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Abstract

Characterization of the diverse malignant and stromal cell states that make up soft tissue 

sarcomas (STSs) and their correlation with patient outcomes has proven difficult using fixed 

clinical specimens. Here, we employed EcoTyper, a machine learning framework, to identify the 

fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using 

bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, 

transcriptionally defined cell states, many of which were highly prognostic of patient outcomes 

across independent datasets. We discovered three conserved cellular communities or ecotypes 

associated with underlying genomic alterations and distinct clinical outcomes. We show that one 

ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts 

response to immune checkpoint inhibition but not chemotherapy and validate our findings in an 

independent cohort. Our results may enable identification of patients with STSs who could benefit 

from immunotherapy and help develop novel therapeutic strategies.

Introduction

Soft tissue sarcomas (STSs) are rare and diverse neoplasms that arise from connective 

tissues throughout the body in patients of all ages1. Although surgery can cure many 

patients with localized disease, nearly half of patients with large, high-grade STSs develop 

metastatic disease2. Unfortunately, there are few effective systemic therapies for patients 

with metastatic STS, and the median survival is less than two years3–5. Several tumor 

characteristics, including tumor size, grade, and histology have been shown to be associated 

with risk of progression after treatment for localized STS6,7. In addition, a gene expression 

signature related to genomic complexity (CINSARC) has been validated to predict risk of 

metastasis in STS8. However, the role of adjuvant chemotherapy in patients with high-risk 

STS remains controversial9, and it will be important to understand additional factors that 

contribute to progression.

Recent studies have demonstrated that immune checkpoint inhibition (ICI) can achieve 

durable responses in a subset of patients with metastatic STS, but the majority of sarcomas 

fail to respond10–12. The clinical activity of ICI has been reported to be higher in certain 

STS histologies such as undifferentiated pleomorphic sarcoma (UPS)12. However, other 

histologies such as leiomyosarcoma (LMS) can also respond to ICI at lower rates10. 

Unfortunately, traditional biomarkers of response to ICI, including tumor mutational burden 

and PD-L1 expression, do not appear to identify the majority of responders in STS13.

The tumor microenvironment consists of complex cellular communities that are essential 

for tumor development and response to therapies like ICI14. Unlike most human cancers 

that arise from epithelial tissues, sarcomas arise from mesenchymal cells, leading to 

unique interactions with the surrounding stroma. Due to the rarity of STSs, few studies 

have explored the sarcoma microenvironment at the single-cell level15. Furthermore, most 

clinical samples are formalin fixed and paraffin embedded (FFPE), leading to nucleic acid 

crosslinking and preventing single cell dissociation. As a result, standard approaches to 
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study the tumor microenvironment such as flow cytometry and single-cell RNA-sequencing 

(scRNA-Seq) are not feasible in large, clinically annotated datasets.

Previous studies analyzing a limited number of cell types that may not represent all of 

the unique cells present within mesenchymal tumors have suggested that the sarcoma 

microenvironment is prognostic and associated with treatment outcomes16–18. For example, 

a recent study defined five sarcoma immune classes (SICs) associated with patient 

prognosis using gene expression signatures for nine canonical stromal cell types18. One 

SIC characterized by high immune infiltration and the presence of tertiary lymphoid 

structures (TLS) was associated with better outcomes in patients with localized sarcomas 

and patients with metastatic STS treated with anti-PD-1. A follow up study demonstrated 

that selecting patients with TLS increased the response rate to pembrolizumab in advanced 

STS17. However, the presence of TLS appears to be associated with favorable outcomes 

regardless of treatment19.

Here, we implement a machine learning framework called EcoTyper20 to identify the 

fundamental cell states and cellular communities that make up STSs and validate 

our findings with single-cell and spatial transcriptomics analysis. We identify 23 

transcriptionally-defined cell states across malignant, immune, and stromal cells in 

the sarcoma microenvironment and explore their association with patient outcomes. 

Furthermore, we discover three sarcoma ecotypes defined by co-occurring cell states that 

are associated with prognosis and predict response to ICI. These findings provide a high-

resolution view of the cell states and ecosytems that determine clinical outcomes in human 

STSs.

Results

Identification and validation of sarcoma cell states

EcoTyper utilizes a machine-learning framework to extract cell type-specific gene 

expression from bulk transcriptomes, identify transcriptional cell states for each cell type, 

and define tumor ecosystems (“ecotypes”) made up of co-occurring cell states (Fig. 1). To 

implement EcoTyper for STSs, we assembled a training cohort of 299 patients with localized 

STS profiled with bulk RNA-sequencing (RNA-Seq)16,21 and a validation cohort of 310 

patients with localized STS profiled by microarray8 (Extended Data Fig. 1, Supplementary 

Tables 1–3).

We initially applied EcoTyper to 153 patients with non-LMS STSs from TCGA to identify 

sarcoma-specific transcriptional cell states. Using CIBERSORTx22, we estimated the cell 

type abundance and cell type-specific gene expression profiles (GEPs) across 9 cell 

types per sarcoma. Next, we reconstructed the weighted contribution of the fundamental 

transcriptional states within each cell type using the EcoTyper framework for non-negative 

matrix factorization (NMF). This framework has been optimized using simulated tumors to 

choose the number of cell states that maximizes sensitivity and positive predictive value of 

the cell states discovered while maintaining the stability of clustering results20. Using this 

approach, we identified two to four cell states per cell type, representing 23 distinct cell 

states (Fig. 2a, Supplementary Table 4). We then performed reference-guided recovery of the 
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cell states identified in non-LMS STSs from TCGA to estimate the abundance of each cell 

state in the remaining sarcomas within our training and independent validation cohorts.

To validate the cell states identified from bulk gene expression, we performed scRNA-

Seq on four LMS and three UPS from a total of six patients (Supplementary Table 5) 

and analyzed previously published scRNA-Seq from 12 synovial sarcomas (SS) from 

10 patients15 (Extended Data Fig. 1b). We implemented a hybrid approach leveraging 

inferred copy number variation and similarity of single-cell transcriptomes to bulk sarcoma 

gene expression to identify malignant and normal cells within our scRNA-Seq datasets 

(Extended Data Fig. 2a–d, Supplementary Table 6). Using reference-guided annotation with 

permutation testing, we were able to significantly recover most of the cell states identified 

using EcoTyper (Extended Data Fig. 2e, Supplementary Table 7). Most of the cell states 

that were not significantly recovered were not represented or had low abundance in our 

scRNA-Seq data. To explore the functions of the identified sarcoma cell states, we defined 

marker genes for the most abundant cell states present within the scRNA-Seq datasets 

(Supplementary Table 8). Cell state marker gene expression was reproducible across STS 

histologies profiled by scRNA-Seq (Fig. 2b). These findings confirm that the EcoTyper 

framework can reliably identify the fundamental cell states within STSs.

We next annotated each cell state based on the cell state marker genes identified by RNA-

Seq and scRNA-Seq when available. To aid in annotation of the malignant cell states, we 

calculated the overlap of marker genes identified from bulk RNA-Seq with the Molecular 

Signatures Database (MSigDB) hallmark gene sets (Supplementary Table 9). All cell state 

annotations and key marker genes are displayed in Supplementary Table 10. The cell 

states identified by EcoTyper reflected both previously described and undescribed biological 

functions potentially unique to STSs. For example, we observed three populations of tumor-

associated macrophages. State 1 (S01) and S02 monocytes/macrophages expressed markers 

previously associated with M2-like macrophage polarization with distinct expression 

signatures between states (CLEC5A and SPP1 in S01 monocytes/macrophages and ROMO1 
and STAB1 in S02 monocytes/macrophages)23–26. In contrast, S03 monocytes/macrophages 

expressed both classical M2 polarization markers (MRC1 and CD163) and markers 

associated with M1 polarization and pro-inflammatory responses (IRF5 and MYO1F)27–29.

Because sarcomas arise from mesenchymal cells, we were surprised to identify four 

epithelial-like cell states in addition to two malignant fibroblast-like cell states. Epithelial-

like sarcoma cells are known to exist within certain sarcoma histologies such as epithelioid 

sarcoma30 and SS31, and sarcomas have been reported to undergo mesenchymal to epithelial 

transition32. Furthermore, the presence of epithelial-like malignant cells was recently 

confirmed by scRNA-Seq of SS where both mesenchymal and epithelial gene expression 

modules were observed within translocation-positive sarcoma cells15. We explored the 

presence of fibroblast-like cells and epithelial-like cells within other sarcoma histologies 

in more depth. We first used CIBERSORTx to estimate the abundance of fibroblast-like 

cells and epithelial-like cells within the sarcomas from our training cohort. As expected, 

fibroblast-like cells were detected across all STSs (Extended Data Fig. 3a). Interestingly, 

although detection of epithelial-like cells varied across samples, epithelial-like cells 

were present across all sarcoma histologies (Extended Data Fig. 3b). Despite different 
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mesenchymal cells of origin, the combined abundance of fibroblast-like cells and epithelial-

like cells significantly correlated with tumor purity across histologies (Extended Data Fig. 

3c). These findings suggest that the fibroblast-like and epithelial-like cell states identified 

using EcoTyper represent malignant sarcoma cells along the spectrum of mesenchymal to 

epithelial transition.

To further explore the presence of epithelial-like malignant cells within STSs, we evaluated 

expression of epithelial markers within LMS and UPS tumor cells by scRNA-Seq. A 

subset of malignant cells expressed epithelial markers, including epithelial cadherin (CDH1) 

and epithelial membrane antigen (MUC1, Extended Data Fig. 4a)33. Utilizing the gene 

expression modules defined in SS15 and previously described gene expression signatures 

of epithelial to mesenchymal transition (EMT, Supplementary Table 11)34–36, we observed 

a spectrum of epithelial differentiation in both LMS and UPS STSs by scRNA-Seq (Fig. 

2c–e, Extended Data Fig. 4b). Furthermore, epithelial-like cell state marker genes showed 

overlap with gene sets associated with oncogenic pathways (KRAS in S03 epithelial 

cells and both MYC and MTORC1 in S04 epithelial cells, Supplementary Table 9). To 

explore the expression of epithelial markers at the protein level in STS, we performed 

immunohistochemistry (IHC) for CDH1, MUC1, and syndecan-1 (SDC1), a transmembrane 

proteoglycan expressed by normal and malignant epithelial cells (Supplementary Table 

12)37. At least one of the epithelial markers was detected by IHC in tumor cells for 96% of 

patients with STS (Fig. 2f,g). These results suggest that epithelial-like malignant cells are 

present across STS histologies.

Association of sarcoma cell states with patient outcomes

We next explored the association of the EcoTyper cell states with patient outcomes. On 

multivariable analysis incorporating histology, 12 of the 23 cell states (52%) were associated 

with progression-free survival in our training cohort (Fig. 3a). Strikingly, the associations 

between cell state abundance and patient outcomes were highly conserved in the validation 

cohort (Extended Data Fig. 5). Eight of the 12 cell states that were significantly associated 

with patient outcomes in the training cohort were also significant in the validation cohort. 

Furthermore, the direction of the association was preserved for most cell states, and we 

observed a strong correlation across cohorts despite the different platforms used for bulk 

gene expression profiling (Fig. 3b).

Consistent with prior reports38, a higher abundance of CLEC5A/SPP1+ M2-like 

immunosuppressive macrophages (S01) was associated with inferior outcomes in both our 

training and validation cohorts (Fig. 3c). Higher B cell abundance has previously been 

reported to be associated with improved outcomes in patients with sarcomas18, and a higher 

abundance of CD69+ activated memory B cells (S01) was significantly associated with 

better outcomes in our training cohort and trended towards better outcomes in the validation 

cohort. We also identified several additional survival associations. For example, NOSTRIN/
PECAM1/CD36+ normal-like endothelial cells (S02) were associated with improved 

outcomes in both cohorts across sarcoma histologies (Fig. 3d). In addition, epithelial-like 

malignant cells with upregulated MYC/MTORC signaling (S04) were associated with poor 

outcomes, and both epithelial-like (S03) and fibroblast-like (S01) malignant cells with 
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activation of the KRAS pathway were associated with favorable outcomes. These results 

demonstrate that transcriptionally defined malignant and normal cell states are consistently 

associated with patient prognosis in STS.

Reconstructing STS cellular communities

We next explored the patterns of cell state co-occurrence using the EcoTyper framework to 

reconstruct the fundamental cellular communities within STSs. We discovered three distinct 

“sarcoma ecotypes” made up of four to 10 co-occurring cell states per community (Fig. 

4a,b). Although most STSs could be assigned to a dominant sarcoma ecotype, we observed 

evidence of multiple sarcoma ecotypes within each sample. As a result, we also estimated 

the abundance of the three sarcoma ecotypes within each sample in a continuous manner. 

Sarcoma ecotype 1 (SE1) was characterized by several immune cell states lacking activation 

markers and SALL1+ pro-angiogenic endothelial cells (S01). In contrast, SE2 consisted of 

several activated immune cell states, NOSTRIN/PECAM1/CD36+ normal-like endothelial 

cells (S02), and malignant cells with activation of the KRAS pathway. Finally, SE3 

was characterized by MYC/MTORC1 activated epithelial-like malignant cells (S04) and 

CLEC5A/SPP1+ M2-like immunosuppressive macrophages (S01). Remarkably, sarcoma 

ecotypes were distinct from previously described STS prognostic gene expression signatures 

(Fig. 4c)8,18, suggesting the EcoTyper framework enables additional insights into sarcoma 

biology.

To further characterize the three sarcoma ecotypes, we explored their clinical, cellular, and 

molecular characteristics (Fig. 5a, Supplementary Table 13). SE1 was enriched in female 

patients and patients with SS. SE1 sarcomas were immune cold with a low abundance of 

most immune cell subsets and elevated Hedgehog signaling. In contrast, SE2 sarcomas were 

more consistent with classically immune hot tumors with a high abundance of B and CD8 

T cells and enriched interferon alpha and gamma signaling39. SE2 was enriched in male 

patients and patients with liposarcomas. Finally, SE3 was enriched in older patients and UPS 

and malignant peripheral nerve sheath tumors (MPNST) compared with other histologies. 

SE3 tumors were characterized by intermediate immune infiltration and elevated MYC and 

MTORC1 signaling.

Prior studies have suggested that the tumor microenvironment can change over time and in 

response to therapy40,41, which could complicate the implementation of sarcoma ecotypes as 

biomarkers in STSs. To explore whether sarcoma ecotypes change over time, we compared 

ecotype abundance across timepoints in patients with more than one sarcoma sample 

available for analysis. Among these 24 patients, 71% underwent treatment with systemic 

therapy between sampling, and 45% of paired samples were from primary tumors and a 

separate location of metastatic disease (Supplementary Table 14). Remarkably, sarcoma 

ecotype abundance was highly correlated across different timepoints despite a median of 14 

months elapsing between samples (Extended Data Fig. 6a).

To explore the possibility that genomic alterations may underly the tumor microenvironment 

within STS, we compared the SNVs, indels, and copy number alterations (CNAs) across 

sarcoma ecotypes from TCGA (Fig. 5b). We observed significantly more CNAs and SNVs/

indels in SE3 compared to the other sarcoma ecotypes (Fig. 5c and Extended Data Fig. 
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6b), suggesting genomic instability may play a role in shaping the microenvironment in 

these tumors. Several genes were more frequently altered by SNVs/indels or CNAs in 

SE3 sarcomas compared to other sarcoma ecotypes (Supplementary Table 15). Consistent 

with the hallmark gene set analysis for S04 epithelial-like cells and bulk SE3 tumors, 

amplifications of MYC and MTOR were significantly enriched in SE3 sarcomas. We also 

observed a significantly increased contribution of the COSMIC mutational signature 2 in 

SE2 sarcomas (Fig. 5d and Extended Data Fig. 6c), suggesting evidence of APOBEC 

mutagenesis in these tumors16,42. These findings suggest that underlying genomic alterations 

within malignant cells may drive sarcoma ecosystems, which could explain the consistency 

of sarcoma ecotypes across different samples from the same patient.

To investigate the co-localization and interaction of cell states with human sarcomas, we 

profiled four STSs using spatial transcriptomics (Extended Data Fig. 1c). We performed 

reference-guided recovery to estimate the abundance of each cell state and sarcoma ecotype 

within each spatially-barcoded spot. In addition to co-occurring within the same tumors, 

cell states within the same ecotype tended to occur with the same regions of sarcomas 

(Extended Data Fig. 7a,b). Cell states within the same sarcoma ecotype had a stronger 

spatial correlation than cell states from different ecotypes (Fig. 5e). Interestingly, sarcoma 

ecotypes tended to be aggregated within spatially distinct regions of the tumor (Fig. 5f 

and Extended Data Fig. 7c). Across the 4 sarcomas profiled by spatial transcriptomics, all 

ecotypes were significantly spatially aggregated (Fig. 5g), suggesting that sarcoma ecotypes 

represent distinct functional units within human sarcomas.

We next explored intercellular signaling networks within sarcoma ecotypes by identifying 

putative ligand-receptor pairs across cell states (Supplementary Table 16). We observed 

complex cell-cell interactions between cell states within the same ecotype (Fig. 5h). 

TNFA/KRAS activated fibroblast-like cells (S01) overexpressed multiple ligands with 

corresponding receptors on other cell states within SE2. For example, TNFA/KRAS 

activated fibroblast-like cells (S01) overexpressed TNFSF13 and TNFSF18 whose 

receptors TNFRSF17 and TNFRSF18 were overexpressed on CD69+ activated memory 

B cells (S01) and GRZMA/PDCD1/TIGIT+ exhausted cytotoxic CD8 T cells (S01), 

respectively. Similarly, TRIM29+ epithelial-like cells (S01) and CLEC5A/SPP1+ M2-like 

immunosuppressive macrophages (S01) appeared to be at the center of the signaling 

networks for SE1 and SE3, respectively. These results highlight potential cellular 

interactions that could shape the STS microenvironment.

Association of ecotypes with outcomes in localized sarcomas

To investigate the association of sarcoma ecotypes with patient prognosis, we compared 

clinical outcomes in our training cohort and validation cohort based on sarcoma ecotype 

assignment. In addition, we analyzed sarcoma ecotype abundance as a continuous variable 

while accounting for sarcoma histology using Cox multivariable analysis. In both training 

and validation cohorts, we observed that patients assigned to SE2 had superior outcomes 

than the other sarcoma ecotypes (Fig. 6a and 6c). On multivariable analysis including 

histology, patients with higher SE2 abundance continued to have significantly better 

outcomes, and patients with higher SE3 abundance had significantly worse outcomes in 
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both cohorts (Fig. 6b and 6d). Patients assigned to SE1 appeared to have an intermediate 

prognosis. In patients from the training cohort with more detailed clinical information 

available, we observed similar results when including the prognostic factors tumor size, 

grade, histology, extent of resection, and anatomic site in the multivariable analysis 

(Supplementary Table 17)6,7,43. These results suggest that sarcoma ecotypes are associated 

with prognosis in localized STSs.

Prediction of ICI response using sarcoma ecotypes

The tumor microenvironment plays a crucial role in the response of solid tumors to 

systemic therapies such as ICI44. As a result, we constructed two cohorts of patients 

with advanced sarcoma who received systemic therapy with standard of care cytotoxic 

chemotherapy (n=37) or a combination immune checkpoint blockade with ipilimumab 

(anti-CTLA4 antibody) and nivolumab (anti-PD-1 antibody) (n=38, Extended Data Fig. 8, 

Supplementary Tables 18–20). We assessed the association of sarcoma ecotype assignment 

and sarcoma ecotype abundance with outcomes in both cohorts as described above. Similar 

to our cohorts of patients with localized sarcoma, patients in SE2 and patients with a higher 

SE2 abundance had significantly better outcomes after chemotherapy (Fig. 7a,b). In contrast, 

we observed that patients in SE3, who experienced significantly worse outcomes in patients 

with localized sarcoma and in our chemotherapy cohort, had the best progression-free 

survival after ICI (Fig. 7c). In addition, higher SE3 abundance was associated with better 

progression-free survival after ICI on multivariable analysis including histology (Fig. 7d). 

These findings suggest that SE3 represents a candidate predictive biomarker for response to 

ICI in patients with advanced sarcoma.

To further explore the potential for SE3 to identify patients with STSs who benefit from 

ICI, we analyzed treatment response by sarcoma ecotype. Two of the three responders 

assigned to sarcoma ecotypes in our ICI cohort were assigned to SE3 (Fig. 7e). SE3 

abundance was significantly higher among responders than non-responders (Fig. 7f) and 

among patients achieving 6 months of non-progression after starting ICI (Extended Data 

Fig. 9a). Furthermore, SE3 abundance outperformed previously reported predictors of ICI 

response in sarcomas, TLS and PD-L1 expression, for predicting both response and 6-month 

non-progression (Fig. 7g and Extended Data Fig. 9b). We observed higher PD-L1 expression 

and more frequent TLS in STSs assigned to SE2 compared with SE1 (Extended Data Fig. 

9c,d). However, elevated PD-L1 expression and the presence of TLS were both detected 

among patients assigned to SE3. Notably, SE3 abundance did not predict response to 

chemotherapy (Extended Data Fig. 9e–g). These findings illustrate the promise for SE3 

abundance to select patients with STS who would benefit from ICI but not chemotherapy.

Validation of ICI response prediction

To validate the ability of SE3 abundance to predict response to ICI in STSs, we analyzed an 

independent cohort of 29 patients treated on 3 clinical trials evaluating combinations of anti-

PD-1 antibodies with experimental immunotherapies (Extended Data Fig. 8, Supplementary 

Table 21)45–47. Of the 4 responders in the ICI validation cohort assigned to sarcoma 

ecotypes, 3 patients were assigned to SE3 (Fig. 8a). Furthermore, SE3 abundance was 

significantly higher in responders than non-responders (Fig. 8b) and strongly predicted ICI 
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response (AUC 0.89, Extended Data Fig. 10a). To further determine if SE3 abundance can 

be used to enrich for patients likely to respond to ICI, we defined the optimal cutpoint for 

SE3 abundance in the training cohort (0.305) and applied the same cutoff to the validation 

cohort. 28.5% of patients in the training cohort and 42.9% of patients in validation cohort 

above the threshold responded to ICI while no patients below the threshold responded in 

either cohort (Fig. 8c). We also explored the ability of SE3 abundance to predict response to 

ICI in patients with metastatic urothelial bladder carcinoma and melanoma, but we did not 

observe a significant association in these cancers (Extended Data Fig. 10b, Supplementary 

Table 22). These results validate the ability of SE3 abundance to predict response to ICI in 

STSs across independent cohorts.

Previous studies have demonstrated that tumor-associated macrophages can activate the 

adaptive immune system and directly kill tumor cells in response to ICI in other solid 

tumors48,49. However, ICI is traditionally thought to enable anti-tumor responses through 

activation of CD8 T cells50. We examined our spatial transcriptomics data to explore the 

possibility that CD8 T cell populations not assigned to SE3 could play a role in ICI response 

within sarcomas. Among the CD8 T cell states identified by EcoTyper, GRZMA/PDCD1/
TIGIT+ exhausted cytotoxic CD8 T cells (S01) were in the closest proximity to SE3 spots 

(Fig. 8d). Interestingly, although S01 CD8 T cells were assigned to SE2 by co-occurrence 

in bulk tumors, they had similar proximity to SE3 spots by spatial transcriptomics (Fig. 8e). 

To further evaluate the role of sarcoma cell states in ICI response, we compared cell state 

and ecotype abundance pre-treatment and on-treatment in 19 patients from the ICI validation 

cohort with paired samples available (Extended Data Fig. 10c). We observed stable to 

slightly increased S01 CD8 T cell abundance (Fig. 8f) with a significant decrease in the S01 

M2-like immunosuppressive macrophages associated with SE3 after starting ICI (Fig. 8g). 

These results suggest that ICI reduces the abundance of S01 M2-like immunosuppressive 

macrophages, which may enable S01 CD8 T cells to generate anti-tumor immune responses.

Discussion

In this study, we implemented a machine learning framework to decode the fundamental 

cell states and cellular communities that exist within STSs. In contrast to prior studies 

that have investigated broadly defined cell types and states identified in other cancers16,18, 

our computational approach enabled the identification of cell states specific to STSs. We 

observed a strong association of both individual cell states and sarcoma ecotypes with 

patient outcomes across independent datasets, confirming the importance of the sarcoma 

microenvironment in tumor progression and response to treatment. Finally, we demonstrated 

that SE3 abundance is a candidate predictive biomarker for identifying patients with 

advanced STSs who benefit from immune checkpoint but not chemotherapy.

EcoTyper overcomes the limitations of most clinical specimens and avoids the need for 

physical dissociation, which is known to affect gene expression and the representation of 

certain cell populations51. We were able to validate most cell states identified by EcoTyper 

using scRNA-Seq with the remaining cell states poorly represented in our scRNA-Seq 

datasets. Furthermore, we confirmed the co-localization of the cell states within sarcoma 

ecotypes using spatial transcriptomics, demonstrating the potential for cellular interactions 

Subramanian et al. Page 9

Nat Cancer. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that may affect sarcoma biology. Sarcoma ecotypes were distinct from SICs18 and 

CINSARC groups8, which have both been previously associated with patient prognosis. In 

contrast to SICs that were defined based on tumor immune infiltration alone and CINSARC 

groups based on genes associated with genomic complexity within malignant cells, sarcoma 

ecotypes were defined based on the co-localization of transcriptionally defined states across 

malignant and stromal cells.

Although sarcoma ecotypes aggregated within distinct regions of the tumor, ecotype 

abundance was highly correlated across sarcoma samples. Therefore, profiling a limited 

number of tissue cores or slides appears to be sufficient to characterize the general 

ecotype composition of a patient’s sarcoma. Interestingly, sarcoma ecotypes were associated 

with underlying genomic alterations with SE3 sarcomas having a higher abundance of 

SNVs/indels and CNAs and SE2 sarcomas having a higher contribution of the APOBEC 

mutagenesis-related COSMIC signature 2. Previous studies have also associated APOBEC-

mutagenesis with increased immune infiltration into tumors and improved survival in other 

cancers52,53. The lower mutational burden and lower APOBEC-mutagenesis in SE1 may 

explain the low immune infiltration into these tumors. Due to the strong association of 

sarcoma ecotypes with patient prognosis and their ability to predict response to ICI, our 

findings could enable personalized treatment in patients with STSs. However, it will be 

important to validate these findings in additional retrospective and prospective cohorts. 

Although RNA sequencing is increasingly used for STSs to detect gene fusions54, we are 

also exploring surrogate markers of sarcoma ecotypes.

Because the majority of patients do not respond to ICI10,12, biomarkers will be crucial to 

unlock the potential of ICI in sarcomas. PD-L1 expression has been associated with response 

to ICI in sarcomas13, and the phase II PEMBROSARC trial demonstrated improved 6-month 

non-progression rates and objective response rates in STSs selected based on the presence 

of TLS17. In our study, SE3 abundance outperformed both biomarkers for predicting ICI 

response and 6-month non-progression. Furthermore, we were able to validate the ability 

of SE3 abundance to predict ICI response in an independent cohort treated with different 

immunotherapies in combination with ICI. In contrast to SICs and the presence of TLS, 

which are prognostic of favorable outcomes in both patients with early-stage disease and 

after treatment with ICI18, we demonstrated that SE3 predicted favorable outcomes after 

treatment with ICI but not chemotherapy or in localized STSs. As a result, measuring SE3 

abundance may represent a powerful approach to identify patients with advanced sarcoma 

who should be treated with ICI. Although a higher SE2 abundance was associated with 

significantly better PFS after chemotherapy, no sarcoma ecotypes predicted chemotherapy 

objective response. Therefore, additional factors outside of the STS microenvironment may 

also contribute to chemotherapy response.

The proportion of patients assigned to SE3 was highest in UPS, which may explain the 

high clinical activity of ICI in this histology12. Notably, we also observed a high SE3 

abundance in ICI responders with MPNST and LMS. Although sarcomas have a lower 

tumor mutational burden than most epithelial tumors16, SE3 sarcomas had more SNVs/

indels and CNAs than SE2 and SE1 sarcomas. Interestingly, SE3 sarcomas did not display 

the immune hot phenotype observed in many epithelial tumors that respond favorably to 
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ICI39. Instead, SE3 sarcomas consisted of an intermediate level of immune infiltration 

characterized by M2-like immunosuppressive macrophages (S01), MYC/MTORC1 activated 

epithelial-like cells (S04), mature dendritic cells (S01), and pro-inflammatory neutrophils 

(S02). PD-1/PD-L1 blockade has been shown to increase macrophage phagocytosis49, and 

tumor-associated macrophages may also inhibit anti-tumor immune responses by CD8 T 

cells55. Although a CD8 T cell population was not assigned to SE3 in bulk tumors, we 

observed strong evidence of co-localization between SE3 and an exhausted cytotoxic CD8 

T cell state (S01) by spatial transcriptomics. Notably, SE3 abundance did not predict 

response to ICI in bladder cancer or melanoma, suggesting a distinct mechanism of ICI 

response in sarcomas. Together, our findings support a model where SE3 sarcomas are 

primed for anti-tumor immune responses with a higher mutational load and nearby antigen 

presenting dendritic cells and tumor-responsive CD8 T cells. However, the presence of 

M2-like immunosuppressive macrophages prevents tumor rejection in the absence of ICI. 

Future mechanistic experiments in preclinical models will be helpful to explore these 

cellular interactions and design therapies that increase the number of patients with STSs 

who respond to ICI.

Epithelioid sarcomas and biphasic SS are known to express epithelial markers30,31. 

Although the presence of epithelial-like sarcoma cells has not been explored in depth in 

other STSs, prior studies have observed expression of epithelial markers by IHC56,57. Here, 

we demonstrated that malignant sarcoma cells within LMS and UPS express epithelial 

markers by scRNA-Seq. Furthermore, by using previously described gene expression 

signatures of EMT, we demonstrated a spectrum of epithelial differentiation across STS 

histologies. Finally, we confirmed expression of epithelial markers by IHC across a broad 

panel of STS histologies. Mesenchymal to epithelial transition (MET) plays a critical role in 

carcinoma disease progression and metastasis58. In addition, EMT may promote resistance 

to ICI59, suggesting that the presence of epithelial-like sarcoma cells may contribute to CD8 

T cell recognition. As a result, further investigation into the role of MET in sarcoma biology 

and response to therapies like ICI is warranted.

Our sample size was limited by the rarity of STSs and relative lack of publicly available, 

clinically annotated gene expression data when compared with other cancer histologies. As 

a result, we included diverse sarcoma histologies in our cohorts. We focused on non-LMS 

STSs profiled by TCGA for our initial cell state and ecotype discovery to minimize batch 

effects and improve the accuracy of our deconvolution results. In the future, additional 

approaches to account for technical variation between samples and across platforms may 

enable identification of cell states and ecotypes in larger cohorts of STSs. Because sarcoma 

histology is known to affect prognosis and response to therapy12, we accounted for histology 

in our multivariable models. Here we focused on the most common STS histologies43, and 

future studies will be necessary to determine if sarcoma ecotypes are associated with patient 

outcomes in other sarcoma subtypes. Although we confirmed our findings across multiple 

retrospective cohorts, future prospective and interventional studies will be necessary before 

sarcoma ecotypes can be utilized as a biomarker to guide clinical management. We aimed 

to identify cell states and cellular communities conserved across STS histologies, but there 

are likely additional malignant and non-malignant cell populations that may be less common 

or specific to one or a few sarcoma histologies. For example, there may be malignant cell 
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states specific to the cell of origin for different STSs. Additional studies utilizing single cell 

approaches will be helpful to identify these cell populations, which may contribute to the 

diversity and biology of STS.

In summary, we have defined the landscape of fundamental transcriptional cell states and 

cellular ecosystems within STSs. Our findings have confirmed a crucial role for the tumor 

microenvironment in sarcoma progression and response to therapy. Furthermore, we have 

identified a candidate predictive biomarker of response to ICI in STSs that could enable 

personalization of systemic therapy in patients with advanced disease if validated in future 

prospective studies.

METHODS

Human subjects

All research was conducted in accordance with the Declaration of Helsinki. Study protocols 

were approved by the Institutional Review Boards at Stanford University and Memorial 

Sloan Kettering. Written informed consent was obtained for all samples collected and all 

data included in this study.

Training cohort

Pre-processed bulk RNA-seq profiles of STSs from The Cancer Genome Atlas (TCGA) 

were downloaded60 and scaled to transcripts per million (TPM). BAM files from the 

Steele et al. Cancer Cell 2019 UPS dataset21 were downloaded from the European Genome-

Phenome Archive (dataset ID EGAD00001004439) and converted to FASTQ files. FASTQ 

files were quasi-aligned to Gencode version 27 transcript models, and expression levels were 

summarized using Salmon61. After restricting to protein coding genes, expression levels 

per gene were summarized as TPM. Although the EcoTyper framework can be utilized to 

robustly recover cell states and ecotypes across gene expression platforms and datasets20, 

de novo discovery of cell states and ecotypes performs most robustly using samples with 

minimal batch effects. Consistent with the initial publication from TCGA, we observed 

that LMS clustered separately from other STSs by UMAP and tSNE analysis16. When we 

included LMS in our initial cell state and ecotype discovery, we observed expression of 

myogenic markers in many immune cell states and were unable to validate the identified 

cell states, suggesting inaccurate deconvolution. To enable identification of cell states and 

ecotypes from a more homogenous cohort of patients profiled with the same sequencing 

platform, we performed cell state and ecotype discovery on UPS, liposarcomas, SS, and 

MPNST profiled by TCGA. We then separately recovered the identified cell states and 

ecotypes from the LMS profiled by TCGA and the UPS from the Steele et al. Cancer 

Cell 2019 dataset to complete our training cohort for correlation with patient outcomes. 

Author-provided tumor purity and clinical information were used for analysis. SIC labels for 

the TCGA sarcomas were provided by the authors18.

Validation cohort

Microarray data from the Chibon et al. Nature Medicine dataset were downloaded from the 

Gene Expression Omnibus (GEO, accession GSE21050). Microarray data were normalized 
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using the MAS5 algorithm from the ‘affy’ R package62, mapped to NCBI Entrez gene 

identifiers using Brainarray version 21.0, converted to HUGO gene symbols, and restricted 

to protein coding genes for input to cell state and ecotype recovery. Progression-free survival 

was not available for this cohort, so distant metastasis-free survival was analyzed as a 

similar endpoint because metastases represent the majority of progression events in localized 

sarcomas2.

Stanford chemotherapy and ICI cohorts

Patients with advanced STS treated with standard of care cytotoxic chemotherapy and/or 

combination immune checkpoint blockade with ipilimumab and nivolumab were identified 

retrospectively from an institutional database. Only patients with histologies profiled by 

TCGA (UPS, liposarcomas, SS, MPNST, and LMS) were included in the analysis. Patients 

with a diagnosis of spindle cell sarcoma, pleomorphic sarcoma with giant cells, malignant 

fibrous histiocytoma, fibrosarcoma, and myxofibrosarcoma were also included and analyzed 

as UPS due to the broad definition of this diagnosis and to be consistent with the external 

cohorts63. A subset of patients treated with ICI received cryotherapy to one lesion in 

between cycle 1 and cycle 2 of ICI as part of a phase II clinical trial (NCT04118166)64. For 

these patients, response was assessed on lesions not treated with cryotherapy.

Bulk RNA sequencing

FFPE tumor blocks from patients in the Stanford chemotherapy and ICI cohorts were 

sectioned and stained with H&E for pathology review and to identify regions with the 

highest sarcoma content for sampling. Bulk RNA was isolated from two to three 1 mm cores 

per sample using RNAstorm FFPE RNA Extraction Kits (Cell Data Sciences). Sequencing 

libraries were prepared using SMARTer Stranded Total RNA-Seq v2-Pico Input Mammalian 

Kits (Takara Bio USA, Inc.). Libraries were sequenced on a HiSeq 4000 or a NovaSeq 

6000 (Illumina) with 150 base pair paired-end reads. FASTQ files were quasi-aligned using 

Salmon and expression levels were summarized as TPM as described above. Samples with 

fewer than 1 million mapped reads were excluded from further analysis. For a subset of 

patients, two separate blocks were sequenced from the same timepoint. For these timepoints, 

mean cell state abundances across both regions were used for analysis and ecotype recovery 

as described below. For patients with multiple timepoints available, the sample collected 

closest to the start of therapy was used for analysis.

ICI validation cohort

The ICI validation cohort consisted of patients with metastatic or locally advanced STSs 

treated as part of 3 prospective clinical trials combining pembrolizumab and talimogene 

laherparepvec (NCT03069378)47, nivolumab and bempegaldesleukin (NCT03282344)45, 

and pembrolizumab and epacadostat (NCT03414229)46. We restricted our analysis to 

patients with histologies profiled by TCGA as described above. RNA was extracted from 

frozen tissues, library prepped using the TruSeq Stranded mRNA LT Kit (Illumina), and 

sequenced on a HiSeq 4000 (Illumina) as described previously45. FASTQ files were quasi-

aligned using Salmon as described above, and counts were batch corrected using ComBat-

seq from the ‘sva’ R package to account for variation across sequencing lanes65. After 

restricting to protein coding genes, expression levels per gene were summarized as TPM.
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Bladder and melanoma ICI cohorts

Clinical annotations and raw bulk transcriptome counts from patients with metastatic 

urothelial bladder cancer treated with atezolizumab on the IMvigor210 phase II clinical 

trial were obtained via the ‘Imvigor210CoreBiologies’ R package66. Clinical annotations 

and normalized count data for patients with metastatic melanoma treated with anti-PD-1 

antibodies41,67 or anti-CTLA4 antibodies68,69 were downloaded from the supplementary 

material of the published manuscripts. Expression levels per gene were summarized as TPM 

for downstream analysis.

Discovery of sarcoma-specific cell states

We applied EcoTyper to identify sarcoma-specific transcriptionally-defined cell states from 

the bulk RNA-Seq of non-LMS TCGA samples in the training cohort20. We first estimated 

cell type proportions and imputed cell type-specific GEPs using CIBERSORTx22. We 

utilized two previously validated signature matrices to analyze the major cell populations 

within sarcomas. LM22 is a signature matrix consisting of 22 human immune cell subsets 

derived from Affymetrix microarray data70, and TR4 is a signature matrix consisting of 

epithelial, fibroblast, endothelial, and immune populations derived from bulk RNA-Seq of 

flow sorted cell populations22. CIBERSORTx was run to impute the fractional abundance 

of each cell type using B-mode batch correction with LM22 to overcome cross-platform 

variation, and no batch correction step for TR4. The LM22 subsets were pooled into 

9 major lineages: B cells, plasma cells, CD8 T cells, CD4 T cells, natural killer cells, 

monocytes/macrophages, dendritic cells, mast cells, and polymorphonuclear cells (PMNs)20. 

To unify the signature matrices, the immune cell fractions from LM22 were rescaled to 

sum to 1 within each sample and multiplied by the total immune cell fraction from TR4, 

yielding fractions for a total of 12 cell types. We then provided the cell fractions and TPM-

normalized expression matrix as input to the high-resolution gene expression purification 

module of CIBERSORTx. Three cell types with fewer than 50 imputed genes were excluded 

from additional analysis (plasma cells, CD4 T cells, and natural killer cells).

Non-negative matrix factorization (NMF) combined with specialized heuristics was used 

to identify and quantitate transcriptionally-defined cell states within the cell type-specific 

GEPs purified by CIBERSORTx20. For each cell type-specific imputed expression matrix, 

genes were log2-transformed and scaled to unit variance. Posneg transformation was 

performed to satisfy the non-negativity requirement of NMF, and NMF was applied to 

each transformed matrix for 2 to 20 clusters (cell states) using Kullback-Leibler (KL) 

divergence minimization71. To determine the number of cell states for each cell type, we 

applied a heuristic approach based on classification stability measured using the cophenetic 

coefficient71. For each cell type, the number of cell states was selected by determining the 

last occurrence in the interval of 2 to 20 for which the cophenetic coefficient dropped below 

0.98. The number of cell states immediately adjacent to this crossing point with a cophenetic 

coefficient closest to 0.98 was selected. Low-quality cell states with <10 marker genes were 

removed. In addition, an adaptive false positive index was implemented to remove spurious 

cell states driven by negative features as a result of posneg transformation prior to NMF20. 

In total, 23 distinct cell states with 2 to 4 cell states per cell type were identified and 

included in downstream analysis.
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Discovery of sarcoma ecotypes

We implemented EcoTyper to identify conserved cellular communities, termed ecotypes, 

defined by co-occurring cell states across sarcoma samples20. Each sample was assigned 

to most abundant cell state per cell type, and a binary matrix with cell states as rows and 

samples as columns was constructed. A Jaccard index matrix was calculated for all pairwise 

combinations of cell states, and a hypergeometric test was run to test the hypothesis of 

no overlap. The Jaccard indices for cell state pairs for which the null hypothesis could 

not be rejected was set to 0, and unsupervised hierarchical clustering was applied to the 

Jaccard index matrix. The optimal number of clusters was determined by silhouette width 

maximization, and clusters with ≤2 cell states were removed from further analysis. Using 

this approach, we identified 3 clusters, which were termed sarcoma ecotypes (SEs). To 

estimate the abundance of each SE, the cell state abundance within each of the 3 ecotypes 

was averaged. The resulting values were normalized to sum to 1 across all SEs in each 

sample, providing a continuous abundance for each SE. To assign samples to SEs, a 

two-sided t test with unequal variance was applied to evaluate the difference in estimated 

abundance between the cell states in each SE relative to the abundance of all cell states in 

other SEs. The resulting p values were corrected for multiple hypothesis testing. Samples 

were assigned to the SE with the highest abundance if the q-value was ≤0.25 and the sample 

was assigned to at least one cell state within the SE. Network plots representing each SE 

were constructed using the ‘igraph’ R package with edge weights proportional to the Jaccard 

index between cell states.

Recovery of sarcoma-specific cell states and ecotypes from independent datasets

We utilized the EcoTyper reference-guided annotation framework to recover and quantitate 

the cell states and sarcoma ecotypes identified from the non-LMS TCGA samples in other 

gene expression datasets20. Briefly, EcoTyper utilizes the learnt NMF model to determine 

a coefficient matrix for each cell type with each cell state represented as a weight. The 

EcoTyper recovery module was applied separately to each dataset (Supplementary Table 

1), and each gene was log2-transformed and scaled to unit variance prior to analysis. We 

have previously validated the ability of EcoTyper to recover cell states and ecotypes across 

different bulk (RNA-Seq and microarray) and single cell gene expression platforms20.

UMAP visualization of sarcoma ecotyper cell states

To generate the UMAP plots displayed in Fig. 2a, we analyzed the CIBERSORTx digitally-

purified GEPs for canonical cell types from each sample in the training cohort. Samples 

were assigned to the most abundant cell state and included in the analysis if the cell state 

abundance was ≥33% and the most abundant cell state abundance was ≥15% more prevalent 

than the next most abundant cell state. The digitally-purified GEPs were log2-transformed 

and scaled to unit variance within each dataset prior to dimensionality reduction.

Published single-cell RNA-Seq datasets

Previously published SS 10x Genomics and SMART-seq2 scRNA-Seq data from Jerby-

Arnon et al. Nature Medicine 2021 were downloaded from GEO (accession GSE131309). 

Author-provided cell type annotations were used for cell state recovery, and epithelial-like 
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and fibroblast-like malignant cells were identified using the epithelial and mesenchymal 

modules as described below.

Single-cell RNA sequencing

Fresh tumors were minced and enzymatically dissociated using the Human Tumor 

Dissociation Kit (Miltenyi Biotec) using a GentleMACS Octo Dissociator with heaters 

(Miltenyi Biotec) following the manufacturer’s instructions. The dissociated cell suspension 

was then applied to a 70 um MACS SmartStrainer (130-098-462; Miltenyi Biotec). The 

quality of the suspension was checked by generating a hematoxylin and eosin (H&E) 

smear and analyzed using a TC10 automated cell counter (BioRad). Samples were further 

processed by the Stanford Genomics Shared Resource using the Chromium 3’ Gene 

Expression Solution v3.1 (10x Genomics) per the manufacturer’s instructions and sequenced 

on a NovaSeq 6000 (Illumina).

Analysis of scRNA-Seq data

For the scRNA-Seq samples new to this work, sample demultiplexing, read alignment 

to the GRCh38 human reference genome, and generation of feature-barcode matrices 

were performed using CellRanger v6.0.0 (10x Genomics). Feature-barcode matrices were 

analyzed using Seurat72. Cells with ≥15% of reads mapped to mitochondrial genes and 

≤200 or ≥9000 expressed genes were excluded from the analysis. Data were normalized 

and scaled prior to principal component analysis (PCA) using the top 2,000 variable genes 

by default. The k-nearest neighbors (k-NN) were calculated, and a shared nearest neighbor 

graph was constructed using the top 25 principal components (PCs) based on the jackstraw 

procedure. Finally, clusters were identified with a resolution of 1. We observed similar 

results when choosing different numbers of PCs and resolutions.

Identification of malignant and normal single cells

Malignant and normal single cells were identified separately for each tumor sample. First, 

the scRNA-Seq profile of each cell was compared to bulk RNA-sequencing of the same 

sarcoma histology from TCGA and normal cells from the Jerby-Arnon et al. Nature 

Medicine 2021 10x Genomics scRNA-Seq dataset. For each cell, the average Spearman 

correlation between its expression profile and the expression profiles for each normal cell 

was subtracted from the average Spearman correlation between its expression profile and the 

expression profile from bulk sarcomas. For bulk sarcomas, only genes in the top and bottom 

deciles of expression were included in the analysis. Cells with a higher differential similarity 

to bulk sarcomas were considered more likely to be malignant15. Second, CNAs were 

inferred from the scRNA-Seq data using the ‘inferCNV’ R package73 with a cutoff = 0.05, 

HMM = TRUE, tumor_subcluster_partition_method = “qnorm”, k_obs_groups = 2, and 

otherwise default parameters. For SRC171, better overlap with the differential similarity to 

bulk tumors was observed when observations were split into 3 groups, so k_obs_groups was 

set to 3 for this sample. Macrophages, endothelial cells, and cancer associated fibroblasts 

from the Jerby-Arnon et al. Nature Medicine 2021 10x Genomics dataset were used as the 

normal reference. The presence of CNAs and similarity to bulk sarcoma transcriptomes for 

each cell was imported into Seurat and visualized using t-distributed stochastic neighbor 
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embedding (t-SNE). Clusters were assigned as normal or malignant cells based on both 

metrics.

Normal cell analysis

Normal single cells from sarcomas of the same histology were combined and integrated 

using the FindIntegrationAnchors and IntegrateData functions in Seurat. The integrated 

data was scaled, variable features were identified, PCA was performed, and clusters were 

identified as described above. Marker genes for each cluster were identified using the 

FindAllMarkers function with min.pct = 0.25, logfc.threshold = 0.25, and only.pos=TRUE. 

Clusters were assigned to cell types based on canonical and previously described markers 

(Supplementary Table 6).

Malignant cell analysis

Malignant sarcoma cells from different patients were expected to cluster separately due 

to underlying genomic alterations, so data integration was not performed prior to the 

malignant cell analysis. The expression of epithelial markers within malignant sarcomas 

cells was visualized using the FeaturePlot function in Seurat. Epithelial versus mesenchymal 

differentiation within malignant cells was queried using the AddModuleScore function 

to calculate the average expression levels of two gene sets defined previously by Jerby-

Arnon et al. from epithelial-like and mesenchymal-like malignant SS cell populations15. To 

generate a score of epithelial versus mesenchymal differentiation, the mesenchymal module 

score was subtracted from the epithelial module score. Malignant cells with an epithelial 

versus mesenchymal differentiation score >0 were assigned to epithelial-like cells, and cells 

with an epithelial versus mesenchymal differentiation score ≤0 were assigned to fibroblast-

like cells. We also explored the spectrum of epithelial versus mesenchymal differentiation in 

malignant sarcoma cells using three signatures of EMT34–36. The degree of epithelial versus 

mesenchymal differentiation for each EMT signature was calculated by subtracting the EMT 

up score from the EMT down score. Because there is not a hallmark gene set for genes 

downregulated during EMT, the hallmark EMT score was subtracted from 0 to be consistent 

with the other analyses. All gene sets are displayed in Supplementary Table 11.

Recovery of EcoTyper cell states from scRNA-Seq

Annotated single-cell transcriptomes were mapped to EcoTyper states as described above. 

The statistical significance of cell state recovery was evaluated via permutation testing to 

produce a z-score measuring statistical confidence20. Only the cell states identified within 

each scRNA-Seq dataset were evaluated, and the resulting z-scores were combined into a 

meta z-score using Stouffer’s method.

State-specific marker genes in scRNA-Seq data

To extend upon the marker genes assigned during cell state discovery from bulk RNA-Seq, 

we identified marker genes using the single cells assigned to each EcoTyper cell state20. 

The single-cell samples were grouped into three datasets by histology: 1) SS profiled by 

SMART-seq2 from the external Jerby-Arnon et al. Nature Medicine 2021 dataset, 2) LMS 

profiled by 10x Genomics in this work, and 3) UPS profiled by 10x Genomics in this work. 
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For each of the cell states with at least 15 assigned cells in each scRNA-Seq dataset, we 

calculated 6 metrics to prioritize marker genes for selection: 1) the number of datasets n1 

in which the mean gene expression for the cell state was >0, 2) the number of datasets n2 

in which the log2 fold change of the gene within the cell state was greatest relative to the 

other cell states within the same cell type, 3) the ratio of n2/n1, 4) the number of datasets in 

which the gene was significantly differentially expressed within the cell state based on the 

FindMarkers function in Seurat (Q<0.05), 5) the aggregate z-score for differential expression 

of the gene across datasets combined using Stouffer’s method, and 6) the mean log2 fold 

change of the gene within the cell state across datasets. For each cell state, the metrics were 

converted to rank space and averaged across measures to generate a composite score. The 

genes with the highest composite score were combined with manually curated genes in Fig. 

2b. All manually curated genes are noted in Supplementary Table 8.

Cell state annotation

Normal cell states were manually annotated based on the bulk RNA-Seq and scRNA-

Seq marker genes. Key marker genes and references supporting each assignment are 

noted in Supplementary Table 10. To aid in the annotation of malignant cell states, 

we computed the overlap between the bulk RNA-Seq marker genes identified by the 

EcoTyper pipeline for each cell state and hallmark gene sets using the ‘Compute 

Overlaps’ function from the MSigDB web interface (https://www.gsea-msigdb.org/gsea/

msigdb/human/annotate.jsp)34,74. P values were calculated from the hypergeometric 

distribution and the q-values displayed in Supplementary Table 9 were calculated using 

the Benjamini-Hochberg procedure. Key marker genes were chosen from overlapping gene 

sets based on their expression within single cells assigned to the malignant cell state.

Immunohistochemistry for epithelial markers

A tissue microarray was constructed using one to seven 1 mm FFPE cores per patient. 

Immunohistochemistry was performed by the Stanford Human Pathology/Histology Service 

Center for CDH1, MUC1, and SDC1. Tumor cell staining intensity was scored using a 

3-point scale (0=negative, 1=weak positive, 2=strong positive).

Biologic features of sarcoma ecotypes

Biologic features associated with each sarcoma ecotype were analyzed in the training cohort. 

The percentage of patients with each sarcoma histology and proportion of canonical cell 

types were analyzed based on sarcoma ecotype assignment. Cell type proportions were 

inferred using CIBERSORTx, averaged, and scaled. Sex and age ≥60 versus <60 years old 

were analyzed using two-sided Wilcoxon tests comparing the relative abundance of each 

sarcoma ecotype between groups. Hallmark gene sets were analyzed by scaling each gene 

to unit variance expression across samples prior to averaging all component genes for each 

gene set. Enrichment or depletion was analyzed by performing a two-sided Wilcoxon test 

to compare the average expression for each hallmark gene set in samples assigned to each 

sarcoma ecotype versus samples assigned to the other sarcoma ecotypes. P values were 

adjusted for multiple hypothesis testing, and features with a q-value<0.05 were considered 

significant.

Subramanian et al. Page 18

Nat Cancer. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.gsea-msigdb.org/gsea/msigdb/human/annotate.jsp
https://www.gsea-msigdb.org/gsea/msigdb/human/annotate.jsp


Association of genomic alterations and mutational signatures with sarcoma ecotypes

CNA, SNV, and indel calls from the sarcomas profiled by TCGA were downloaded from 

the National Cancer Institute Genomic Data Commons Data Portal. The contributions of 

COSMIC mutational signatures 1, 2, 5, and 13 were analyzed using the ‘mutSignatures’ R 

package75 based on their predominance in STSs16. The proportion of patients with CNAs 

or high impact SNVs/indels in each gene was compared across ecotypes using two-sided 

Fisher’s exact tests. For CNAs, we analyzed COSMIC Tier 1 genes76 mutated in at least 

25% of patients. For SNVs/indels, we analyzed genes mutated in at least 3% of patients. 

P-values were corrected for multiple hypothesis testing.

Spatial transcriptomics

Fresh sarcoma specimens were harvested and frozen in optimal cutting temperature 

compound by the Stanford Tissue Procurement Shared Resource. Sarcoma specimens were 

cryosectioned at −20°C onto gene expression slides by the Stanford Genomics Shared 

Resource. Permeabilization time was optimized using 10 um sections with the Visium 

Spatial Tissue Optimization Slide & Reagents kit (10x Genomics). Sequencing libraires 

were produced using the Visium Spatial Gene Expression Slide & Reagent kit (10x 

Genomics) according to the manufacturer’s instructions and sequenced on a NovaSeq 

6000 (Illumina). Sample demultiplexing, tissue and fiducial detection, read alignment to 

the GRCh38 human reference genome, and generation of feature-barcode matrices was 

performed using Space Ranger v1.3.0 (10x Genomics).

Recovery of EcoTyper cell states and ecotypes from spatial transcriptomics data

Cell state and ecotype abundance were estimated within each spatially-barcoded spot by 

imputing the fractional abundance of each sarcoma cell state in the Visium array using 

EcoTyper20. The most abundant cell state per cell type within each spot was set to 1 and the 

rest to 0. Finally, each cell state was normalized by multiplying it by the parent cell type 

fraction based on CIBERSORTx. SE abundance was calculated for each spot by averaging 

the relative fractions of each cell state within the ecotype. SE abundances were scaled so 

that the 99th percentile value across all 3 SEs was set to 1. Cell state co-localization was 

analyzed by computing all pairwise Spearman correlation coefficients between cell state 

abundances within each spot. The distance between spots was calculated by quantitating the 

Euclidean distance between the spot centers. Spatial aggregation of SEs was investigated 

using Moran’s I77 based on the relative SE abundance for each spot and the immediately 

adjacent neighboring spots.

Ligand-receptor analysis

To understand the signaling networks within sarcoma ecotypes, we analyzed the 

CIBERSORTx digitally-purified cell type-specific GEPs from STSs in the training cohort 

for enrichment in putative ligand-receptor pairs78. Samples were assigned to the most 

abundant cell state as described above. We assessed whether each ligand and receptor 

were overexpressed in samples assigned to each cell state versus all other samples using 

one-sided Mann-Whitney U-tests. P values were corrected for multiple hypothesis testing, 

and significantly overexpressed ligand and receptor pairs across cell states were identified.
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PD-L1 staining and TLS scoring

Immunohistochemistry for PD-L1 was performed on FFPE sections by the Stanford Human 

Pathology/Histology Service Center using the SP263 clone antibody following antigen 

retrieval with CC1 buffer for 64 minutes and scored using the combined positive score 

on a representative histological section of tumor. The presence of TLS was analyzed by 

morphology on H&E-stained slides of a representative section of tumor and scored as absent 

or present. Both PD-L1 and TLS scoring was performed by a board-certified anatomic 

pathologist (G.W.C) blinded to sarcoma ecotypes and clinical outcomes.

Statistics and reproducibility

No statistical method was used to predetermine sample size but our sample sizes are 

similar to those reported in previous publications8,15,16,18. Experiments were performed 

once. The experiments were not randomized. Except for PD-L1 and TLS scoring, data 

collection and analysis were not performed blind to the conditions of the experiments. 

Samples failing to meet the quality control metrics described above were excluded from 

analysis. For the Stanford chemotherapy and ICI cohorts, PFS was defined as the time 

from the start of treatment to any progression or death. Progression and response were 

determined radiographically using RECIST 1.1 criteria79. Patients without progression 

or death at the time of last imaging follow-up were censored. PFS and DMFS were 

calculated using the Kaplan-Meier method and statistical significance was determined 

using two-sided log-rank tests when comparing two groups or pairwise two-sided log-rank 

tests with correction for multiple hypothesis testing when comparing multiple groups. 

Multivariable Cox proportional hazards models were fit with the ‘coxph’ function from 

the ‘survival’ R package, and the significance of individual variables was assesses using 

two-sided Wald tests. Sarcoma cell state and ecotype abundance, tumor size, and grade 

were used as continuous variables for Cox regression, and histology, resection extent, and 

anatomic site were included as categorical variables. Optimal cutoffs for stratifying patient 

outcomes based on S01 monocyte/macrophage and S02 endothelial cell abundance were 

defined in the training cohort using the ‘surv_cutpoint’ function from the ‘survminor’ 

R package with minprop=0.2 and applied to the validation cohort. The optimal cutpoint 

for predicting response to ICI using SE3 abundance was defined in the training cohort 

based on the maximum Youden’s J statistic. Two-sided Fisher’s exact tests were used 

to compare proportions, and two-sided Mann-Whitney U-tests or Wilcoxon signed-rank 

tests were used to compare distributions using non-paired and paired samples, respectively. 

Correlation between variables was assessed using the Spearman correlation coefficient. Data 

distribution was assumed to be normal, but this was not formally tested, and non-parametric 

tests were utilized when possible. P-values were corrected for multiple hypothesis testing 

using the Benjamini-Hochberg procedure. Statistical significance was assumed at P<0.05. 

Statistical analyses were performed with Prism (GraphPad Software) or R through the 

RStudio environment. Further information on research design is available in the Nature 

Research Reporting Summary linked to this article.

Subramanian et al. Page 20

Nat Cancer. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1. Summary of patient cohorts and datasets utilized for discovery and 
validation of sarcoma cell states and ecosystems.
a, Two cohorts of patients with localized soft tissue sarcomas (STSs) were analyzed. 

Soft tissue sarcomas profiled by the Cancer Genome Atlas (TCGA)16 and a previously 

published group of patients with undifferentiated pleomorphic sarcoma (UPS)21 profiled 

by RNA-sequencing were combined to form the training cohort. Initial identification of 

sarcoma cell states and ecotypes was performed in non-leiomyosarcoma (LMS) soft tissue 

sarcomas from TCGA, then the full training cohort was used to assess associations between 

cell states and ecotypes with patient outcomes. A previously published cohort of patients 

with localized STS profiled by microarray was used as the validation cohort for associations 

between cell states and ecotypes with patient outcomes. b, Cell states were validated using 

single-cell RNA-sequencing from 12 previously published synovial sarcomas (SS)15 and 4 

LMS and 3 UPS new to this work. c, The spatial distributions of cell states and ecotypes 

were validated using spatial transcriptomics analysis of 4 STSs.
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Extended Data Fig. 2. Identification of malignant sarcoma cells and validation of sarcoma 
ecotyper cell states using scRNA-Seq.
a, Representative plot of inferred copy number alterations (CNAs) in single cells clustered 

into two groups using inferCNV from SRC164. Amplifications and deletions are shown 

across each chromosome. b-d, t-SNE plots of scRNA-Seq profiles from SRC164 colored 

by (b) assignment to normal or malignant cells, (c) detection of CNAs, and (d) differential 

similarity to sarcomas of the same histology profiled by bulk RNA-Seq compared with 

normal cells profiled by scRNA-Seq. e, Significance of EcoTyper cell state recovery across 

scRNA-Seq datasets measured by permutation testing and aggregated into a meta z-score 

using Stouffer’s method. Z-scores>1.65 (one-sided P value<0.05) are considered significant.
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Extended Data Fig. 3. Recovery of malignant cells across soft tissue sarcomas using 
CIBERSORTx.
a-b, Stacked bar plots displaying the percentage of patients with each soft tissue sarcoma 

histology from the training cohort with (a) fibroblast-like cells and (b) epithelial-like cells 

identified by CIBERSORTx. Synovial sarcoma = SS, leiomyosarcoma = LMS, malignant 

peripheral nerve sheath tumor = MPNST, undifferentiated pleomorphic sarcoma = UPS, 

liposarcoma = LPS. c, Scatter plots showing the correlation between tumor purity and 

the combined abundance of epithelial-like cells and fibroblast-like cells by CIBERSORTx. 

Spearman’s correlation coefficient and two-sided P value are displayed on the graph.
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Extended Data Fig. 4. Characterization of epithelial-like malignant cells within soft tissue 
sarcomas.
a, t-SNE plots displaying expression of epithelial marker genes in malignant sarcoma 

cells from LMS and UPS tumors profiled by scRNA-Seq. b, t-SNE plots of epithelial 

vs. mesenchymal differentiation in malignant LMS and UPS cells using three previously 

described signatures of epithelial to mesenchymal transition34–36. Sample and histology for 

each cell are displayed in Fig. 2c. The gene sets are displayed in Supplementary Table 11.
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Extended Data Fig. 5. Association of cell state abundances with patient outcomes in the 
validation cohort.
a, Association of sarcoma-specific cell states identified by EcoTyper with distant metastasis-

free survival in the validation cohort. Significance was assess using multivariable Cox 

proportional hazards models including cell state abundance as a continuous variable along 

with sarcoma histology. P values were calculated using two-sided Wald tests without 

correction for multiple comparisons. Marker genes are displayed for significantly associated 

cell states. Patient survival, histologies, and cell state abundances used in the analysis are 

shown in Supplementary Table 3. Only patients with survival data available were included in 

the analysis.
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Extended Data Fig. 6. Correlation of sarcoma ecotypes across time and association with genomic 
alterations.
a, Scatter plots showing the correlation between ecotype abundance across different 

timepoints from the same patient. Spearman’s correlation coefficients and two-sided P 

values are displayed. The lines of best fit by linear regression and 95% confidence intervals 

for the lines of best fit are shown on the graph. The data used for this analysis are shown 

in Supplementary Table 20. b,c, Box plots displaying (b) the total number of high impact 

SNVs/Indels and (c) normalized contribution of COSMIC mutational signatures 1, 5, and 

13 by sarcoma ecotype (n=79 SE1, 78 SE2, and 33 SE3 sarcomas for both panels). P 

values were calculated using Kruskal-Wallis tests followed by Dunn’s tests for pairwise 

comparisons. Boxes show median and quartiles, and whiskers extend to the minimum and 

maximum value.
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Extended Data Fig. 7. Validation of sarcoma ecotypes using spatial transcriptomics.
a, Distribution of cell states from sarcoma ecotype 3 (SE3) in SCR93, a sarcoma profiled by 

spatial transcriptomics. Abundance of the cell states that make up SE3 within each spatial 

transcriptomics spot are shown, and fibroblast-like cell abundance is plotted to show the 

tumor outline. b, Heatmaps displaying Spearman correlation of cell state abundances within 

spatial transcriptomics spots. c, Distribution of sarcoma ecotypes in three sarcomas profiled 

by spatial transcriptomics. H&E staining along with the abundance of SEs within each 

spatial transcriptomics spot are shown. Fibroblast-like cell abundance is plotted to show the 

tumor outline. Scale bars show 1000 μm. A total of four sarcomas were profiled, and SRC93 

is displayed in Fig. 5f.
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Extended Data Fig. 8. Summary of advanced soft tissue sarcoma cohorts.
Two cohorts of patients with advanced soft tissue sarcoma treated at Stanford were analyzed 

based on the type of systemic therapy received. Patients treated with both chemotherapy 

and ipilimumab/nivolumab were included in both cohorts. The ICI validation cohort 

consisted of patients with advanced soft tissue sarcomas treated with anti-PD-1 antibodies 

(pembrolizumab or nivolumab) in combination with experimental immunotherapies 

(talimogene laherparepvec=T-VEC, bempegaldesleukin=NKTR-214, or epacadostat) as part 

of 3 clinical trials.

Extended Data Fig. 9. Association of sarcoma ecotypes with response to ICI and chemotherapy.
a, Plot of SE3 abundance in patients with and without 6-month non-progression after 

starting ipilimumab and nivolumab (n=8 patients with and 30 patients without 6-month non-
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progression). P value was calculated using a two-sided Mann-Whitney U-test. b, Receiver 

operating characteristic curves for prediction of 6-month non-progression on ipilimumab 

and nivolumab by SE3 abundance, PD-L1 expression, and the presence of tertiary lymphoid 

structures (TLS). Area under the curve (AUC) and 95% confidence intervals (95% CI) are 

displayed on the graph. c, Box plot of PD-L1 combined positive score across sarcoma 

ecotypes (n=10 SE1, 14 SE2, and 4 SE3 sarcomas). P values were calculated using Kruskal-

Wallis tests followed by Dunn’s tests for pairwise comparisons. Boxes show median and 

quartiles, and whiskers extend to the minimum and maximum value. d, Stacked bar plot 

of the presence of tertiary lymphoid structures across sarcoma ecotypes. P values were 

calculated using two-sided Fisher’s exact tests. e, Waterfall plot showing the best response 

by RECIST criteria for patients with advanced STSs treated with chemotherapy based on 

sarcoma ecotype assignment. Horizontal dotted lines represent the criteria for progressive 

disease (20% increase) and partial response (30% decrease). Patients with only non-target 

disease are plotted at 0%. f, Plot of SE3 abundance in patients with and without a response 

to chemotherapy (n=6 responders and 31 non-responders). P value was calculated using a 

two-sided Mann-Whitney U-test. g, Receiver operating characteristic curves for prediction 

of response to chemotherapy by SE3 abundance. AUC and 95% CI are displayed on the 

graph. Patient survival, treatment response, tumor characteristics, ecotype assignments, and 

ecotype abundances used in the analysis of the chemotherapy and ipilimumab/nivolumab 

cohorts are shown in Supplementary Tables 18–20. For panels c, d, and e, patients were 

analyzed based on ecotype assignment, and patients not assigned to an ecotype were not 

included. For panels a, b, f, and g, patients were analyzed based on ecotype abundance, and 

all patients were included in the analysis.
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Extended Data Fig. 10. Validation of ICI response prediction by SE3 abundance and changes in 
sarcoma cell states and ecotypes during treatment with ICI.
a, Receiver operating characteristic curve and area under the curve (AUC) with 95% 

confidence intervals (95% CI) for prediction of treatment response in the ICI validation 

cohort. b, Areas under the curve for prediction of response to immune checkpoint inhibition 

based on SE3 abundance in patients with metastatic bladder cancer and melanoma (n=348 

bladder anti-PD-L1, 172 melanoma anti-PD-1, and 51 melanoma anti-CTLA-4). Error bars 

display the 95% confidence interval. c, Heatmap of fold change in cell state and sarcoma 

ecotype abundances on-treatment in the ICI validation cohort. Adjusted P values comparing 

pre-treatment and on-treatment samples are displayed. P values were calculated using two-
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sided Wilcoxon signed-rank tests and corrected for multiple hypothesis testing. Patient 

treatment response and ecotype abundances used in analysis of the ICI validation cohort and 

bladder/melanoma cohorts are shown in Supplementary Table 21 and Supplementary Table 

22, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A machine-learning framework for large-scale identification and validation of sarcoma 
cell states and ecosystems.
a, Schematic showing the implementation of EcoTyper in patients with soft tissue sarcoma. 

Cell states and ecotypes were initially discovered in a training cohort of patients with 

localized soft tissue sarcoma profiled with RNA-Seq followed by validation in a separate 

cohort of patients with localized soft tissue sarcoma with gene expression analyzed by 

microarray. Cell type-specific gene expression was purified from bulk transcriptomic 

data prior to identification of transcriptional states for each cell type. Cell states were 

validated via single-cell RNA-Seq, and the associations between cell state abundances and 

patient outcomes were analyzed. Sarcoma ecotypes were discovered by determining the co-

occurrence patterns between cell states, and the spatial distribution of the ecotypes and cell 

states was validated using spatial transcriptomics. Finally, the association between sarcoma 

ecotypes and patient outcomes was analyzed. Three cohorts of patients with advanced soft 

tissue sarcoma were analyzed with bulk RNA-Seq, including two independent cohorts of 

patients treated with immune checkpoint inhibition and a cohort of patients treated with 

standard of care cytotoxic chemotherapy. See also Extended Data Figs. 1 and 8.
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Fig. 2. Discovery and characterization of sarcoma-specific cell states.
a, UMAP plots of cell type-specific GEPs purified by CIBERSORTx from sarcomas profiled 

by bulk RNA-Seq in the training cohort. Each point represents one sample colored by 

the most abundant cell state. b, Heat maps showing expression of cell state marker genes 

(rows) across scRNA-Seq datasets spanning three sarcoma histologies (columns). Average 

log2 fold change is displayed for each cell state compared with the other cells of the same 

type. Only cell states with at least 15 assigned cells in each scRNA-Seq dataset are shown. 

See Supplementary Table 8. c-e, t-SNE plots of LMS and UPS malignant cell scRNA-

Seq profiles colored by (c) tumor sample, (d) epithelial differentiation score measured 

by gene expression modules defined in synovial sarcomas15, and (e) sarcoma cell type 

assignment based on the epithelial differentiation score. The epithelial differentiation score 

was calculated by subtracting the mesenchymal module score from the epithelial module 

score as described in the Methods. f, Representative sarcoma cores showing expression 

of epithelial markers CDH1, MUC1, and SDC1 by immunohistochemistry. A total of 

128 cores were stained for each marker. g, Stacked bar plots displaying the percentage 

of patients across soft tissue sarcoma histologies with CDH1, MUC1, or SDC1 detected 

by immunohistochemistry. Synovial sarcoma = SS, leiomyosarcoma = LMS, malignant 
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peripheral nerve sheath tumor = MPNST, undifferentiated pleomorphic sarcoma = UPS, 

liposarcoma = LPS. See Supplementary Table 12.
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Fig. 3. Association of cell state abundances with patient outcomes across cohorts.
a, Association of sarcoma-specific cell states identified by EcoTyper with PFS in the 

training cohort. Significance was assessed using multivariable Cox proportional hazards 

models including cell state abundance as a continuous variable along with sarcoma 

histology. P values were calculated using two-sided Wald tests without correction for 

multiple comparisons. Marker genes are displayed for significantly associated cell states. 

b, Scatter plot showing the correlation between cell state survival associations in the 

training (RNA-Seq) cohort and the validation (Microarray) cohort. Survival associations 

are displayed as −log10p-values multiplied by 1 if the state is associated with shorter 

survival and −1 if associated with favorable outcomes. Spearman’s correlation coefficient 

and two-sided P values are displayed. The line of best fit by linear regression and 95% 

confidence intervals of the line of best fit are shown on the graph. c,d, Kaplan-Meier plots 

showing survival outcomes stratified by the abundance of (c) S01 monocytes/macrophages 

or (d) S02 endothelial cells. The optimal threshold was defined in the training cohort and 

applied to the validation cohort. P values were calculated using two-sided log-rank tests. 

Patient survival, histologies, and cell state abundances used in the analysis of the training 
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and validation cohorts are shown in Supplementary Table 2 and Supplementary Table 3, 

respectively. Only patients with survival data available were included in the analysis.
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Fig. 4. Discovery of sarcoma multicellular communities.
a, Heatmap of cell state abundances across STSs of different histologies from the discovery 

cohort separated into three sarcoma ecotypes (SEs). Only cell states and tumor samples 

assigned to SEs are displayed. b, Network diagrams displaying SE composition. The length 

of each edge represents the Jaccard index across sarcomas from the training cohort. c, River 

plots showing the overlap between sarcoma ecotypes and sarcoma immune classes18 and 

CINSARC signatures8. The thickness of each bar represents the percent of patients within 

each group.
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Fig. 5. Characterization of sarcoma ecotypes.
a, Plot of sarcoma ecotype biologic features in the training cohort. Left panel shows the 

percentage of each STS histology assigned to each sarcoma ecotype. Middle panel shows 

the relative abundance of 9 canonical cell types. Right panel shows significantly enriched 

patient features and hallmark gene sets. Additional features are shown in Supplementary 

Table 13. b, Plot of genomic alterations from TCGA by sarcoma ecotype assignment. Top 

two panels show total number of high impact SNVs/indels and total number of genes 

with a CNA. Bottom two panels display the genes most altered by SNVs/indels and genes 

enriched for CNAs in SE3. Adjusted P values were calculated using two-sided Fisher’s 

exact tests corrected for multiple hypothesis testing. For CNAs, representative genes from 
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each genomic region are displayed. c,d, Box plots displaying (c) the total number of genes 

with CNAs (n=60 SE1, 67 SE2, and 29 SE3 samples) or (d) the normalized contribution 

of COSMIC mutational signature 2 by sarcoma ecotype (n=79 SE1, 78 SE2, and 33 SE3 

sarcomas). P values were calculated using Kruskal-Wallis tests followed by Dunn’s tests 

for pairwise comparisons. Boxes show median and quartiles, and whiskers extend to the 

minimum and maximum value. e, Violin plot comparing the Spearman spatial correlations 

between cell states in different ecotypes versus cell states within the same ecotype. P 

value was calculated using a two-sided Mann-Whitney U test. f, Distribution of sarcoma 

ecotypes in an STS (SRC93) profiled by spatial transcriptomics. H&E staining along with 

the abundance of SEs within each spatial transcriptomics spot are shown. Fibroblast-like cell 

abundance is plotted to show the tumor outline. Scale bar shows 1000 μm. A total of four 

sarcomas were profiled, and the other sarcomas are displayed in Extended Data Fig. 7c. g, 
Spatial aggregation of sarcoma ecotypes by spatial transcriptomics measured using Moran’s 

I (n=4 samples). A z-score>1.96 is considered significantly more aggregated than expected 

by chance. h, Network diagrams displaying putative ligand-receptor interactions between 

cell states within each sarcoma ecotype. The arrows represent the direction of ligand to 

receptor signaling.
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Fig. 6. Association of sarcoma ecotypes with patient outcomes.
a, Kaplan-Meier plot of progression-free survival in the training cohort stratified by sarcoma 

ecotype assignment. P values calculated using pairwise two-sided log-rank tests with 

correction for multiple hypothesis testing. b, Multivariable Cox proportional hazard ratios 

for progression-free survival in the training cohort based on sarcoma ecotype abundance 

including sarcoma histology as a variable (n=238 patients). Error bars display the 95% 

confidence interval. c, Kaplan-Meier plot of distant metastasis-free survival in the validation 

cohort stratified by sarcoma ecotype assignment. P values were calculated using pairwise 

two-sided log-rank tests with correction for multiple hypothesis testing. d, Multivariable 

Cox proportional hazard ratios for distant metastasis-free survival in the validation cohort 

based on sarcoma ecotype abundance including sarcoma histology as a variable (n=309 

patients). Error bars display the 95% confidence interval. Patient survival, histologies, 

ecotype assignments, and ecotype abundances used in the analysis of the training and 

validation cohorts are shown in Supplementary Table 2 and Supplementary Table 3, 

respectively. For panels a and c, patients were analyzed based on ecotype assignment, and 

patients not assigned to an ecotype were not included. For panels b and d, patients were 

analyzed based on ecotype abundance, and all patients with survival data available were 

included in the analysis.
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Fig. 7. Predicting STS response to immune checkpoint inhibition with sarcoma ecotypes.
a, Kaplan-Meier plot of progression-free survival in patients with advanced STSs treated 

with standard of care chemotherapy stratified by sarcoma ecotype assignment. P values 

calculated using pairwise two-sided log-rank tests with correction for multiple hypothesis 

testing. b, Multivariable Cox proportional hazard ratios for progression free survival in 

patients with advanced STSs treated with standard of care chemotherapy based on sarcoma 

ecotype abundance including sarcoma histology as a variable (n=37 patients). Error bars 

display the 95% confidence interval. c, Kaplan-Meier plot of progression-free survival in 

patients with advanced STSs treated with ipilimumab and nivolumab stratified by sarcoma 

ecotype assignment. P values were calculated using pairwise two-sided log-rank tests 

with correction for multiple hypothesis testing. d, Multivariable Cox proportional hazard 

ratios for progression-free survival in patients with advanced STSs treated with ipilimumab 

and nivolumab based on sarcoma ecotype abundance including sarcoma histology as a 

variable (n=38 patients). Error bars display the 95% confidence interval. e, Waterfall plot 

showing the best response by RECIST criteria for patients with advanced STSs treated 

with ipilimumab and nivolumab based on sarcoma ecotype assignment. Horizontal dotted 

lines represent the criteria for progressive disease (20% increase) and partial response 

(30% decrease). f, Plot of SE3 abundance in patients with and without a response to 

ipilimumab and nivolumab (n=4 responders and 34 non-responders). P value was calculated 

using a two-sided Mann-Whitney U-test. g, Receiver operating characteristic curves for 

prediction of response to ipilimumab and nivolumab by SE3 abundance, PD-L1 expression, 

and the presence of tertiary lymphoid structures (TLS). Area under the curve (AUC) and 

95% confidence intervals (95% CI) are displayed on the graph. Patient survival, treatment 

response, histologies, ecotype assignments, and ecotype abundances used in the analysis of 

the chemotherapy and ipilimumab/nivolumab cohorts are shown in Supplementary Tables 

18–20. For panels a, c, and e, patients were analyzed based on ecotype assignment, and 
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patients not assigned to an ecotype were not included. For panels b, d, f, and g, patients were 

analyzed based on ecotype abundance, and all patients were included in the analysis.
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Fig. 8. Validation of SE3 as a predictor of response to ICI in soft tissue sarcomas.
a, Waterfall plot showing the best response by RECIST criteria measured by percentage 

change in the sum of target lesion diameters for patients with advanced STSs in the ICI 

validation cohort based on sarcoma ecotype assignment. Horizontal dotted lines represent 

the criteria for progressive disease (20% increase) and partial response (30% decrease). 

Only patients assigned to sarcoma ecotypes are displayed. b, Plot of SE3 abundance in 

patients with and without a response to ICI in the validation cohort (n=6 responders and 

23 non-responders). c, Stacked bar plot demonstrating the percent of ICI responders in 

the training and validation cohorts stratified by high and low SE3 abundance. The optimal 

cutoff for SE3 abundance was defined in the training cohort and applied to the validation 

cohort. P values were calculated using two-sided Fisher’s exact tests. d,e, Mean distance 

of (d) CD8 T cell states from SE3 spots (n=1963 spots) and (e) sarcoma ecotypes from 

S01 CD8 T cells (n=3352 SE1, 2061 SE2, and 1963 SE3 spots) in sarcomas profiled by 

spatial transcriptomics. P values were calculated using Kruskal-Wallis tests followed by 

Dunn’s tests for pairwise comparisons. Boxes show median and quartiles, and whiskers 

extend to the minimum and maximum value. f,g, Pre-treatment (Pre-Tx) and on-treatment 

(On-Tx) abundance of (f) S01 CD8 T cells and (g) S01 monocytes/macrophages in the ICI 

validation cohort (n=19 paired samples). P values were calculated using two-sided Wilcoxon 

signed-rank tests. Patient treatment response, ecotype assignments, and ecotype abundances 

used in the ICI validation cohort analysis are shown in Supplementary Table 21. For panel a, 

patients were analyzed based on ecotype assignment, and patients not assigned to an ecotype 

were not included. For panels b and c, patients were analyzed based on ecotype abundance, 

and all patients were included in the analysis.
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