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Abstract

Recent studies suggest a shared genetic architecture between muscle and bone, yet the

underlying molecular mechanisms remain elusive. This study aims to identify the function-

ally annotated genes with shared genetic architecture between muscle and bone using the

most up-to-date genome-wide association study (GWAS) summary statistics from bone

mineral density (BMD) and fracture-related genetic variants. We employed an advanced

statistical functional mapping method to investigate shared genetic architecture between

muscle and bone, focusing on genes highly expressed in muscle tissue. Our analysis identi-

fied three genes, EPDR1, PKDCC, and SPTBN1, which are highly expressed in muscle tis-

sue and previously unlinked to bone metabolism. About 90% and 85% of filtered Single-

Nucleotide Polymorphisms were in the intronic and intergenic regions for the threshold at

P�5×10−8 and P�5×10−100, respectively. EPDR1 was highly expressed in multiple tissues,

including muscles, adrenal glands, blood vessels, and the thyroid. SPTBN1 was highly

expressed in all 30 tissue types except blood, while PKDCC was highly expressed in all 30

tissue types except the brain, pancreas, and skin. Our study provides a framework for using

GWAS findings to highlight functional evidence of crosstalk between multiple tissues based

on shared genetic architecture between muscle and bone. Further research should focus on

functional validation, multi-omics data integration, gene-environment interactions, and clini-

cal relevance in musculoskeletal disorders.

Introd uction

Osteoporosis, a disease characterized by low bone mineral density (BMD), decreased bone

strength, and increased fracture risk, poses a significant challenge for the aging population

[1,2]. Concurrent muscle loss exacerbates this issue, further contributing to weakened bone

strength and heightened susceptibility to osteoporotic fractures [3,4]. Together, osteoporosis

and muscle loss represent significant risk factors for fractures in older adults [5,6].
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Adequately developed muscles protect osteoporosis patients from fractures by reducing the

likelihood of falls and shielding the body from osteoporotic fractures [7]. However, aging is

commonly associated with the loss of skeletal muscle, which, in turn, can lead to declines in

physical functioning among older adults [5,6]. Despite numerous genetic studies investigating

BMD or fracture-related outcomes, the genetic link between bone and muscle remains under-

explored. The exact biological pathway through which bone influences muscle is still unknown

[3,8,9].

Over the past decade, genome-wide association studies (GWAS) have identified multiple

genetic variants linked to BMD or fractures [10,11]. A recent study of 426,824 UK Biobank

participants discovered 518 loci associated with ultrasound-derived heel BMD [10]. However,

GWAS has limited success in pinpointing causal genes, with the majority of findings located in

non-coding or intergenic regions [12–14]. Functional mapping is commonly used in transla-

tional research to select and prioritize genetic variants likely to be functional and quantify the

strength of evidence in the GWAS [15]. In this study, we employ FUMA, a comprehensive

functional mapping method that utilizes 18 biological data repositories and tools to annotate

and prioritize GWAS findings [16].

Our study aims to investigate the functional consequences of BMD or fracture-related

GWAS findings at the muscle tissue level, providing novel insights into the genetic architecture

connecting muscle and bone. We hypothesize that identifying BMD or fracture-related GWAS

findings associated with muscle loss will shed light on the genetic interplay between these two

tissues and contribute to a deeper understanding of their relationship in the context of osteo-

porosis. Genetic variants underlying bone and muscle, identified using GWAS and statistical

functional mapping methods, will provide a novel insight into targets to stratify patients for

risk and develop new therapeutic strategies.

Materials and methods

Ethics statement

Our study does not require IRB approval since it analyzes the publicly available GWAS sum-

mary statistics data. The data available in the GWAS summary statistics to the public are not

individually identifiable; therefore, the analysis would not involve human subjects.

Genome-wide association study (GWAS) summary dataset and

pre-processing

We utilized the comprehensive GWAS dataset from Morris et al. [10], which investigated

genetic variants of bone mineral density (BMD) estimated by heel quantitative ultrasound

(eBMD) in 426,824 UK Biobank participants. The study identified 518 genome-wide BMD-

significant loci and 13 bone fracture loci. We applied two P-value thresholds (P�5×10−8 and

P�5×10−100) to filter significant SNPs from the GWAS summary dataset. Using different P-

value thresholds, we examined whether bone and muscle tissues shared different genetic archi-

tectures. A P-value threshold of P�5×10−8 is widely used to identify associations between com-

mon genetic variants and traits. A more stringent P-value threshold of P�5×10−100 was

utilized to investigate whether rare variants contribute to the shared genetic architecture

between bone and muscle. The GWAS summary statistics (UK Biobank eBMD and Fracture

GWAS Data Release 2018) were obtained from the GEnetic Factor for Osteoporosis (GEFOS)

consortium website [17]. Data pre-processing was performed using R version 3.6.1 software

(The R Foundation) [18].
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Functional mapping with FUMA

We employed FUMA [16], a functional mapping and annotation tool, to prioritize the most

likely causal single-nucleotide polymorphisms (SNPs) and genes using information from 18

biological data repositories and tools. FUMA’s core functions, SNP2GENE and GENE2FUNC

processes, were used to annotate SNPs with biological functionality, map them to genes based

on positional, expression quantitative trait loci, and chromatin interaction information, and

gain insight into the putative biological mechanisms of prioritized genes.

Characterization of genomic risk loci and gene annotation

Independent and significant SNPs were identified using the 1000 Genomes Project reference

panel (r2<0.6). Independent lead SNPs were defined based on an r2<0.1. Genomic loci of

interest were grouped if linkage disequilibrium blocks of independent and significant SNPs

were closely located (<250 kb). Gene annotation was performed using ANNOVAR [19] and

Ensemble genes (build 85).

Gene-based and gene-set enrichment analysis

Gene-based GWAS analysis was conducted with MAGMA 1.6 [20] using default settings

implemented in FUMA [16]. The gene-based P-values were employed for gene-set enrichment

analyses, where gene expression values for 53 specific tissue types were obtained from Geno-

type-Tissue Expression (GTEx) [16]. Gene expression values were normalized using the log2

transformation reads per kilobase per million. At a significance level of P�5×10−8 and

P�5×10−100, this corresponded to gene-level thresholds of 1.69×10−5 and 1.67×10−3, as well as

SNP-level thresholds of 4.84×10−7 and 2.9×10−5, respectively. Functional annotation of GWAS

results was performed using FUMA [16]. Normalized gene expression data (reads per kilobase

per million, RPKM) for 53 tissue types were obtained from GTEx portal v6, yielding tran-

scripts for 28,520 genes, with 22,146 mapped to the Entrez gene ID.

Results

Summary of genome-wide association study statistics

We analyzed previously published summary statistics from a genome-wide association study

(GWAS) on bone mineral density estimated from quantitative heel ultrasounds (eBMD) [10],

which included genotyping and imputed data for up to 426,824 participants in the U.K. Bio-

bank study available from the GEnetic Factor for OSteoporosis consortium (GEFOS) website

[17] (Fig 1A). We performed two primary analyses using FUMA: characterization of signifi-

cant hits and genome-wide analysis (Fig 1B).

The eBMD GWAS summary statistics contained data for 13,753,401 SNPs. We filtered the

summary statistics using two thresholds: P�×10−8 and P�5×10−100. These thresholds yielded

103,155 and 1,724 candidate GWAS-tagged SNPs, mapping to 2,955 and 30 genes, respectively

(Table 1). Approximately 90% and 85% of filtered SNPs were in intronic and intergenic

regions at P�5×10−8 and P�5×10−100 thresholds, respectively (Fig 2). The summary per geno-

mic risk locus plot revealed that genomic loci 6:44683838–45404170 had the largest size (>700

kb), followed by 2:119014660–119634677 (>600 kb) and 2:54616729–55003484 (>400 kb) (S1

Fig). Over 550 SNPs were found in the genomic loci—7:120703929–121098222.

Manhattan plots at the SNP level for both thresholds indicated that chromosomes 2, 6, 7,

10, and 22 contained the most significant SNPs (Fig 3). At the gene level, multiple genes were

identified, including NKX1-1, ZNF800, EML6, EN1, and LDLRAD4 (Fig 4).
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Gene expression analysis at the tissue level

EPDR1, PKDCC, and SPTBN1 genes showed high expression levels in muscle tissue (Fig 5).

EPDR1 was also highly expressed in other tissues, such as the adrenal gland, blood vessel, cer-

vix uteri, fallopian tube, nerve, ovary, thyroid, and uterus. SPTBN1 demonstrated high expres-

sion across all 30 tissue types except blood, while PKDCC was highly expressed in all tissue

types except the brain, pancreas, and skin. Tissue enrichment analysis using MAGMA results

indicated that the most enriched tissue was the mammary breast tissue at the P�5×10−100

threshold (Fig 6), and several other tissues, including fallopian tube, ovary, kidney cortex, kid-

ney medulla, breast mammary, cervix endocervix, and adipose visceral omentum, were

enriched at the P�5×10−8 threshold (S2 Fig). Analysis of differentially expressed genes (DEG)

across 30 major tissues using GTEx data reveals that, at the 5×10−8 threshold with 2,955

mapped genes, there are up-regulated DEG in breast and prostate tissues (Fig 7). However,

when applying a more stringent threshold at the P�5×10−100 with 30 genes, no significant

DEG was observed (S3 Fig).

Discussion

Our study identified three novel genes—EPDR1, PKDCC, and SPTBN1—highly expressed in

muscle tissue using the most updated GWAS summary statistics from bone mineral density

estimated from quantitative heel ultrasounds (eBMD) and fracture-related genetic variants,

coupled with advanced statistical fine-mapping methods. These genes were not previously

linked to both muscle and bone tissues, providing new insights into the common genetic

Fig 1. Study flow. A) Genome-Wide Association Study (GWAS) summary statistics of genetic association with Bone Mineral Density (BMD) or fractures for

13,753,401 Single Nucleotide Polymorphisms (SNPs) from a study estimated in 426,824 UK Biobank participants study [10]. B) FUMA [16] is a web-based

platform utilizing information from multiple biological resources for functional annotation of GWAS results and prioritizing the most likely causal SNPs using

information from 18 biological data repositories, including the Genotype-Tissue Expression (GTEx) data. Characterization of significant hits and Genome-

wide analysis were conducted with FUMA. C) Heatmap shows the highly expressed genes in multiple tissues of GTEx data.

https://doi.org/10.1371/journal.pone.0300535.g001

Table 1. The summary of Genome-Wide Association Study (GWAS) summary statistics for Single-Nucleotide

Polymorphisms (SNPs) and mapped genes. Two different P− value thresholds were used to filter the GWAS sum-

mary statistics.

P�5×10−8 P�5×10−100

Number of candidates GWAS tagged SNPs 103,155 1,724

Number of lead SNPs 2,410 40

Number of genomic risk loci 600 25

Number of mapped genes 2,955 30

https://doi.org/10.1371/journal.pone.0300535.t001
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framework. Our findings support the existence of pleiotropy between muscle and bone, as pre-

viously suggested [21].

In a prior investigation, Huang et al. [22] identified METTL21c as a pleiotropy gene impact

on both bone and muscle. Their approach involved a bivariate genome-wide association study,

which led them to pinpoint a specific genetic locus marked by the variant rs895999 (p = 2.3

×10−7), located within the METTL2 family of the methyltransferase superfamily. However,

subsequent examination of rs895999 using the GWAS dataset published by Morris et al. [10]

revealed a P-value of 0.52 for the eBMD. Consequently, this variant did not meet our selection

criteria and was not subjected to functional gene annotation in our study.

Recent research highlights the significance of three identified genes (EPDR1, PKDCC, and

SPTBN1) in diverse functions and disease contexts (Table 2). Prior research has demonstrated

that EPDR1 shows a high expression in the brain, muscle, heart, and extracellular fluids [23]

and plays a crucial role in energy metabolism and human plasma dynamics [24]. Our study

further demonstrated EPDR1 expression in the adrenal gland, blood vessels, cervix uteri,

Fig 2. Functional consequences of Single Nucleotide Polymorphisms (SNPs) with two different thresholds. Two

different P-value thresholds (A) P�5×10−8 and (B) P�5×10−100 were used to filter the Genome-Wide Association

Study (GWAS) Summary Statistics. The P-value was computed using the chi-square statistics.

https://doi.org/10.1371/journal.pone.0300535.g002
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fallopian tube, nerve, ovary, thyroid, and uterus. Although PKDCC has not been previously

linked to bone mineral density or fracture-related outcomes, it serves multifaceted functions

in intracellular signaling pathways [25]. Our study found that PKDCC is highly expressed in all

30 tissue types except the brain, pancreas, and skin. SPTBN1, a vital protein, plays a pivotal

role in maintaining cellular architecture function across various tissues, including skeletal and

cardiac muscle [26]. Beyond providing structural stability and participating in intracellular sig-

naling pathways [27], SPTBN1 plays a crucial role in bone metabolism [28]. Rao et al. [29]

identified a significant role for SPTBN1 in nonalcoholic steatohepatitis and liver cancer, while

Chen et al. [30] revealed its involvement in hepatocellular carcinoma carcinogenesis. Our

study broadens the comprehension of biological pathways that impact both muscle and bone,

Fig 3. Manhattan Plot at Single Nucleotide Polymorphisms (SNPs) level. (A) P�5×10−8 and (B) P�5×10−100 were

used to filter the Genome-Wide Association Study (GWAS) Summary Statistics. The plot shows the p-values on a log-

10 scale (y-axis) by their chromosomal location (x-axis). Genome-wide significance (Red dashed line in the plot) was

defined at (A) p = 0.05/103155 = 4.84×10−7 and (B) p = 0.05/1724 = 2.9×10−5, respectively.

https://doi.org/10.1371/journal.pone.0300535.g003
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aligning with previous documentation [9,21,31], and our findings supplement earlier GWAS

research [28,32].

While our study implicates SPTBN1 in the context of osteoporosis primarily based on

genome-wide association study (GWAS) data, we acknowledge existing literature supporting

its involvement in bone health. The study by Calabrese et al. [36], employed a bone co-expres-

sion network to predict causal genes at bone mineral density (BMD) GWAS loci, identifying

SPTBN1 as potentially responsible for effects on chromosome 2p16.2. Furthermore, Xu et al.,

[37] demonstrated the role of SPTBN1 in suppressing primary osteoporosis by influencing

osteoblast proliferation, differentiation, and apoptosis through the TGFβ/Smad3 and STAT1/

Cxcl9 pathways. These findings collectively suggest that SPTBN1 plays a significant role in

bone metabolism and osteoporosis pathogenesis. EPDR1 is associated with osteoblastogenesis,

Fig 4. Manhattan Plot at the gene level. (A) P�5×10−8 and (B) P�5×10−100 were used to filter the Genome-Wide

Association Study (GWAS) Summary Statistics. The plot shows the p-values on a log-10 scale (y-axis) by their

chromosomal location (x-axis). Genome wide significance (Red dashed line in the plot) was defined at (A) p = 0.05/

2955 = 1.69×10−5 and (B) p = 0.05/30 = 1.67×10−3, respectively.

https://doi.org/10.1371/journal.pone.0300535.g004
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the formation of osteoblasts, the bone-forming cells [26]. Studies have shown that downregula-

tion of EPDR1 expression inhibits osteoblastogenesis, suggesting that EPDR1 plays a crucial

role in this process [26,27]. Furthermore, genome editing experiments using CRISPR-Cas9

technology have demonstrated that alterations in EPDR1 expression led to changes in osteo-

blast differentiation markers, such as alkaline phosphatase staining, further supporting its

involvement in osteoblastogenesis. Overall, these findings highlight EPDR1 as a potential key

regulator of osteoblast differentiation and bone formation.

Significantly, our study reveals that three identified genes (EPDR1, PKDCC, and SPTBN1)

show high expression not only in muscle tissue but also in various other tissues, including adi-

pose tissue, adrenal gland, bladder, blood vessels, breast, uterus cervix, colon, fallopian tube,

heart, kidney, lung, nerve, ovary, pituitary, prostate, salivary gland, small intestine, spleen, tes-

tis, thyroid, uterus, and vagina. Notably, SPTBN1 demonstrates high expression in all tissues,

excluding blood. This novel finding may be caused by the presence of tissue-specific promoters

governing SPTBN1 expression [38]. The existence of tissue-specific promoters in non-blood

tissues could facilitate the activation of SPTBN1 while maintaining its suppression in blood.

Additionally, epigenetic marks may favor the activation of SPTBN1 in specific tissues while

potentially suppressing it in blood [39].

Another important finding in our analysis is that 90% and 85% of filtered SNPs were in

intronic and intergenic regions for the thresholds at P�5×10−8 and P�5×10−100, respectively.

Although GWAS have identified numerous genetic variants associated with BMD and frac-

ture, their applicability to functional studies remains limited. Consequently, additional genetic

variants might be relevant to the relationship between muscle and bone genetic architecture

that were not captured in our analysis. In our tissue enrichment analysis employing both P�5

Fig 5. Gene expression heatmap with the Genotype-Tissue Expression v8 representing 30 general tissue types.

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS) GENE2FUNC online tool

was used to create a heatmap showing gene expression datasets using log2 transformed expression values from a

threshold P�5×10−100 was used to map the genes. Red cells depict higher expression compared to cells filled in blue

and yellow represents expression that is not significantly different from other genes.

https://doi.org/10.1371/journal.pone.0300535.g005
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×10−8 (encompassing 2955 gens) and P�5 ×10−100 (encompassing 30 genes) thresholds, it is

important to note that muscle tissue did not emerge as significantly enriched. The stringent

nature of the P�5 ×10−100 threshold, coupled with the identification of only 30 genes enriched

in breast tissue at this low threshold, implies the highly specific and critical nature of these

genes to breast-related functions. Considering the likelihood of certain genes exhibiting high

specificity to particular tissues [40,41], the enrichment observed in the fallopian tube, ovary,

kidney cortex, kidney medulla, breast mammary, cervix endocervix, and adipose visceral

omentum at the less stringent P�5 ×10−8 thresholds suggests a broader set of genes associated

with these tissues, distinct from those implicated in muscle tissue. This underscores the poten-

tial existence of tissue-specific genetic signatures that may play distinct roles in the genetic

architecture of various tissues.

Our findings should be interpreted in the context of certain limitations. First, the GWAS

summary statistics used in our study were derived from a White population; future research

should validate our findings in other racial/ethnic people. Second, our analysis assumes that

GWAS findings from fractures or BMD are related to muscle tissue, but this approach may not

capture all relationships between muscle and bone genetic architecture. Trajanoska et al. [9]

highlighted the influence of mitochondrial genetics on bones and muscles, which standard

GWAS cannot reliably assess due to the sparse number of mitochondrial markers on genotyp-

ing arrays and difficulties in quantifying mitochondrial heteroplasmy. Moreover, many haplo-

type blocks containing GWAS SNPs do not overlap with regions of known function and

remain classified as intronic or intergenic [42]. Third, the GWAS summary statistics used in

our study for BMD were derived from the heel quantitative ultrasound; thus, future research is

Fig 6. Tissue enrichment analysis using MAGMA [20]. The most enriched tissue is the mammary breast tissue.

Significantly enriched DEG sets (Pbon<0.05) are highlighted in red. A threshold P�5×10−100 was used to map the

genes.

https://doi.org/10.1371/journal.pone.0300535.g006
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needed to validate our findings using the DXA-derived hip or spine BMD, which is typically

measured in the clinic. Lastly, while our study identifies a correlation between the high expres-

sion of the identified genes in skeletal muscle and bone, we recognize the need for caution in

inferring causation. We plan to investigate the perturbation of these genes specifically in skele-

tal muscle during conditions such as osteoporosis. This approach will provide valuable insights

into the functional roles of these genes not only in bones but also in the context of skeletal

muscle physiology and pathologies.

In conclusion, our study has identified three new genes—EPDR1, PKDCC, and SPTBN1—

highly expressed in muscle tissue, providing novel insights into the shared genetic architecture

between muscle and bone. Furthermore, we offer a framework for utilizing GWAS findings to

emphasize functional evidence of crosstalk between multiple tissues based on other genetic

architecture. Future research should explore the implications of these findings and investigate

potential applications in developing therapeutic strategies targeting both muscle and bone

health.

Fig 7. Differentially expressed genes (DEG) in 30 major tissues in the GTEx data. A threshold P�5×10−8 was used

to map the genes. Significantly expressed DEG sets (Pbon<0.05) are highlighted in red.

https://doi.org/10.1371/journal.pone.0300535.g007
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Further research directions to build on our results include: 1) integrating multi-omics data,

such as transcriptomics, proteomics, and epigenomics, to uncover the molecular mechanisms

linking the identified genes to muscle and bone tissues, 2) validating our novel findings in ani-

mal experiments, 3) examining associations between EPDR1, PKDCC, and SPTBN1 expression

and the development or progression of musculoskeletal disorders in longitudinal cohort stud-

ies to establish their clinical relevance, and 4) exploring novel therapeutic strategies targeting

the products or regulatory elements of the identified genes to prevent or treat musculoskeletal

disorders. By pursuing these research avenues, we aim to achieve a more comprehensive

understanding of the shared genetic architecture between muscle and bone, ultimately benefit-

ing the development of therapeutic interventions targeting both tissues.
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Table 2. Summary of known and novel findings for three identified genes (EPDR1, PKDCC, and SPTBN1).

Gene Known Evidence Novel Findings

EPDR1

• Highly expressed in the brain and detected in other

tissues, such as muscle, heart, and extracellular fluids

[23].

• Plays a critical role in the context of energy

metabolism and detected in human plasma [24].

• Plays a crucial role in the osteoblastogenesis [26,27].

• Highly expressed in the adrenal gland, blood

vessel, cervix uteri, fallopian tube, nerve, ovary,

thyroid, and uterus.

PKDCC

• Has multifaceted functions in intracellular signaling

pathways [25].

• Highly expressed in all 30 tissue types except the

brain, pancreas, and skin.

SPTBN1

• Plays a significant role in nonalcoholic

steatohepatitis, liver cancer [29] and hepatocellular

carcinoma carcinogenesis [30].

• Critical protein that maintains cellular architecture

and function in various tissues, including skeletal and

cardiac muscle [33].

• Provides structure stability and plays a role in

intracellular signaling pathways [34].

• Plays a crucial role in bone metabolism [35].

• Highly expressed in all 30 tissue types except the

blood.

• Maintain the shared genetic architecture

between bone and muscle.

https://doi.org/10.1371/journal.pone.0300535.t002

PLOS ONE Functional consequences of GWAS findings at the muscle tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0300535 April 29, 2024 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300535.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300535.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300535.s003
https://doi.org/10.1371/journal.pone.0300535.t002
https://doi.org/10.1371/journal.pone.0300535


Funding acquisition: Qing Wu.

Methodology: Jongyun Jung.

Project administration: Jongyun Jung.

Resources: Jongyun Jung.

Software: Jongyun Jung.

Validation: Jongyun Jung.

Visualization: Jongyun Jung.

Writing – original draft: Jongyun Jung.

Writing – review & editing: Jongyun Jung, Qing Wu.

References
1. Mesquita PN, Maia JMC, Bandeira F. Postmenopausal osteoporosis. Endocrinol Diabetes Probl-Ori-

ented Approach. 2014; 9781461486:305–21.

2. World Health Organization. Consensus development conference: Prophylaxis and treatment of osteo-

porosis. Osteoporos Int. 1991; 1:114–7. PMID: 1790392

3. Burr DB. Muscle Strength, Bone Mass, and Age-Related Bone Loss. J Bone Miner Res. 1997;

12:1547–51. https://doi.org/10.1359/jbmr.1997.12.10.1547 PMID: 9333114

4. Bettis T, Kim B-J, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: impli-

cations for muscle-bone crosstalk with aging and disuse. Osteoporos Int. 2018; 29:1713–20. https://doi.

org/10.1007/s00198-018-4570-1 PMID: 29777277

5. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with

osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011; 52:71–4. https://

doi.org/10.1016/j.archger.2010.02.002 PMID: 20207030

6. Frisoli A, Chaves PH, Ingham SJM, Fried LP. Severe osteopenia and osteoporosis, sarcopenia, and

frailty status in community-dwelling older women: Results from the Women’s Health and Aging Study

(WHAS) II. Bone. 2011; 48:952–7. https://doi.org/10.1016/j.bone.2010.12.025 PMID: 21195216

7. Avin KG, Bloomfield SA, Gross TS, Warden SJ. Biomechanical Aspects of the Muscle-Bone Interaction.

Curr Osteoporos Rep. 2015; 13:1–8. https://doi.org/10.1007/s11914-014-0244-x PMID: 25515697

8. Tagliaferri C, Wittrant Y, Davicco M-J, Walrand S, Coxam V. Muscle and bone, two interconnected tis-

sues. Ageing Res Rev. 2015; 21:55–70. https://doi.org/10.1016/j.arr.2015.03.002 PMID: 25804855

9. Trajanoska K, Rivadeneira F, Kiel DP, Karasik D. Genetics of Bone and Muscle Interactions in Humans.

Curr Osteoporos Rep. 2019; 17:86–95. https://doi.org/10.1007/s11914-019-00505-1 PMID: 30820831

10. Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on

osteoporosis in humans and mice. Nat Genet. 2019; 51:258–66. https://doi.org/10.1038/s41588-018-

0302-x PMID: 30598549

11. Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, et al. Identification of

153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteopo-

rosis. Nat Genet. 2017; 49:1468–75. https://doi.org/10.1038/ng.3949 PMID: 28869591

12. Rocha-Braz MGM, Ferraz-de-Souza B. Genetics of osteoporosis: Searching for candidate genes for

bone fragility. Arch Endocrinol Metab. 2016; 60:391–401. https://doi.org/10.1590/2359-

3997000000178 PMID: 27533615

13. Sabik OL, Farber CR. Using GWAS to identify novel therapeutic targets for osteoporosis. Transl Res.

2017; 181:15–26. https://doi.org/10.1016/j.trsl.2016.10.009 PMID: 27837649

14. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of

common disease-associated variation in regulatory DNA. Science. 2012; 337:1190–5. https://doi.org/

10.1126/science.1222794 PMID: 22955828

15. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statis-

tical fine-mapping. Nat Rev Genet. 2018; 19:491–504. https://doi.org/10.1038/s41576-018-0016-z

PMID: 29844615

16. Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and annotation of

genetic associations with FUMA. Nat Commun. 2017; 8:1–11.

PLOS ONE Functional consequences of GWAS findings at the muscle tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0300535 April 29, 2024 12 / 14

http://www.ncbi.nlm.nih.gov/pubmed/1790392
https://doi.org/10.1359/jbmr.1997.12.10.1547
http://www.ncbi.nlm.nih.gov/pubmed/9333114
https://doi.org/10.1007/s00198-018-4570-1
https://doi.org/10.1007/s00198-018-4570-1
http://www.ncbi.nlm.nih.gov/pubmed/29777277
https://doi.org/10.1016/j.archger.2010.02.002
https://doi.org/10.1016/j.archger.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/20207030
https://doi.org/10.1016/j.bone.2010.12.025
http://www.ncbi.nlm.nih.gov/pubmed/21195216
https://doi.org/10.1007/s11914-014-0244-x
http://www.ncbi.nlm.nih.gov/pubmed/25515697
https://doi.org/10.1016/j.arr.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25804855
https://doi.org/10.1007/s11914-019-00505-1
http://www.ncbi.nlm.nih.gov/pubmed/30820831
https://doi.org/10.1038/s41588-018-0302-x
https://doi.org/10.1038/s41588-018-0302-x
http://www.ncbi.nlm.nih.gov/pubmed/30598549
https://doi.org/10.1038/ng.3949
http://www.ncbi.nlm.nih.gov/pubmed/28869591
https://doi.org/10.1590/2359-3997000000178
https://doi.org/10.1590/2359-3997000000178
http://www.ncbi.nlm.nih.gov/pubmed/27533615
https://doi.org/10.1016/j.trsl.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27837649
https://doi.org/10.1126/science.1222794
https://doi.org/10.1126/science.1222794
http://www.ncbi.nlm.nih.gov/pubmed/22955828
https://doi.org/10.1038/s41576-018-0016-z
http://www.ncbi.nlm.nih.gov/pubmed/29844615
https://doi.org/10.1371/journal.pone.0300535


17. GEFOS. UK Biobank eBMD and Fracture GWAS Data Release 2018 [Internet]. GEFOS. 2018 [cited

2020 Mar 5]. Available from: http://www.gefos.org/?q=content/data-release-2018

18. Team RC. R: A language and environment for statistical computing. R Found Stat Comput Vienna Aus-

tria [Internet]. 2019; 3. Available from: https://www.r-project.org/

19. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-through-

put sequencing data. Nucleic Acids Res. 2010; 38:1–7.

20. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS

Data. Tang H, editor. PLOS Comput Biol. 2015; 11:e1004219. https://doi.org/10.1371/journal.pcbi.

1004219 PMID: 25885710

21. Karasik D, Kiel DP. Genetics of the Musculoskeletal System: A Pleiotropic Approach. J Bone Miner

Res. 2008; 23:788–802. https://doi.org/10.1359/jbmr.080218 PMID: 18269309

22. Huang J, Hsu Y-H, Mo C, Abreu E, Kiel DP, Bonewald LF, et al. METTL21C Is a Potential Pleiotropic

Gene for Osteoporosis and Sarcopenia Acting Through the Modulation of the NF-κB Signaling Pathway.

J Bone Miner Res. 2014; 29:1531–40.

23. Chen R, Zhang Y. EPDR1 correlates with immune cell infiltration in hepatocellular carcinoma and can

be used as a prognostic biomarker. J Cell Mol Med. 2020; 24:12107–18. https://doi.org/10.1111/jcmm.

15852 PMID: 32935479

24. Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, et al. Proteomics-Based Com-

parative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a

Novel Batokine. Cell Metab. 2019; 30:963–975.e7. https://doi.org/10.1016/j.cmet.2019.10.001 PMID:

31668873

25. Sajan SA, Ganesh J, Shinde DN, Powis Z, Scarano MI, Stone J, et al. Biallelic disruption of PKDCC is

associated with a skeletal disorder characterised by rhizomelic shortening of extremities and dysmor-

phic features. J Med Genet. 2019; 56:850–4. https://doi.org/10.1136/jmedgenet-2018-105639 PMID:

30478137

26. Pippin JA, Chesi A, Wagley Y, Su C, Pahl MC, Hodge KM, et al. CRISPR-Cas9–Mediated Genome

Editing Confirms EPDR1 as an Effector Gene at the BMD GWAS-Implicated ‘STARD3NL’ Locus.

JBMR Plus. 2021; 5:e10531. https://doi.org/10.1002/jbm4.10531 PMID: 34532616

27. Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, et al. Genome-scale Capture C promoter

interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10.

28. Gupta M, Cheung C-L, Hsu Y-H, Demissie S, Cupples LA, Kiel DP, et al. Identification of homogeneous

genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associa-

tions. J Bone Miner Res. 2011; 26:1261–71. https://doi.org/10.1002/jbmr.333 PMID: 21611967

29. Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, et al. β2-spectrin (SPTBN1) as a therapeutic tar-

get for diet-induced liver disease and preventing cancer development. Sci Transl Med. 2021; 13:

eabk2267.

30. Chen S, Wu H, Wang Z, Jia M, Guo J, Jin J, et al. Loss of SPTBN1 Suppresses Autophagy Via SETD7-

mediated YAP Methylation in Hepatocellular Carcinoma Initiation and Development. Cell Mol Gastroen-

terol Hepatol. 2022; 13:949–973.e7. https://doi.org/10.1016/j.jcmgh.2021.10.012 PMID: 34737104

31. Kawao N, Kaji H. Interactions Between Muscle Tissues and Bone Metabolism. J Cell Biochem. 2015;

116:687–95. https://doi.org/10.1002/jcb.25040 PMID: 25521430

32. Sun L, Tan L-J, Lei S-F, Chen X-D, Li X, Pan R, et al. Bivariate Genome-Wide Association Analyses of

Femoral Neck Bone Geometry and Appendicular Lean Mass. PLOS ONE. 2011; 6:e27325. https://doi.

org/10.1371/journal.pone.0027325 PMID: 22087292

33. Li S, Liu T, Li K, Bai X, Xi K, Chai X, et al. Spectrins and human diseases. Transl Res. 2022; 243:78–88.

https://doi.org/10.1016/j.trsl.2021.12.009 PMID: 34979321

34. Unudurthi SD, Greer-Short A, Patel N, Nassal D, Hund TJ. Spectrin-based pathways underlying electri-

cal and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther. 2018; 16:59–65.

https://doi.org/10.1080/14779072.2018.1418664 PMID: 29257730

35. Chen Y-C, Guo Y-F, He H, Lin X, Wang X-F, Zhou R, et al. Integrative Analysis of Genomics and Tran-

scriptome Data to Identify Potential Functional Genes of BMDs in Females. J Bone Miner Res. 2016;

31:1041–9. https://doi.org/10.1002/jbmr.2781 PMID: 26748680

36. Calabrese GM, Mesner LD, Stains JP, Tommasini SM, Horowitz MC, Rosen CJ, et al. Integrating

GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3

and an Osteoblast Functional Module. Cell Syst. 2017; 4:46–59.e4. https://doi.org/10.1016/j.cels.2016.

10.014 PMID: 27866947

37. Xu X, Yang J, Ye Y, Chen G, Zhang Y, Wu H, et al. SPTBN1 Prevents Primary Osteoporosis by Modu-

lating Osteoblasts Proliferation and Differentiation and Blood Vessels Formation in Bone. Front Cell

PLOS ONE Functional consequences of GWAS findings at the muscle tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0300535 April 29, 2024 13 / 14

http://www.gefos.org/?q=content/data-release-2018
https://www.r-project.org/
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1371/journal.pcbi.1004219
http://www.ncbi.nlm.nih.gov/pubmed/25885710
https://doi.org/10.1359/jbmr.080218
http://www.ncbi.nlm.nih.gov/pubmed/18269309
https://doi.org/10.1111/jcmm.15852
https://doi.org/10.1111/jcmm.15852
http://www.ncbi.nlm.nih.gov/pubmed/32935479
https://doi.org/10.1016/j.cmet.2019.10.001
http://www.ncbi.nlm.nih.gov/pubmed/31668873
https://doi.org/10.1136/jmedgenet-2018-105639
http://www.ncbi.nlm.nih.gov/pubmed/30478137
https://doi.org/10.1002/jbm4.10531
http://www.ncbi.nlm.nih.gov/pubmed/34532616
https://doi.org/10.1002/jbmr.333
http://www.ncbi.nlm.nih.gov/pubmed/21611967
https://doi.org/10.1016/j.jcmgh.2021.10.012
http://www.ncbi.nlm.nih.gov/pubmed/34737104
https://doi.org/10.1002/jcb.25040
http://www.ncbi.nlm.nih.gov/pubmed/25521430
https://doi.org/10.1371/journal.pone.0027325
https://doi.org/10.1371/journal.pone.0027325
http://www.ncbi.nlm.nih.gov/pubmed/22087292
https://doi.org/10.1016/j.trsl.2021.12.009
http://www.ncbi.nlm.nih.gov/pubmed/34979321
https://doi.org/10.1080/14779072.2018.1418664
http://www.ncbi.nlm.nih.gov/pubmed/29257730
https://doi.org/10.1002/jbmr.2781
http://www.ncbi.nlm.nih.gov/pubmed/26748680
https://doi.org/10.1016/j.cels.2016.10.014
https://doi.org/10.1016/j.cels.2016.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27866947
https://doi.org/10.1371/journal.pone.0300535


Dev Biol [Internet]. 2021 [cited 2023 Apr 23];9. Available from: https://www.frontiersin.org/articles/10.

3389/fcell.2021.653724 PMID: 33816505

38. Zhi X, Lin L, Yang S, Bhuvaneshwar K, Wang H, Gusev Y, et al. βII-Spectrin (SPTBN1) suppresses pro-

gression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatin. Hepa-

tology. 2015; 61:598.

39. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;

14:1141–63. https://doi.org/10.1080/15592294.2019.1638701 PMID: 31284823
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