1 TAD and identi-
fied two candidate regions that contribute to ESR1 expression and cell 
growth. The first corresponds to the active transcription start site (TSS) 
of ESR1 (ESR1_TSS) in MCF7 cells (29), and the second is a region located 
150 kb upstream (ESR1_-150 kb) (Fig. 1D). To test whether the up-
stream element interacts with the ESR1 promoter, we performed 
Hi-C experiments in MCF7 cells, which produced high-resolution 
maps of DNA-DNA interactions and revealed significant contacts 
between ESR1_-150 kb and ESR1_TSS (Fig. 1D). ESR1_-150 kb is located 
in an accessible chromatin region that is marked by high H3K27Ac 
signal (Fig. 1D), which was previously described as an enhancer of 
ESR1 (30). Targeting ESR1_-150 kb with independent CRISPR re-
agents confirmed a decrease in cell growth (fig. S3C) and a concom-
itant down-regulation of both endogenous ESR1 expression and 
ESR1-HiBiT luminescence (fig. S3D). Moreover, ESR1_-150 kb ac-
tivates the expression of a minimal promoter in a reporter assay (fig. 
S3E), further supporting its classification as an enhancer. Its tran-
scriptional activity is stimulated by estradiol (E2), whereas small 
deletions in the estrogen response element (ERE) located in this 
region severely blunt its basal activity and stimulation by E2.

Next, we investigated the cis-regulatory network of CCND1, which 
is known to be regulated by several ER-bound enhancers (14, 31). In 
our screen, we identified three candidates that sustain CCND1 expres-
sion and cell growth: the promoter region (CCND1_TSS), a known 
enhancer that is bound by ER (14) (CCND1_-125 kb), and a candi-
date TRE located upstream of the CCND1 TSS (CCND1_-518 kb) 
(Fig. 1E). Using Hi-C data, we identified loops between the two candi-
dates and the CCND1 TSS (Fig. 1E), which are indicative of long-range 
regulatory interactions. Alongside with CCND1_TSS, we validated 
that CCND1_-125 kb and CCND1_-518 kb are necessary for cell pro-
liferation (fig. S3F), endogenous CCND1 expression, and CCND1-
HiBiT luminescence (fig. S3G). We tested the transcriptional activity 
of CCND1_-125 kb and CCND1_-518 kb using a plasmid reporter as-
say, and we found that they enhance transcription in an ER-dependent 
manner (fig. S3H). Last, we tested the region CCND1_-147 kb, which 
is associated with increased CCND1 expression and cell prolifer-
ation in our screen data (Fig. 1E). We validated that inhibition of 
CCND1_-147 kb by CRISPRi leads to increased expression of CCND1 
in MCF7 cells (fig. S3G), suggesting that this region is a repressor of 
CCND1. Together, our results reveal several nonredundant TREs that 
sustain the expression of ESR1 and CCND1 and cell proliferation in 
ER+ breast cancer cells (Fig. 1F).

Genome-scale CRISPRi screen identifies essential ERBS 
in breast cancer cells
A plethora of ER binding sites (ERBS) and target genes have been 
described by epigenomic profiling experiments (6–8, 32). However, 
only few ER-bound TREs were functionally characterized, and a com-
prehensive assessment is still missing (14, 31, 33). To this end, we set 
out to functionally interrogate a consensus map of ERBS (n = 14675) 
based on ER chromatin immunoprecipitation sequencing (ChIP-
seq) datasets (table S2) obtained from Cistrome (Fig. 2A) (34). We 
designed a CRISPR library, referred here as genome-wide ER CRISPR-
associated repression (GERCAR), which contains an average of 
5.4 sgRNAs per ER peak (fig. S4, A and B). Next, we performed a 
proliferation-based screen in MCF7-CRISPRi cells with the GERCAR 
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Fig. 1. High-resolution CRISPRi screen identifies critical TREs controlling ESR1 and CCND1. (A) Schematic representation of the ODBC screen. GOI, gene of interest. 
(B) Box plot showing the representation of the ODBC library at days 7, 14, and 21. Nontargeting sgRNAs are negative controls. Data represent median logFC of three experiments. 
(C) Median H3K27Ac ChIP-seq signal (log10) at sgRNA target regions in ER+ and TNBC models binned by the ODBC logFC at T = 21 days (proliferation effect). TNBC, triple-negative 
breast cancer; PTX, primary tumor xenografts. *P < 0.05, **P < 0.01, ****P < 0.0001, and not significant (n.s.), P > 0.05. (D) Snapshot of the ESR1 locus showing Hi-C data (top track), the 
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Lopes et al., Sci. Adv. 2021; 7 : eabf5733     2 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  R E S O U R C E

4 of 15

1

2

4
6

10

20

40
60

hg38 | MCF7_E2.mcool
[Current data resolution: 2.5k]

dCas9-KRAB

X CCND1
ER peaks
(ChIP-seq) 

sgRNA 
library

sg
R
N
A 

co
un
ts

A B C D EGene:

sg
R
N
A 

co
un
ts

A B C D EGene:

7 14 21 7 14 21 7 14 21Day: 7 14 21

Nontargeting sgRNAs ESR1_TSS sgRNAs CCND1_ TSS sgRNAs GERCAR sgRNAs 

sg
R
N
A 
re
pr
es
en
ta
tio
n 
(lo
gF

C
)

Scale
chr8:

100 kb hg38
127,800,000 127,850,000 127,900,000 127,950,000 128,000,000 128,050,000 128,100,000 128,150,000

MYC
MYC

PVT1
MIR1204 TMEM75

MIR1205
MIR1206

MIR1207

MIR1208

Scoring sgRNAs
Scoring sgRNA GERCAR

GERCAR proliferation day 21

MCF7 ESR1 ChIP-seq

MCF7 FOXA1 ChIP-seq

MCF7 GATA3 ChIP-seq

MCF7 H3K27ac ChIP-seq

MCF7 ATAC-seq

GERCAR proliferation 
day 21

0.3 _

-2.5 _

MCF7 ESR1

Max_

Min_

MCF7 FOXA1

Max_

Min_

MCF7 GATA3

Max_

Min_

MCF7 H3K27ac

Max_

Min_

MCF7 ATAC-seq

Max_

Min_

Scale
chr8:

10 kb hg38
128,140,000 128,150,000

MIR1208

Scoring sgRNAs
Scoring sgRNA GERCAR

GERCAR proliferation day 21

MCF7 ESR1 ChIP-seq

MCF7 FOXA1 ChIP-seq

MCF7 GATA3 ChIP-seq

MCF7 H3K27ac ChIP-seq

MCF7 ATAC-seq

0.3 _

-2.5 _

MCF7 ESR1

Max_

Min_

MCF7 FOXA1

Max_

Min_

MCF7 GATA3

Max_

Min_

MCF7 H3K27ac

Max_

Min_

MCF7 ATAC-seq

Max_

Min_

Scale
chr8:

10 kb hg38
127,870,000

PVT1

Scoring sgRNAs
Scoring sgRNA GERCAR

GERCAR proliferation day 21

MCF7 ESR1 ChIP-seq

MCF7 FOXA1 ChIP-seq

MCF7 GATA3 ChIP-seq

MCF7 H3K27ac ChIP-seq

MCF7 ATAC-seq

0.3 _

-2.5 _

MCF7 ESR1

Max_

Min_

MCF7 FOXA1

Max_

Min_

MCF7 GATA3

Max_

Min_

MCF7 H3K27ac

Max_

Min_

MCF7 ATAC-seq

Max_

Min_

0.00

0.25

0.50

0.75

1.00

A
vg
. R

N
A
i s
co
rin
g 
 in
 E
R
+  
B
rC
a 
m
od
el
s

 o
f s
gR

N
A
s 
as
si
gn
ed
 g
en
es

Binned GERCAR scoring

0.
5 0

-0
.5

-0
.7
5 -1

M
ax M
in

N = 1804231439511751101070

A

B

D

C

E

MCF7 Hi-C
2.5-kb res

GERCAR proliferation 
day 21

GERCAR proliferation 
day 21

0

CAR

ay 21

eq

eq

eq

seq

MYC_+135 kb

00

g sgR

R proli

7 ESR

FOXA

GATA

H3K27

CF7 A

MYC_+403 kb

NA GE

eratio

1 ChIP

A1 ChI

A3 ChI

ac Ch

TAC-s

MYC_+404 kb

Culture

Day 0 Day 7/14/21

PC1 (37%)

PC
2 
(1
2.
7%

)

1 × 102

2 × 102

Fig. 2. Genome-scale CRISPRi screen identifies essential ERBS in breast cancer cells. (A) Schematic representation of the GERCAR screen. (B) Box plot showing the 
representation of the GERCAR library at days 7, 14, and 21. CCND1_TSS and ESR1_TSS sgRNAs are positive controls. Nontargeting sgRNAs are negative controls. Data 
represent median logFC of two experiments. (C) Average RNAi score (DEPMAP-combined RNAi) of genes assigned to the closest sgRNA binned by GERCAR scoring (logFC 
at T = 21 days). (D) PCA of H3K27ac signal (log10) at the 2000 (union of 1000 distal and 1000 proximal) most variable sgRNA targeting regions in cell lines and primary 
tumor xenografts (HBRX, human breast xenograft). Distal, >5 kb from annotated TSS; proximal, <5 kb from annotated TSS. (E) Snapshot of the MYC locus showing Hi-C 
data (top track); the GERCAR screen results; ChIP-seq signal of ER, FOXA1, GATA3, and H3K27Ac; and ATAC-seq in MCF7 cells.



Lopes et al., Sci. Adv. 2021; 7 : eabf5733     2 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  R E S O U R C E

5 of 15

library over a period of 21 days (Fig. 2B; fig. S4, C and D; and table S3). 
We observed that the representation of non-targeting control (NTC) 
sgRNAs remained largely unchanged, whereas positive controls and 
a substantial number of sgRNAs targeting ERBS were depleted over 
time (Fig. 2B and fig. S4E). We defined a scoring threshold based on 
logFC < −1 and P value of <0.05 at T = 21 days (n = 303 sgRNAs rep-
resenting 242 ERBS that correspond to 1.65% of the tested regions). 
We validated a subset of hits by performing a small-scale validation screen 
of scoring sgRNAs in ER+ (MCF7 and T47D) and ER− (MDA-MB-231) 
cell lines. This revealed that the vast majority of scoring sgRNAs are 
essential only in ER+ but not in triple-negative cell models (fig. S5A), 
suggesting that our screen is highly specific at identifying lineage-​
specific TREs. We then sought to identify features correlating with 
sgRNA sensitivity in the GERCAR screen using three different ap-
proaches. First, we found that scoring sgRNAs are in proximity to genes 
deemed essential by RNA interference (RNAi) screens in ER+ breast 
cancer cells (Fig. 2C). This set includes several genes previously de-
scribed to play a role in breast cancer biology, such as Androgen Re-
ceptor (AR) (35), Transcriptional Repressor GATA Binding 1 (TRPS1) 
(36), CUE Domain Containing 1 (CUEDC1) (37), and Grainyhead Like 
Transcription Factor 2 (GRHL2) (38). Second, we compared the ChIP-​
seq signal for several features with the score of the GERCAR screen 
(fig. S5B). We observed a significant enrichment of GATA3 signal (P = 
0.032 by Wilcoxon test) at promoter-distal regions (>5 kb from an-
notated TSS) characterized by the highest GERCAR scoring (log-
FC < −1), whereas FOXA1 shows a trend for enrichment. In addition, 
H3K27ac signal is significantly enriched (P = 1.3 × 10−7, Wilcoxon 
test), whereas H3K4me1 signal is significantly depleted (p = 5.1 × 
10−6, Wilcoxon test) at scoring promoter-proximal regions (<5 kb 
from annotated TSS). Third, we conducted a principal components 
analysis (PCA) of ER+ and TNBC models, focusing on the H3K27ac 
ChIP-seq signal at the top 1000 most variable proximal and distal 
sgRNA targeting regions (based on logFC at the three time points of 
the screen) (Fig. 2D). As expected, the PCA shows a clear separation 
between proximal and distal regions (PC1), while the separation be-
tween ER+ and TNBC models is more pronounced at distal regions com-
pared to proximal ones (PC2). Collectively, our results suggest that 
only a small fraction of ERBS (1.65%) is required for ER-mediated cell 
proliferation, and, while the proximal sites display high transcriptional 
activity, the distal ERBS are enriched with GATA3 binding.

For validation experiments, we prioritized ERBS supported by mul-
tiple scoring sgRNAs and identified several within the MYC locus 
(Fig. 2E). MYC is a known target gene of ER (39) and is located within 
a ≈3-Mb TAD that contains hundreds of putative TREs predicted in dif-
ferent cell types (12). We observed that the three candidates (MYC_+135 
kb, MYC_+403 kb, and MYC_+404 kb) are located in accessible chro-
matin regions marked by high levels of H3K27Ac and bound by ER, 
GATA3, and FOXA1 (Fig. 2E). In addition, these regions engage in 
long-distance interactions with the MYC promoter as measured by 
Hi-C, which suggests that they are putative enhancers. Validation exper-
iments using CRISPRi reagents confirmed that targeting these regions 
leads to a substantial decrease of MYC expression and cell growth (fig. 
S5, C and D). Thereby, the GERCAR screen identifies TREs that are nec-
essary for the ER-dependent proliferative program.

Validation of candidate TREs by single-cell CRISPR screens
Our functional genomic screens identified a restricted number of 
TREs that are necessary to promote and drive the oncogenic pro-
gram of ER. For characterizing the transcriptional consequences 

of disrupting these TREs, we used CRISPR droplet sequencing 
(CROP-seq) (40), which combines pooled CRISPR screens with 
scRNA-seq. We transduced MCF7-CRISPRi cells with a CROP-
seq library, containing hits from both ODBC and GERCAR 
screens, and performed a proliferation-based screen using three 
end points (T = 5, T = 9, and T = 14 days) to capture transcriptomic 
changes throughout time (Fig. 3A and fig. S6A). The CROP-seq ex-
periment yielded high-quality transcriptome profiling (fig. S6B), 
which enabled us to obtain >1200 cells containing a single sgRNA 
per time point (fig. S6C) and select TREs represented at least in 10 
cells for further analysis (fig. S6D). We surveyed a 4-Mb region cen-
tered on each candidate to identify gene expression changes by scRNA-
seq. Using our high-resolution Hi-C data, we identified DNA loops 
between the candidates and target promoters and overlaid available 
genetic dependency data by RNAi screens for every gene in the locus. 
As described earlier, we observed that TREs in the ESR1, CCND1, and 
MYC loci were engaged in enhancer-promoter looping (Figs.  1,  D 
and E, and 2E). We validated by CROP-seq that their inhibition leads to 
specific changes in gene expression restricted to their target genes or a lim-
ited set of genes within their TAD (Fig. 3B and figs. S7, A and B, and S8A). 
We observed a similar pattern of specific gene expression changes when 
targeting a promoter-proximal ERBS near GRHL2 (fig. S8B), suggesting 
that this TF is downstream of ER. Of note, GRHL2 is a genetic dependency 
in ER+ breast cancer, and its depletion leads to altered ER binding and dif-
ferential transcriptional responses to estrogen stimulation (38). Our results 
indicate that CROP-seq is a robust method to perturb regulatory elements 
and detect corresponding gene expression changes in single cells.

Next, we tested additional loci that were identified in the GERCAR 
screen. Through our approach, we identified long-range interactions 
between a candidate region in a gene desert (GATA3_+1.1 Mb) and 
the promoter of GATA3, which is located 1.1 Mb upstream (Fig. 3C). 
We observed that perturbing GATA3_+1.1 Mb by CRISPRi leads to 
the down-regulation of GATA3 expression in all time points mea-
sured by CROP-seq. In addition, we observe that GATA3_+1.1 Mb 
is an accessible chromatin region marked by H3K27Ac and bound by 
ER, FOXA1, and GATA3 (fig. S9A). GATA3 is a known cofactor of 
ER (33, 41) and a genetic dependency in ER+ breast cancer (42–44). 
We validated our findings by targeting GATA3_+1.1 Mb with indi-
vidual sgRNAs, which resulted in a significant reduction of GATA3 
expression (fig. S9B) and a concomitant decrease of cell growth (fig. 
S9C). Next, we extended our analysis to additional loci and identi-
fied regulatory interactions between Enh5 and CDK6 (fig. S10A), 
Enh7 and CTSD (fig. S10B), Enh8 and DPYSL4/STK32C (fig. S11A), 
and Enh9 and LNX2/POLR1D (fig. S11B). The CROP-seq data indi-
cates that these candidate target genes are weakly down-regulated, 
and none of them is a strong hit in RNAi screens in ER+ breast cancer 
cells, suggesting that this set of TREs have pleiotropic transcriptional 
effects on a phenotypically redundant set of genes.

Last, the Hi-C data revealed that TFAP2C interacts with a can-
didate region [transcriptional enhancer of TFAP2C (TET)] that is 
located ≈30 kb upstream of its TSS (Fig. 3D). Using CROP-seq, we con-
firmed that TFAP2C is the only gene significantly down-regulated in 
this locus upon perturbing TET. In addition, data from genome-scale 
RNAi screens suggest that TFAP2C is a genetic dependency in MCF7 
cells (Fig. 3D). TFAP2C belongs to the family of activating proteins 
that play a role in chromatin remodeling and accessibility (45, 46). It 
was reported that TFAP2C and ER overlap at putative enhancer re-
gions (47, 48), suggesting that they cooperate to regulate gene expres-
sion. Together, our results indicate that combining Hi-C and CROP-seq 
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Fig. 3. Validation of candidate TREs by single-cell CRISPR screens. (A) Schematic representation of the CROP-seq experiment to characterize ODBC and GERCAR 
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data is a powerful approach to find functional enhancer-gene pairs 
in a high-throughput fashion (Fig. 3E).

TFAP2C is a critical target gene of ER
Our functional genomic approach highlights a complex network 
of TREs controlled by ER, ultimately impinging on master TFs that 
drive oncogenic phenotypes in breast cancer (Fig. 3E). Therefore, 
we computed core regulatory circuitry (CRC) (49) to identify critical 
enhancers and TFs that maintain the identity of ER+ breast cancer 
cells. We prioritized the top 20 candidate TFs by sensitivity to RNAi 
knockdown and CRISPR knockout by genome-wide screens (fig. 
S12A). As expected, we observe that ER, GATA3, and FOXA1 are 
identified by CRC and are among the most essential TFs in breast 
cancer (42–44). In addition, TFAP2C and SPDEF display a similar 
sensitivity profile and cluster together with the TF mentioned above.

We observe that the expression and sensitivity patterns of TFAP2C 
and ER are remarkably similar across multiple breast cancer models 
(Fig. 4A and fig. S12A). We identified two regions nearby TFAP2C 
(TFAP2C_TSS and TET) that score in the GERCAR screen (Fig. 4B). 
These two regions are bound by ER, GATA3, and FOXA1 and marked 
by high levels of H3K27Ac (Fig. 4B), indicating that they are active 
TREs regulated by ER. To validate these findings, we transduced 
MCF7-CRISPRi cells with individual sgRNAs targeting TFAP2C_TSS 
and TET and observed a concomitant reduction of TFAP2C expres-
sion and cell proliferation (fig. S13, A and B). These findings are in 
line with data from RNAi and CRISPR screens showing that TFAP2C 
is a genetic dependency in ER+ cells (Fig. 4A and fig. S12A). Next, 
we tested whether TET is able to activate the transcription of a min-
imal promoter in a reporter assay. We observed that the tran-
scriptional activity of TET is stimulated by estradiol, whereas small 
deletions in the ERE present in this region reduce it significantly (fig. 
S13C), suggesting that TET is an ER-responsive TRE. We then eval-
uated transcriptomic changes by RNA-seq upon perturbing TFAP2C 
or TET. We observed a positive correlation between CRISPR reagents 
targeting TFAP2C and TET (fig. S13D), and 663 genes consistently 
modulated among these conditions (fig. S13, E to G, and table S4). 
In addition, we assessed the effects of down-regulating TFAP2C or 
ESR1 by transducing MCF7 cells with doxycycline-inducible short 
hairpin RNAs (shRNAs). First, we validated that the shRNAs tar-
geting TFAP2C and ESR1 produce a robust knockdown (fig. S14, A 
and B), which is associated with a strong impact on cell growth (fig. 
S14C). Second, we performed RNA-seq and detected 258 genes that 
are commonly regulated by TFAP2C and ESR1 (Fig. 4C and table S4). 
Given our previous observations, we hypothesized that TFAP2C and 
ER regulate a common set of genes in breast cancer cells. To test that, 
we analyzed a known signature of ER target genes (50) and observed 
that silencing TFAP2C by different reagents attenuates their expres-
sion (fig. S14D). In addition, these genes (n = 258) are significantly 
associated with estrogen response and cell cycle pathways by gene set 
enrichment analysis (GSEA) (fig. S14E). This prompted us to eval-
uate the genomic occupancy of TFAP2C at the ERBS tested in the 
GERCAR screen, and we found that there is a poor correlation be-
tween TFAP2C and ER ChIP-seq coverage (Spearman’s = 0.26; n = 
14675) (fig. S14F). However, TFAP2C signal is significantly enriched 
at promoter-distal ERBS that score in the GERCAR screen (Fig. 4D). 
These results confirm that TFAP2C contributes to the transcriptional 
output of the ER pathway and provide an explanation for the essenti-
ality of this gene in breast cancer cells. Elevated expression of TFAP2C is 
associated with poor outcome for luminal A (ER+ and ERBB2-negative) 

patients (fig. S14G), which is consistent with TFAP2C playing an onco-
genic role in breast cancer. Overall, our findings suggest that ER ac-
tivates the expression of downstream TFs, among which TFAP2C is 
a critical player in modulating its oncogenic program in breast can-
cer cells (Fig. 4E).

DISCUSSION
To date, more than 1.3 million candidate TREs are predicted on the 
basis of biochemical marks in the human genome (51). This high-
lights the massive challenge to systematically assign candidate TREs 
to their bona fide target genes and test their function in specific phe-
notypes. The dawn of CRISPR-Cas9 technologies enabled large-scale 
profiling of the function and mechanisms of TREs. In our work, we 
systematically interrogated the ER cistrome in breast cancer cells by 
testing both upstream regulators and downstream effectors of this 
pathway. Initially, we performed gene reporter–based screens using 
the ODBC library to target TREs located in the TADs of ESR1 and 
CCND1. This approach has the advantage of disentangling the con-
tribution of TREs for two distinct phenotypes (i.e., cell fitness and 
gene expression). However, there are some limitations: the discov-
ery of functional TREs is confined to the tested TAD; testing multiple 
genes in a single experiment requires generating clonal cell lines with 
multiple knock-ins and different reporters. In the GERCAR screen, we 
perturbed thousands of ERBS in a genome-wide scale and evaluated 
their necessity for cell fitness. This approach is scalable and allows 
testing the contribution of TREs for a specific phenotype, yet it does 
not reveal the gene(s) involved in the phenotype. To tackle this issue, 
we used CROP-seq, which couples pooled CRISPR screenings with 
transcriptomic readouts by scRNA-seq. This method enables directly 
linking (epi)genetic perturbations to transcriptional responses in 
thousands of individual cells, thereby facilitating the identification 
of enhancer-gene pairs. The increasing throughput of single-cell 
transcriptomics suggests that CROP-seq and similar methods have 
great potential for comprehensively dissecting gene regulatory net-
works, although the scalability of this type of experiments can be 
hampered by elevated financial costs.

In the ODBC screen, we coupled gene expression and cell growth 
readouts, which allowed to directly correlate the TRE-mediated phe-
notype to the regulation of the major oncogenes ESR1 and CCND1. 
Our screen extends previous findings (14, 31) by systematically as-
sessing the entire CCND1 TAD and identifying previously unknown 
positive and negative TREs, which are bound by ER and possibly con-
tribute to fine-tune CCND1 expression (Fig. 1F). This TAD contains 39 
different genetic haplotypes associated with human traits, including 
breast cancer susceptibility (52), which underscores the importance 
of characterizing TREs regulating CCND1. In addition, we identified 
ESR1_-150 kb upstream of ESR1, which is a TRE targeted by muta-
tions that are associated with increased expression of ESR1 in human 
tumors (30). Several studies showed that disease-associated variants 
and somatic mutations are commonly found in regulatory elements 
(9, 53–55). A prominent example is the activation of TAL1 in T-cell 
acute lymphoblastic leukemia by somatic mutations that create a 
super-enhancer by introducing binding motifs for MYB (56). Addi-
tional work is required to determine whether the functional regions 
we identified are targeted by genetic variants in patient samples.

In the GERCAR screen, we observed that only 1.65% of ≈15,000 
ERBS contribute to cell fitness. This observation raises the hypoth-
esis that the vast majority of ERBS are dispensable for cell fitness, 
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despite the well-known oncogenic function of ER in breast cancer 
cells. However, we cannot exclude false-negative events due to ge-
netic compensation by redundant regulatory elements, insufficient 
repression by CRISPRi, low sgRNA efficiency, and exclusion of can-
didates for lacking biochemical marks. In addition, we focused on the 
proliferative phenotype exerted by ER, and it is possible that ERBS con-
tribute to other phenotypes (e.g. differentiation, metabolic changes, 
epithelial-mesenchymal transition, etc.) not assessed in our genetic 
screens in immortalized cell lines. We also observed that the ChIP-
seq GATA3 and TFAP2C signal is significantly enriched at func-
tional TREs, in contrast with the ER and FOXA1 signal. A previous 
study showed that CCCTC-Binding Factor (CTCF) signal can predict 
the essentiality of its binding sites in breast cancer cells (15), indicating 
that the rules governing how different classes of TFs engage functional 
TREs are incompletely understood. Our analysis also indicates that 
high H3K27Ac ChIP-seq signal is significantly associated with func-
tional regions. The top scoring regions of the ODBC screens are posi-
tively associated with H3K27Ac signal in breast cancer cells and PTX 
(Fig. 1C). In addition, we observed that ER+ models can be identified by 
correlating the GERCAR screen score and the H3K27Ac signal at distal 
ERBS (Fig. 2D), supporting the notion that this mark can predict the 
functionality of TREs in clinically relevant models. It was previously 
reported that H3K27Ac signal can be used to extrapolate phenotypic 
heterogeneity in tumor samples (57), suggesting that H3K27Ac ge-
nomic distribution is a potential biomarker in breast cancer.

The recent application of functional CRISPR screens coupled with 
scRNA-seq enables the large-scale mapping of enhancer-gene regula-
tory networks (20, 21). Our results indicate a significant association 
between scoring TREs and essential coding genes located nearby. This 
correlation might be partially dictated by the association rules we used, 
as the assignment of a TRE to the closest TSS has higher chances of 
success within a 50-kb window (58). However, by combining Hi-C 
and CROP-seq, we experimentally validated several ERBS regulating 
GRHL2, MYC, GATA3, and TFAP2C, which are genetic dependencies 
in ER+ breast cancer cells (42–44). Our results suggest that ER in-
tegrates upstream signals and, upon activation, mainly relies on 
downstream TFs to drive its proliferative program in cancer cells 
(Fig. 3E). In particular, we uncovered a regulatory network by which 
ER controls the expression of TFAP2C. Previously, it was reported that 
TFAP2C knockdown is associated with decreased response to estradiol 
and impaired growth of breast cancer xenografts (59). TFAP2C is 
known to regulate the expression of ESR1 (60), and their binding sites 
overlap in breast cancer cells (47, 48), suggesting a cooperative action 
between ER and TFAP2C. A recent study showed that therapeutic lig
ands promote rapid engagement and redistribution of ER binding to 
chromatin (50), and these binding sites contain, among others, se-
quence motifs of ER, GATA3, FOXA1, and TFAP2C. Moreover, the 
binding motif of TFAP2C is enriched in regions that gain chromatin 
accessibility upon resistance to ER antagonists (61), suggesting that it 
might play a role in therapy resistance. This hypothesis is supported 
by our observation that elevated TFAP2C expression is associated with 
poor outcome of ER+ breast cancer patients. We envision that future itera-
tions of our method can be performed in models of drug resistance to 
gain mechanistic insights about ER and its cofactors in this context.

In summary, we combined epigenomic profiling with genome-
scale and single-cell CRISPR screens to dissect the ER cistrome. 
Through this approach, we unveiled previously unknown regulatory 
networks between ER and its downstream TFs, such as TFAP2C. We 
anticipate that our approach can be applied to different models and 

advance our understanding of transcriptional regulation in cancer, 
such as identifying target genes of TFs, validating candidate TREs, 
and determining the function of causal regulatory variants.

MATERIALS AND METHODS
Tissue culture and cell engineering
MCF7 cells were cultured in Eagle’s minimum essential medium (EMEM) 
supplemented with fetal bovine serum (FBS; 10%), 2 mM l-glutamine, 
1 mM sodium-pyruvate, and 10 mM Hepes. T47D cells were cultured 
in RPMI supplemented with FBS (10%), 2 mM l-glutamine, 1 mM 
sodium-pyruvate, and 10 mM Hepes. MDA-MB-231 cells were grown 
in Dulbecco’s modified Eagle’s medium supplemented with FBS 
(10%), 2 mM l-glutamine, 1 mM sodium-pyruvate, and 1% nones-
sential amino acids.

HiBiT-T2A-GFP reporters of ESR1, CCND1, and GATA3 were 
generated by cotransfecting MCF7 cells with sgRNAs and respective 
repair templates encompassing 800 base pairs (bp) upstream and 
downstream of the cleavage site. GFP-positive cells were identified 
and recovered by FACS using a SH800S (Sony) cell sorter. Single-cell 
clones derived from the bulk GFP-positive population of cells were 
validated by immunoblotting and knockdown experiments. Trans-
fections of siRNAs were performed with Lipofectamine RNAi MAX 
(Invitrogen) according to the manufacturer’s protocol. siCtrl is 
AllStars negative control (QIAGEN), and siESR1 and siCCND1 were 
obtained from Dharmacon. HiBiT was evaluated 72 hours after trans-
fection with siRNAs or sgRNAs. HiBiT signal was measured using the 
Nano-Glo HiBiT Lytic Detection System (Promega) according to the 
manufacturer’s recommendation.

CRISPR-Cas9 experiments were done in cells stably expressing 
Cas9 nuclease or dCas9-KRAB cassettes, which were delivered by 
lentiviral transduction and selected using blasticidin (10 g/ml; In-
vitrogen). Cells expressing doxycycline-inducible shRNAs were ob-
tained by lentiviral transduction of pLKO-TET-ON plasmids. Cells 
expressing constitutive sgRNA were obtained by lentiviral transduc-
tion of a modified pLKO-TET-ON plasmid. For cell growth assays, 
MCF7-CRISPRi cells were transduced with targeting sgRNAs (ex-
pressing mCherry) or nontargeting sgRNAs (expressing GFP). Cells 
containing individual lentiviral constructs were mixed (mCherry:GFP 
ratio of 3:1), and the fraction of cells expressing each marker was as-
sessed by flow cytometry at the beginning of the experiment and sub-
sequent time points. We recorded at a minimum of 2000 single cells 
for each condition, and the data were analyzed using FlowJo software.

Design of ODBC and GERCAR libraries
For the ODBC library, we selected DHS clusters in 95 cell types avail-
able from ENCODE (27). This enabled building a CRISPR library tar-
geting a broad range of TREs that can be used to screen different cell 
types. Having designed our libraries before performing Hi-C experi-
ments, we defined the TADs of ESR1 and CCND1 using published Hi-C 
data (40- and 25-kb resolution, respectively) of T47D cells available at 
the 3D genome browser (28). In the ESR1 TAD (≈1.16 Mb in size), 
we targeted 954 DHS with 7992 sgRNAs (mean of 8.66 sgRNAs per 
DHS). In the CCND1 TAD (≈2.56 Mb in size), we targeted 3004 DHS 
with 26,263 sgRNAs (mean of 9.31 sgRNAs per DHS). Overall, we have 
surveyed ≈21% of the total sequence of the ESR1 and CCND1 TADs 
(assuming that DHS are 200 bp in size). For the GERCAR library, we 
used seven ER ChIP-seq datasets of MCF7, T47D, and ZR-75-1 cells 
(table S1), available from Cistrome (34), to build a consensus set of 
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ERBSs. We used the following rules for processing the data: For tech-
nical replicates, keep a region if it is present in both samples; for bi-
ological replicates, keep a region if it is present in two or more of the 
samples. We designed a library containing 80,254 sgRNAs (including 
positive and negative controls) to interrogate 14,675 ER peaks, with 
an average of 5.41 sgRNAs per peak. For both libraries, we removed 
overlapping sgRNAs and sgRNAs with low predicted specificity and 
filtered peak regions having many sgRNAs by selecting guides across 
the peak that were distributed as equally as possible.

The oligo pools of the ODBC (n = 34,755) and GERCAR (n = 80,254) 
libraries were purchased from CustomArray and Twist Bioscience, re-
spectively. We designed 60-bp single-stranded DNA oligos containing 
a 20-bp sgRNA flanked by the sequences 5′-gccatccagaagacttaccg-3′ 
and 5′-gtttccgtcttcacgactgc-3′, which contain Bbs I restriction sites. 
We amplified the oligo pools by polymerase chain reaction (PCR) 
using matching primers for the flanking sequences, cloned the double-
stranded DNA pool into a modified pLKO-TET-ON plasmid by Golden 
Gate, and transformed Endura electrocompetent cells (Lucigen) ac-
cording to the manufacturer’s protocol. We estimated that the trans-
formation efficiency was >500-fold over the size of the initial oligo 
pool, indicating that each sgRNA is highly represented in the plasmid 
libraries. The bacteria were expanded in LB medium for ≈16 hours 
[optical density at 600 nm (OD600) = 0.8], and plasmid DNA was 
harvested using a Genopure plasmid maxi kit (Roche). We performed 
a quality control of both libraries by next-generation sequencing 
(HiSeq2500, Illumina), which retrieved >99% of the sgRNAs present 
in the ODBC and GERCAR libraries.

Pooled CRISPR screenings
Proliferation-based screens
We transduced MCF7-CRISPRi cells with independent lentiviral 
pools [multiplicity of infection (MOI) = 0.3] of the GERCAR (n = 2 
biological replicates) and small-scale validation (figs. S2C and S5A) 
(n  =  3 biological replicates) libraries. We transduced ≈1000 cells 
per plasmid to ensure a correct representation of all sgRNAs in the 
cell population. The cells were selected using puromycin (2 g/ml; 
Invitrogen) at 24 hours after transduction, after which they were ex-
panded and harvested at indicated time points. We conducted cell 
proliferation–based screens up to T = 21 days to allow ≈15 doublings 
of the cell populations containing the CRISPR libraries and maxi-
mize the identification of scoring hits.
Gene reporter screens
In the ODBC screen, we transduced MCF7-CRISPRi-ESR1-HiBiT-
GFP or MCF7-CRISPRi-CCND1-HiBiT-GFP with lentiviral pools 
(MOI = 0.3) of the CRISPR library. We transduced ≈1000 cells per 
plasmid to ensure a correct representation of all sgRNAs in the cell 
population. Cells were selected using puromycin (2 g/ml; Invitro-
gen) at 24 hours after transduction, after which they were expanded 
and harvested at T = 7 days by FACS. We collected the top and bottom 
quartiles of GFP-expressing cells to evaluate the impact of ODBC 
sgRNAs on the expression of the ESR1-GFP and CCND1-GFP re-
porters. In parallel, we performed proliferation-based screenings 
(n = 3 biological replicates) by collecting unsorted pools of cells at 
T = 7 days, T = 14 days, and T = 21 days, which allowed measuring 
the impact of ODBC sgRNAs on cell fitness.
CROP-seq
The CROP-seq library was cloned in a pooled format in a modified 
pLKO-TET-ON plasmid by Golden Gate, which was used to trans-
form Endura electrocompetent cells. We transduced MCF7-CRISPRi 

cells with lentiviral pools (MOI = 0.3) of the CROP-seq library 
(n = 2 biological replicates). Cells were selected using puromycin 
(2 g/ml; Invitrogen) at 24 hours after transduction, after which they 
were expanded and harvested at defined time points (T = 5, T = 9, 
and T = 14 days). Single-cell suspensions were fixed in 90% methanol 
in Dulbecco’s phosphate-buffered saline (v/v) and stored at −80°C be-
fore rehydration and further processing. The rehydration buffer was 
supplemented with 1% bovine serum albumin and ribonuclease inhib-
itor (0.5 U/l; Sigma-Aldrich, P/N 3335399001). The samples were 
further processed using the Chromium Next GEM Single-Cell 3′ Re-
agent Kit (10x Genomics) according to the manufacturer’s protocol 
(CG000184 Chromium Single Cell3 v3 Feature Barcoding CRISPR 
Screening UG RevB). To boost yields of the CRISPR screening library, 
the amplified complementary DNA was amplified for an additional 
21 cycles with custom oligos (5′ CTACACGACGCTCTTCCGATCT 
and 5′ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-
GTGGAAAGGACGAAACACCG; Microsynth AG), using KAPA 2× 
HotStart HiFi ReadyMix (KAPA biosystems P/N KK2601). Libraries 
were sequenced on an Illumina HiSeq 2500. Raw data are deposited to 
the Sequence Read Archive under the BioProject accession identifier 
PRJNA714625 (www.ncbi.nlm.nih.gov/bioproject/PRJNA714625).

Enhancer reporter assays
DNA fragments of candidate enhancers (ESR1_-150 kb, CCND1_ 
-125 kb, CCND1_-518 kb, and TET) were synthesized (Twist Bio-
science) and cloned in pGL3 promoter (Promega). For this assay, 
MCF7 cells were grown in EMEM (Gibco) supplemented with 10% 
charcoal-striped serum (Gibco) before plasmid transfection and treat-
ment with 10−8 M estradiol (Sigma-Aldrich) or vehicle (EtOH, Sigma-
Aldrich) for 24 hours. The cells were cotransfected with a plasmid 
expressing Renilla, which was used to normalize the transfection ef-
ficiency (Luciferase firefly/Renilla). Reporter activity was measured 
40 hours after transfection using the dual-luciferase system (Promega) 
according to the manufacturer’s instructions.

Gene expression analyses
For immunoblotting, cells were harvested and lysed in radioimmuno-
precipitation assay buffer supplemented with protease inhibitor cock-
tail (Roche). Protein samples were resolved on SDS–polyacrylamide 
gel electrophoresis, transferred to nitrocellulose membranes, and 
probed with the following antibodies: ER (Cell Signaling Technology, 
13258), TFAP2C (Cell Signaling Technology, 2320), and vinculin 
(Sigma-Aldrich, V9131). For RNA expression analysis, total RNA was 
extracted from cell pellets using the RNeasy Mini Kit Plus (QIAGEN) 
according to the manufacturer’s instructions. Quantitative PCR was 
performed with QuantStudio 6 Flex (Applied Biosystems) using the 
iTaq Universal Probes One-step Kit (Bio-Rad). We used glyceraldehyde-
3-phosphate dehydrogenase as housekeeping gene to normalize tar-
get gene expression levels.

ChIP-seq, RNA-seq, and ATAC-seq
ChIP-seq was performed as previously described (62). Briefly, cells 
were cross-linked in 1% formaldehyde for 10 min at room tempera-
ture after which the reaction was stopped by addition of 0.125 M 
glycine. Cells were lysed and harvested in ChIP buffer (100 mM tris 
at pH 8.6, 0.3% SDS, 1.7% Triton X-100, and 5 mM EDTA), and the 
chromatin was disrupted by sonication using an EpiShear sonicator 
(Active Motif) to obtain fragments of average 200 to 500 bp in size. 
Chromatin extracts were incubated for 16 hours with the following 

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA714625
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antibodies: ER (Cell Signaling Technology, 13258), FOXA1 (Cell Sig-
naling Technology, 58613), GATA3 (Cell Signaling Technology, 5852), 
CTCF (Cell Signaling Technology, 2899), H3K27ac (Cell Signaling 
Technology, 8173), and H3K4me1 (Cell Signaling Technology, 5326). 
Immunoprecipitated complexes were recovered using Protein G 
Dynabeads (Invitrogen), and DNA was recovered by reverse cross-linking 
and purified using SPRIselect beads (Beckman Coulter). Libraries 
for ChIP-seq were generated using the Ovation Ultralow Library Sys-
tem V2 (NuGEN), and barcodes were added using New England Biolabs 
(NEB) Next Multiplex Oligos for Illumina (NEB, Index Primers Set 1) ac-
cording to the manufacturer’s recommendation. For TFAP2C (GSM889425) 
and NCOA3 (GSM2827577), we obtained bigwig files of ChIP-seq data 
from Cistrome (34). RNA-seq libraries were generated using the TruSeq RNA 
Sample Prep Kit v2 (Illumina) according to the manufacturer’s rec-
ommendation. ATAC-seq (assay for transposase-accessible chromatin 
using sequencing) was performed as previously described (63). All next-​
generation sequencing experiments were run on a HiSeq2500 un-
less otherwise specified (Illumina). Data are deposited to the Dryad 
repository with document identifier doi: 10.5061/dryad.t1g1jwt20.

Hi-C
The Hi-C experiments were performed in MCF7 cells using the 
Arima-HiC Kit for mammalian cell lines according to the manu-
facturer’s protocol (Arima Genomics). Briefly, chromatin was 
cross-linked and digested using a restriction enzyme cocktail. 
The 5′-overhangs were filled in, causing the digested ends to be 
labeled with a biotinylated nucleotide. The digested ends of 
DNA were ligated, purified, fragmented, and finally enriched by 
biotin pull down. The enriched fragments were used to prepare 
a custom library using the Kapa HyperPrep Library Kit (Roche), 
and the libraries were sequenced in a NovaSeq 6000 (Illumina) using 
paired-end mode. Raw data are deposited to the Sequence Read Ar-
chive under the BioProject accession identifier PRJNA714625 
(www.ncbi.nlm.nih.gov/bioproject/PRJNA714625).

Computational analyses
ChIP-seq and ATAC-seq data processing
Fastq files were aligned to a human reference genome (hg38) using 
bowtie2 v2.3.4.1 (64) and sorted using SAMtools v1.8 (65). Dupli-
cates were marked and removed using Picard MarkDuplicates 
v2.18.7 (http://broadinstitute.github.io/picard), and low-quality 
mapped reads (below 20) were removed using SAMtools. SAMtools 
view was used to retain reads mapping to human chromosomes and 
to discard reads mapping to chrM for ATAC-seq samples. Last, 
peaks and their summits were called using macs2 v2.1.1 (66), with a 
P value threshold cutoff of 0.01. Reads per kilo base per million 
mapped reads (RPKM)–normalized bigwig files were created from 
the bam files using bamCoverage from deepTools v.3.1.0  in bin 
sizes of 10 with extended paired reads (67). To enable rapid down-
stream analyses, ChIP-seq and ATAC-seq signals were summarized 
at every ODBC and GERCAR guide location as follows. The center 
of the genomic region for each guide was obtained, and extended by 
250 bp in both directions. The average signal was obtained from all 
500 bp windows from the bigwig files using multiBigwigSummary 
from deepTools v3.1.0.
Hi-C data processing
Reads from the fastq files were mapped to ENSEMBL hg38 human 
genome release 97 using HiC-Pro v2.11.4 (68), the contact matrix was 
generated and iterative correction and eigenvector decomposition 

(ICE)–normalized using cooler v.0.8.7 (69) and visualized in HiGlass 
(70). Significant contacts were obtained from mustache (71) v.1.0.1 
using the contact matrix bin sizes of 1 and 5 kb and subsequently fil-
tered for loops having at least a false discovery rate of 0.05.
RNA-seq data processing
Reads were aligned using bowtie2 (64). Gene-level expression quanti-
ties were estimated by the Salmon algorithm (72). Differential expres-
sion analysis was performed with DESeq2 (73). GSEA was performed 
on the described gene intersection, considering the average logFC 
across conditions and using ClusterProfiler (v 3.18.1) to interrogate 
the gene annotation categories from MsigDB package (v 7.2.1).
Core transcription regulatory circuitry
We performed the core transcriptional regulatory circuitry analysis 
as previously described using CRC (74) (https://github.com/linlab-
code/CRC) that required three files: a list of active genes, a list of 
superenhancers, and regions of open chromatin. We identified ac-
tive genes as those with peaks for H3K4me3, H3K27ac, and Pol2 
and without peaks for H3K27me3 and H3K9me3 within 1000 bp 
of a TSS. We identified superenhancers using the rank ordering of 
super enhancers (75) meta-algorithm (https://github.com/BradnerLab/
pipeline). We identified regions of open chromatin from the ATAC-​
seq peaks.

Pooled CRISPR screens data analysis
ODBC and GERCAR
Sequencing reads were aligned to the sgRNA library. For each sample, 
sgRNA reads were counted. Results from individual samples were 
scaled for library size and normalized using the trimmed mean of M-values 
(TMM) method available in the edgeR Bioconductor package (76). 
The logFC in sgRNA abundance in each sample cells versus reference 
plasmid was calculated using the general linear model log-likelihood 
ratio test method in edgeR (77). For GFP reporter ODBC screening, the 
frequency of sgRNAs in the GFP-high or GFP-low population was com-
pared to the one in the unsorted population. Enrichment in the two 
population was defined as ∆(GFPhigh/GFPlow).
Validation library
To correct for variations among samples of different time points or rep-
licates, median counts of control sgRNAs are normalized to 1 million, 
and all other sgRNAs are proportionally normalized for each sample. 
We explicitly model the normalized counts for a given sgRNA using an 
exponential model. Specifically, we use the count of a given sgRNA 
in the library sequencing as its initial state and counts at days 5, 9, 
and 14 as functions of corresponding time durations. Thus, for a given 
sgRNA i, we have

	​​ X​t​ 
i​  = ​ X​0​ i ​ × ​e​​ ​​​ i​t​  t  =  (5, 9, 14)​	 (1)

where ​​X​t​ 
i​​ is the normalized count of sgRNA i at time t and ​​X​0​ i ​​ is the 

normalized count in library sequencing (initial value). The solution to 
this equation is a single parameter: The constant i that fully depends 
on lethality of the sgRNA. We refer to it as “growth rate” regardless of 
the sign of its value. To solve this equation, we transform it with natu-
ral log link function and get

	​ ln(​X​t​ 
i​ ) = ln(​X​0​ i ​ ) + ​​​ i​ t  t  =  (5, 9, 14)​	 (2)

We next use linear regression model from statsmodels (78) pack-
age to estimate the parameter i for each sgRNA shown in figs. S2C 
and S5A.

http://dx.doi.org/10.5061/dryad.t1g1jwt20
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA714625
http://broadinstitute.github.io/picard
https://github.com/linlabcode/CRC
https://github.com/linlabcode/CRC
https://github.com/BradnerLab/pipeline
https://github.com/BradnerLab/pipeline
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Single-cell CRISPR screen data preprocessing
scRNA sequencing
Single-cell sequencing data were processed using Cell Ranger (version 
3.0.1, 10x Genomics) and kallisto bus (79) in parallel to ensure data 
consistency. Human genome assembly (ENSEMBL GRCh38 release-98) 
was used as the reference to map mRNA reads. In addition, to map 
and quantify sgRNA reads for enrichment sgRNA sequencing, arti-
ficial chromosomes that represent exogenic sgRNA construct were 
generated by annotating sgRNA sequences in a standard genome ref-
erence format. The python-based Scanpy (80) package was used to 
analyze the gene expression matrices including quality control, filter-
ing, and downstream analysis. Cells with less than 800 genes were re-
moved, and weakly expressed genes were excluded. Quality control 
results are shown in fig. S6 (A and B). We found that the results from 
two alignment approaches (Cell Ranger and Kallisto) are comparable. 
Thus, Kallisto BUS output was used for downstream analysis and to 
generate plots shown in this manuscript.
sgRNA assignment
To assign sgRNAs, we developed a tool to model unique molecular 
identifier (UMI) counts of sgRNAs. Briefly, we assumed an sgRNA 
library of N distinct sgRNAs. In a given cell, the observed counts (oi) of 
sgRNA i ∈ [1, N] consist of a real signal (xi) expressed by the cell 
(i.e., integrated sgRNA) and a contaminating signal (ai) from ambient 
sgRNA. Thus, for all sgRNAs, we have

	​​  → x ​ + ​ → a ​  = ​  → o ​​	 (3)

where ​​ → x ​, ​ → a ​, ​ → o ​  ∈ ​ ℕ​0​ N​​ are vectors of counts of integrated sgRNAs, 
ambient sgRNA contamination, and observations, respectively. All 
vectors have the dimension of the library size N. It is reasonable to 
assume that ambient sgRNAs are linearly correlated with their frac-
tions in the medium, provided that the medium is the source of am-
bient sgRNAs. Therefore, we use ​f × ​ → e ​​ as an approximation of ​​ → a ​​, where 
​f  =  ∑ ​ → a ​  ∈  ℕ​ represents the total ambient sgRNA counts in a 
cell. ​​ → e ​​ represents the sgRNA frequencies in empty droplets, so ei 
∈ [0, 1] and ​∑ ​ → e ​  =  1​. Together, we have

	​​  → x ​ + f​ → e ​  = ​  → o ​​	 (4)

We assume that exactly one and only one sgRNA is integrated in 
each cell due to the low MOI used in our experiments (MOI = 0.3). 
Set sgRNA j is the only integrated guide, and its expression level is 
C ∈ ℕ. In other words

	​​​
⎧

 
⎪

 ⎨ 
⎪

 
⎩

​​​ 
​x​ j​​  =  C

​ ​x​ i​​  =  0 ∀ i  ≠  j​ 
f  =  ∑ ​ → o ​ − C

  ​​​	 (5), (6), (7)

Replace ​​ → x ​​ with Eqs. 5 and 6, we have

	​​​ {​​​ 
C + f ​e​ j​​  = ​ o​ j​​​  

f ​e​ i​​  = ​ o​ i​​ ∀ i  ≠  j
​​​	 (8), (9)

Further replace f with Eq. 7, after transformation, we get

	​​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​ 
C  = ​ 

​o​ j​​ − ​e​ j​​ × ∑ ​ → o ​
 ─ 1 − ​e​ j​​

 ​   ≕  r(j, ​ → o ​, ​ → e ​)
​   

​  − ​e​ i​​ ─ 1 − ​e​ i​​
 ​ × C  = ​  ​o​ i​​ − ​e​ i​​ × ∑ ​ → o ​ ─ 1 − ​e​ i​​

 ​   ≕  r(i, ​ → o ​, ​ → e ​ ) ∀ i  ≠  j
​​​	(10), (11)

It is worth noting that the “pseudo-count” ​r(i, ​ → o ​, ​ → e ​) ​on the right 
hand side of both Eqs. 10 and 11 does not contain any unknown vari-
ables and can be calculated for all sgRNA i ∈ [1, N]. Yet, one expects 

​r(i, ​ → o ​, ​ → e ​ ) = C  >  0​ for i = j and ​r(i, ​ → o ​, ​ → e ​ ) <  0, ∀ i  ≠  j​, since ​​ − ​e​ i​​ _ 1 − ​e​ i​​​  ∈  (− ∞ ,  0]​. 

As a result, the sgRNA with the highest pseudo-count, i.e., C, should 
indicate the true integrated sgRNA. However, assigning the highest 
pseudo-counts cell by cell leads to overfitting issues, and a minimum 
cutoff value is expected for C. Here, the cutoff value is set to maximize 
single-sgRNA detection rate and varies for each sample. As a result, 
about 40% of cells are assigned to a single sgRNA using a global cut-
off as shown in fig. S6C. Knockdown groups with less than 10 cells at 
two or three time points were excluded, as indicated in fig. S6D.

For the analysis shown in the dot plots of Fig. 3 (B to D) and figs. 
S7, S8, S10, and S11, the expression of on-target genes and adjacent 
genes was first Z-normalized

	​  ​X​ normalized​​  = ​  X −  ─   ​​	 (9)

We then calculated the t test of the means of knockdown groups 
and control group using scipy.stats.ttest_ind.

Public large-scale genomics datasets
DEPMAP (www.depmap.org)
We downloaded the RPKM-normalized mRNA expression data (ver-
sion 18q3) from the Cancer Cell Line Encyclopedia (81) at https://
portals.broadinstitute.org/ccle/data on 24 September 2018. We ob-
tained the RNAi-based (https://figshare.com/articles/DEMETER2_
data/6025238/2, version DEMETER2 v2) and CRISPR-based (https://
figshare.com/articles/DepMap_Achilles_18Q3_public/6931364/1, 
version 18q3) loss-of-function screening data from the Cancer Depen-
dency Map (DEPMAP) (44) portal at https://depmap.org/portal/ on 
20 September 2018. The RNAi dataset was generated by applying the 
DEMETER2 algorithm (44) to the combined data from Project DRIVE 
(43), Project Achilles (44), and 76 additional breast cancer cell lines 
(Marcotte dataset) (42). The CRISPR dataset was generated as pre-
viously described (82). The sensitivity score uses all the shRNAs per 
gene and gives a measure of the statistical significance of the drop-
out of those shRNAs compared to the background of the rest of the 
shRNAs logFC. A detailed method to obtain the sensitivity score is 
described by McDonald and colleagues (43).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/27/eabf5733/DC1
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