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Abstract
Motivation: Aging is intricately linked to diseases and mortality. It is reflected in molecular changes across various tissues which can be lever-
aged for the development of biomarkers of aging using machine learning models, known as aging clocks. Despite advancements in the field, a 
significant challenge remains: the lack of robust, Python-based software tools for integrating and comparing these diverse models. This gap 
highlights the need for comprehensive solutions that can handle the complexity and variety of data in aging research.
Results: To address this gap, I introduce pyaging, a comprehensive open-source Python package designed to facilitate aging research. pyag-
ing harmonizes dozens of aging clocks, covering a range of molecular data types such as DNA methylation, transcriptomics, histone mark 
ChIP-Seq, and ATAC-Seq. The package is not limited to traditional model types; it features a diverse array, from linear and principal component 
models to neural networks and automatic relevance determination models. Thanks to a PyTorch-based backend that enables GPU acceleration, 
pyaging is capable of rapid inference, even when dealing with large datasets and complex models. In addition, the package’s support for 
multi-species analysis extends its utility across various organisms, including humans, various mammals, and Caenorhabditis elegans.
Availability and implementation: pyaging is accessible on GitHub, at https://github.com/rsinghlab/pyaging, and the distribution is available 
on PyPi, at https://pypi.org/project/pyaging/. The software is also archived on Zenodo, at https://zenodo.org/doi/10.5281/zenodo.10335011.

1 Introduction
As we entered the 21st century, longevity studies became the 
cornerstone of aging research in various model organisms. 
The span of these studies ranged from a few days in 

Caenorhabditis elegans to several weeks in Drosophila 
melanogaster, extending up to a few years in Mus musculus. 
This spectrum allowed for manageable daily mortality track-
ing in the burgeoning field of gerontology. Nonetheless, the 
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feasibility of lifespan studies, both in terms of time and cost, 
remains a significant challenge. The transformative work by 
Horvath in 2013 marked a pivotal moment, introducing a re-
liable age predictor and catalyzing a new domain of research 
focused on the development and refinement of biomarkers of 
aging, healthspan, and lifespan (Horvath 2013).

Presently, the field boasts over a hundred aging clocks— 
machine learning models designed to predict various aspects 
of aging. DNA methylation, undoubtedly the most popular 
data type for constructing aging biomarkers, is comple-
mented by other molecular signatures like transcriptomics, 
proteomics, blood chemistry, histone modification, and chro-
matin accessibility, each offering unique advantages. 
However, there exists a notable gap in software tools that 
consolidate these diverse aging clocks for comparative analy-
sis. A few notable initiatives, such as the R packages methyl-
clock (Peleg�ı-Sis�o et al. 2021) and methylCYPHER (Thrush 
et al. 2022), represent steps toward addressing this need.

Yet, the development of aging biomarkers is not without 
its challenges, as underscored in a recent perspective (Moqri 
et al. 2023). Current software tools in this domain face sev-
eral limitations: (i) while popular in biology, the prevalent 
use of R, an ad-hoc object-oriented programming system, of-
ten lacks the versatility needed for complex models like neu-
ral networks, which are more effectively implemented in 
languages such as Python; (ii) most existing age prediction 
packages are limited to a handful of clocks, far fewer than 
the actual breadth of available models; (iii) a focus predomi-
nantly on DNA methylation biomarkers narrows the scope 
for cross-comparison across different molecular layers; (iv) 
the lack of nonlinear techniques, such as neural network- 
based approaches like AltumAge (Galkin et al. 2021, de Lima 
Camillo et al. 2022); (v) the reliance on CPU processing 
results in slower inference, especially with larger datasets and 
more complex models; (vi) a species-specific focus, predomi-
nantly on Homo sapiens.

Addressing these challenges, I have developed pyaging, a 
Python-based package that acts as a comprehensive reposi-
tory for various biomarkers of aging and aging clocks. pyag-
ing offers: (i) a Python-centric approach, utilizing the 
versatile AnnData (Virshup et al. 2021) format of annotated 
data matrices in memory and on disk; (ii) an expanding re-
pository, currently encompassing over 50 clocks with routine 
updates given new developments in the literature; (iii) clocks 
based on a diverse range of data types, encompassing 
DNA methylation (Hannum et al. 2013, Horvath 2013, 
Knight et al. 2016, Lin et al. 2016, Petkovich et al. 2017, 
Stubbs et al. 2017, Zhang et al. 2017, Horvath et al. 2018, 
Levine et al. 2018, Meer et al. 2018, Thompson et al. 2018, 
Lee et al. 2019, Lu et al. 2019, Zhang et al. 2019, Han et al. 
2020, McEwen et al. 2020, Belsky et al. 2022, de Lima 
Camillo et al. 2022, Endicott et al. 2022, Higgins-Chen et al. 
2022, Lu et al. 2022, Dec et al. 2023, Li et al. 2023, Lu et al. 
2023, McGreevy et al. 2023, Ying et al. 2024), transcriptom-
ics (Meyer and Schumacher 2021), histone mark ChIP-Seq 
(de Lima Camillo et al. 2023), and ATAC-Seq (Morandini 
et al. 2024); (iv) a variety of models, including linear, princi-
pal component (PC) linear models, neural networks, and au-
tomatic relevance determination (ARD) (MacKay 2003) 
models; (v) a PyTorch-based (Paszke et al. 2019) backend 
that leverages GPU processing for enhanced inference speeds; 

(vi) a multi-species scope, currently covering H.sapiens, M. 
musculus, C.elegans, and various mammalian species.

2 Materials and methods
The development of pyaging commenced with an extensive 
review of the literature to identify a diverse array of aging 
clocks, encompassing various data types, computational 
models, and species, as summarized in Table 1.

Each identified model was subsequently reimplemented 
with a PyTorch backend to enable GPU-accelerated computa-
tions. This approach takes advantage of the fact that aging 
clocks, at their core, often rely on matrix multiplications, par-
ticularly within the domain of linear models, which are prev-
alent in aging research.

For a linear model, let b represent the vector of coefficients 
(including the intercept β0), ɛ the vector of error terms, X the 
matrix of independent variables, and y the vector of depen-
dent variable observations. The linear model can then be 
expressed algebraically as: 

yi ¼ β0þ β1xi1þ β2xi2þ � � � þβnxinþ ɛi; for i ¼ 1; . . . ;m
(1) 

This equation can be succinctly represented in matrix 
form as: 

y ¼ Xbþ ɛ (2) 

where y 2 Rm is the vector of dependent variables for m sam-
ples, X 2 Rm×ðnþ1Þ is the matrix of independent variables 
(with the first column being a vector of ones to incorporate 
the intercept term), b 2 Rðnþ1Þ is the vector of coefficients in-
cluding the intercept, and ɛ 2 Rm is the vector of errors.

In the context of PC-based clocks, the model can be ex-
tended to incorporate dimensionality reduction via principal 
component analysis (PCA) before applying the linear model: 

y ¼ ðX − 1l>ÞWbþ ɛ (3) 

Here, l 2 Rn denotes the mean vector for each independent 
variable, 1 is a column vector of ones of length m used to 
broadcast the mean subtraction across all samples, W 2 Rn×p 

represents the rotation matrix derived from PCA, and p is the 
number of principal components retained. The term 
ðX − 1l>ÞW thus represents the projection of centered data 
onto the principal components, upon which the linear model 
is applied.

This framework demonstrates that a variety of aging clocks 
fundamentally rely on matrix operations, making them well- 
suited for implementations that leverage the computational 
efficiencies of modern GPU architectures.

The implementation of age prediction in pyaging begins 
with preprocessing the data matrix. Missing values are im-
puted using methodologies ranging from simple mean impu-
tation to more sophisticated techniques like KNN 
imputation. The input matrix is then curated to retain only 
the features pertinent to the selected clock, with any absent 
features being substituted with standardized values for the 
clock of interest if available or with zeros. This approach is 
adopted to accommodate the diversity of data types handled 
by pyaging, and users are duly alerted of such substitutions. 
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Additional preprocessing steps are tailored to specific models, 
such as scaling for AltumAge and binarization for BiTAge. 
The processed data are then fed into the model for age pre-
diction. Postprocessing steps, such as anti-log-linear trans-
formation for certain clocks like Horvath’s (2013) and the 
SkinAndBlood clocks, are applied as necessary. All 

computations are conducted using PyTorch (Paszke et al. 
2019) tensors within AnnData (Virshup et al. 2021) 
objects, ensuring efficient and scalable processing. The out-
put includes the predicted values across all selected clocks, 
accompanied by the respective metadata, such as citations, 
for user reference. All of the steps are printed for clarity 

Table 1. Overview of aging clocks currently available on pyaging.a

Clock name Species Model type Data type Year Citation

YingAdaptAge H.sapiens Linear Methylation 2024 Ying et al. (2024)
YingDamAge H.sapiens Linear Methylation 2024 Ying et al. (2024)
YingCausAge H.sapiens Linear Methylation 2024 Ying et al. (2024)
DNAmFitAge H.sapiens Linear Methylation 2023 McGreevy et al. (2023)
ENCen40 H.sapiens Linear Methylation 2023 Dec et al. (2023)
ENCen100 H.sapiens Linear Methylation 2023 Dec et al. (2023)
MammalianLifespan Multi Linear Methylation 2023 Li et al. (2023)
MammalianFemale Multi Linear Methylation 2023 Li et al. (2023)
CamilloPanHistone H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K9me3 H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K9ac H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K4me3 H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K4me1 H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K36me3 H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K27me3 H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
CamilloH3K27ac H.sapiens PC-ARD Histone mark 2023 de Lima Camillo et al. (2023)
MammalianBlood3 Multi Linear Methylation 2023 Lu et al. (2023)
MammalianBlood2 Multi Linear Methylation 2023 Lu et al. (2023)
MammalianSkin3 Multi Linear Methylation 2023 Lu et al. (2023)
MammalianSkin2 Multi Linear Methylation 2023 Lu et al. (2023)
Mammalian3 Multi Linear Methylation 2023 Lu et al. (2023)
Mammalian2 Multi Linear Methylation 2023 Lu et al. (2023)
Mammalian1 Multi Linear Methylation 2023 Lu et al. (2023)
OcampoATAC2 H.sapiens Linear ATAC-seq 2023 Morandini et al. (2023)
OcampoATAC1 H.sapiens Linear ATAC-seq 2023 Morandini et al. (2023)
HRSInChPhenoAge H.sapiens Linear Methylation 2022 Higgins-Chen et al. (2022)
GrimAge2 H.sapiens Linear Methylation 2022 Lu et al. (2022)
DunedinPACE H.sapiens Linear Methylation 2022 Belsky et al. (2022)
PCSkinAndBlood H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
PCPhenoAge H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
PCHorvath2013 H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
PCHannum H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
PCGrimAge H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
PCDNAmTL H.sapiens PC-linear Methylation 2022 Higgins-Chen et al. (2022)
AltumAge H.sapiens Neural network Methylation 2022 de Lima Camillo et al. (2022)
RepliTali H.sapiens Linear Methylation 2022 Endicott et al. (2022)
BiTAge C.elegans Linear RNA-seq 2021 Meyer and Schumacher (2021)
Han H.sapiens Linear Methylation 2020 Han et al. (2020)
ZhangEN H.sapiens Linear Methylation 2019 Zhang et al. (2019)
ZhangBLUP H.sapiens Linear Methylation 2019 Zhang et al. (2019)
GrimAge H.sapiens Linear Methylation 2019 Lu et al. (2019)
DNAmTL H.sapiens Linear Methylation 2019 Lu et al. (2019)
LeeControl H.sapiens Linear Methylation 2019 Lee et al. (2019)
LeeRobust H.sapiens Linear Methylation 2019 Lee et al. (2019)
LeeRefinedRobust H.sapiens Linear Methylation 2019 Lee et al. (2019)
PedBE H.sapiens Linear Methylation 2019 McEwen et al. (2020)
SkinAndBlood H.sapiens Linear Methylation 2018 Horvath et al. (2018)
PhenoAge H.sapiens Linear Methylation 2018 Levine et al. (2018)
DNAmPhenoAge H.sapiens Linear Blood chemistry 2018 Levine et al. (2018)
Meer M.musculus Linear Methylation 2018 Meer et al. (2018)
Thompson M.musculus Linear Methylation 2018 Thompson et al. (2018)
Petkovich M.musculus Linear Methylation 2017 Petkovich et al. (2017)
Stubbs M.musculus Linear Methylation 2017 Stubbs et al. (2017)
ZhangMortality H.sapiens Linear Methylation 2017 Zhang et al. (2017)
Knight H.sapiens Linear Methylation 2016 Knight et al. (2016)
Lin H.sapiens Linear Methylation 2016 Lin et al. (2016)
Horvath 2013 H.sapiens Linear Methylation 2013 Horvath (2013)
Hannum H.sapiens Linear Methylation 2013 Hannum et al. (2013)

a More information on each biomarker is available in the documentation page at https://readthedocs.org/projects/pyaging/builds/22654195/.
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using a logger based on (Qiu et al. 2022). A simple example 
is as follows: 

import pyaging as pya, pandas as pd
df ¼ pd.read_pickle(’example_methylation_-
data.pkl’)
adata ¼ pya.pp.df_to_adata(df, imputer_ 
strategy¼’knn’)
pya.pred.predict_age(adata,

clock_names=[’altumage’, ’grimage2’, 
’dunedinpace’])

Detailed tutorials and use-case examples are available on 
the documentation website: https://readthedocs.org/projects/ 
pyaging/builds/22654195/. The code is also available on 
GitHub: https://github.com/rsinghlab/pyaging.

The notebook for the example analyses in this manuscript 
is available in the Supplementary Data. The packages used 
are pandas v2.1.3 (McKinney et al. 2011), numpy v1.26.2 
(Harris et al. 2020), seaborn v0.12.2 (Waskom 2021), mat-
plotlib v3.7.1 (Hunter 2007), umap-learn v0.5.5 (McInnes 
et al. 2018), scikit-learn v1.3.2 (Pedregosa et al. 2011), pyag-
ing v0.1.6 (this manuscript), and biolearn v0.3.4 (Ying et al. 
2023). The code was run on an M1 MacBook Pro.

3 Results
To demonstrate the capabilities of the pyaging package, I 
briefly analyzed 38 methylation aging clocks and biomarkers 
of aging using data from my previous work on AltumAge (de 
Lima Camillo et al. 2022). The dataset comprises �13 000 
multi-tissue human samples from fetal tissue to centenarians 
across 142 studies, featuring beta values from overlapping 
probes of Illumina’s 27k, 450k, and EPIC arrays. pyaging 
facilitates fast and easy comparisons amongst the different 
models. See Supplementary Data to reproduce the figures 
and analyses.

First, with a single line of code, the output of 38 different 
biomarkers can be calculated. Through hierarchical cluster-
ing and Spearman correlation, expected patterns emerge 
(Fig. 1a). For instance, DNAmTL (Lu et al. 2019), and 
PCDNAmTL (Higgins-Chen et al. 2022), both estimating 
telomere length, cluster together. Similarly, the three human 
multi-tissue clocks that predict chronological age, i.e. 
AltumAge (de Lima Camillo et al. 2022), Horvath2013 
(Horvath 2013), and PCHorvath2013 (Higgins-Chen et al. 
2022), are grouped. However, there are some interesting 
observations. For instance, DunedinPACE (Belsky et al. 
2022), a measure of the pace of aging, is proximate to PedBE 
(McEwen et al. 2020), an aging clock for children and adoles-
cents. In addition, PCGrimAge (Higgins-Chen et al. 2022), a 
predictor of mortality, is near Mammalian1 (Lu et al. 2023), 
the pan-mammalian clock that predicts chronological age. 
Overall, pyaging makes it straightforward to contrast the 
performance of distinct aging clocks.

Second, given that many biomarkers are discordant, sam-
ples can be grouped into ageotypes (Ahadi et al. 2020). To vi-
sualize such behaviors, I ran PCA on the data matrix with the 
scaled result of the 38 models, followed by uniform manifold 
approximation and projection (UMAP) on the top five com-
ponents for further dimensionality reduction (Fig. 1b–e). A 
chronological age predictor, a mortality predictor, and a pace 
of aging predictor not always agree with one another. For 

instance, there are islands in which AltumAge is low (Fig. 1b) 
but GrimAge2 (Lu et al. 2022) is high (Fig. 1c). Similarly, 
some clusters exhibit diverging patterns with DunedinPACE 
(Fig. 1d). Lastly, given that all samples are from human, the 
MammalianLifespan (Li et al. 2023) predicts roughly the 
same number for the entire data. In summary, given that dif-
ferent clocks measure different phenomena, pyaging makes 
it easy to better understand aging profiles.

Third, a burgeoning field of research within the aging re-
search community is age reversal through epigenetic reprog-
ramming (de Lima Camillo and Quinlan 2021, Simpson et al. 
2021, Paine et al. 2023). With the expression of four tran-
scription factors, it has been shown that the predicted age 
with the methylation clock Horvath2013 (Horvath 2013) is 
decreased to zero (Olova et al. 2019). To shine more light 
upon this process, I ran 39 clocks in a reprogramming dataset 
[GSE54848 (Ohnuki et al. 2014)]. To better compare differ-
ent clocks, I scaled the data with one as the maximum and 
zero as the minimum of each clock (Fig. 1f). Whilst most 
clocks indeed show a rejuvenation event, more markedly be-
tween days 10 and 20 of reprogramming, a few such as telo-
mere length predictors DNAmTL and PCDNAmTL increase. 
Others do not change meaningfully, such as the centerian pre-
dictor ENCen100 (Dec et al. 2023). Excitingly, some clocks 
such as AltumAge display a drop in predicted age at Day 3 
while others such as some PC clocks only show rejuvenation 
at Day 11. This type of analysis can guide wet lab experi-
ments as a tentative rejuvenation event might be missed 
depending on the clock used.

Fourth, one of the main advantages of the package is 
speed. I compared pyaging with biolearn (Ying et al. 
2023), a preliminary CPU-based biomarker package. To 
compare their performance, I predicted the ages of the 
AltumAge data with two linear models, Horvath2013 and 
DNAmPhenoAge (Levine et al. 2018)—more complex clocks 
that would benefit the most from GPU acceleration, such as 
AltumAge, were not available on biolearn at the time of 
writing. I timed the line in which age is predicted for both 
packages given ten random samples of different sizes (Fig. 1g 
and f). At the lower end, pyaging displays a minor advan-
tage with 1024 samples for the average of both clocks (0.233 
versus 0.386 s). Nevertheless, the fold difference in time 
quickly increases with a larger sample size, with a roughly 
120-fold difference with 32768 samples (0.642 versus 
76.608 s). Moreover, the setting with the highest number of 
samples, 65536 ran out of memory with biolearn and 
could not be completed. While the absolute time is not sub-
stantial, given increasing data sizes and complexity of mod-
els, this will become more significant as the field develops. 
This becomes increasingly important as age predictors are de-
veloped for single cells given the usual large number of obser-
vations. Overall, this comparison highlights the power of 
GPU-acceleration enabled by pyaging.

4 Conclusion
Despite the abundance of aging clocks developed, a critical 
gap remains in integrating these diverse models for comprehen-
sive analysis, a need only partially addressed by existing tools 
like methylclock and methylCYPHER. My contribution, the 
pyaging package, represents a significant advancement in 
addressing these challenges. By adopting a Python-centric ap-
proach, pyaging overcomes the limitations inherent in the 
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Figure 1. Four simple analyses with pyaging. (a) Heatmap showing Spearman’s correlation amongst 38 methylation clocks in AltumAge’s dataset. Clocks 
are grouped by hierarchical clustering. (b–e) UMAP plot of the top five principal components from the scaled data matrix of 38 different clocks for 
AltumAge’s data, highlighting AltumAge (b), GrimAge2 (c), DunedinPACE (d), and MammalianLifespan (e). (f) Line plot of 39 different clocks for the 
reprogramming timecourse dataset GSE54848; 95% confidence intervals are derived from 1000 bootstraps. (g, h) Performance comparison between 
GPU-enabled age prediction with pyaging versus CPU-only biolearn using Horvath2013 and DNAmPhenoAge. Ten random samples of size n from 
AltumAge’s data were taken to construct the boxplots. Predictions for the 65 536-sample setting for was not computed for biolearn due to 
memory issues.
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R-dominated landscape of current tools, offering greater flexi-
bility for complex models. The incorporation of a wide array 
of aging clocks, covering various molecular signatures, reflects 
the commitment to a comprehensive understanding of aging. 
In addition, pyaging integrates advanced modeling techni-
ques and leverages GPU processing for enhanced computa-
tional efficiency. Its multi-species capability extends its utility 
across a range of gerontological studies. Overall, pyaging 
not only marks a substantial progress in the field of bio-
markers of aging but also sets a foundation for further scien-
tific inquiries in this rapidly developing domain.
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