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BACKGROUND: South Asians are at higher risk for type 2 diabetes (T2D) than many other race/ethnic groups. Ectopic adiposity,
specifically hepatic steatosis and visceral fat may partially explain this. Our objective was to derive metabolite risk scores for ectopic
adiposity and assess associations with incident T2D in South Asians.
METHODS: We examined 550 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort
study aged 40–84 years without known cardiovascular disease or T2D and with metabolomic data. Computed tomography scans at
baseline assessed hepatic attenuation and visceral fat area, and fasting serum specimens at baseline and after 5 years assessed T2D.
LC-MS-based untargeted metabolomic analysis was performed followed by targeted integration and reporting of known signals.
Elastic net regularized linear regression analyses was used to derive risk scores for hepatic steatosis and visceral fat using weighted
coefficients. Logistic regression models associated metabolite risk score and incident T2D, adjusting for age, gender, study site, BMI,
physical activity, diet quality, energy intake and use of cholesterol-lowering medication.
RESULTS: Average age of participants was 55 years, 36% women with an average body mass index (BMI) of 25 kg/m2 and 6%
prevalence of hepatic steatosis, with 47 cases of incident T2D at 5 years. There were 445 metabolites of known identity. Of these,
313 metabolites were included in the MET-Visc score and 267 in the MET-Liver score. In most fully adjusted models, MET-Liver (OR
2.04 [95% CI 1.38, 3.03]) and MET-Visc (OR 2.80 [1.75, 4.46]) were associated with higher odds of T2D. These associations remained
significant after adjustment for measured adiposity.
CONCLUSIONS: Metabolite risk scores for intrahepatic fat and visceral fat were strongly related to incident T2D independent of
measured adiposity. Use of these biomarkers to target risk stratification may help capture pre-clinical metabolic abnormalities.
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INTRODUCTION
Obesity measured by body mass index (BMI) criteria has well-
established associations with cardiometabolic disease but has
limitations that are increasingly being recognized [1–3]. Across the
BMI spectrum, the presence of ectopic adiposity has been
associated with a “metabolically unhealthy” phenotype, indepen-
dent of BMI [4–6]. Ectopic adiposity encompasses visceral fat
present around abdominal organs, hepatic steatosis (intrahepatic
fat), pericardial fat, and intermuscular fat, and is an emerging risk
factor for cardiometabolic disease [7]. As the prevalence of
diabetes varies substantially by race/ethnicity [8] independent of
BMI, the presence of ectopic adiposity may be a stronger risk
factor for diabetes and cardiovascular disease than BMI alone.
South Asians have a higher risk for cardiometabolic disease

than many other race/ethnic groups, at lower BMI. In a group of
U.S. South Asians in the Mediators of Atherosclerosis in South

Asians Living in America (MASALA) study, there was a higher age-
adjusted prevalence of diabetes at 23% when compared with
other racial and ethnic groups. In this study, liver and pericardial
fat were higher despite a lower BMI and waist circumference than
a non-Hispanic White population [9]. The prevalence and severity
of hepatic steatosis was found to be greater in South Asians in the
MASALA study as compared to Black, White, Chinese and Hispanic
American participants in the MESA study [10], while visceral fat
area was comparable.
Circulating metabolites and lipids are small molecules that

result from cellular processes, and characterization of a pattern of
these compounds may allow for identification of metabolically
active adiposity. An investigation in a cohort of individuals from
India, the Cardiometabolic Risk Reduction in South Asia (CARRS)
Study, has characterized general and central-obesity associated
lipids in South Asians in the diaspora [11]. Total cholesterol in HDL
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was associated with both general obesity and with a lower odds of
type 2 diabetes, while 15 nonoverlapping metabolites were
associated with central obesity, of which 10 were prospectively
associated with higher type 2 diabetes risk [11]. Separately, recent
work has shown evidence of BMI-independent heritability of
adipose tissue depots [12] and genetic predisposition of high
waist-hip ratio to cardiometabolic outcomes [13]. Several prior
studies in MASALA have shown less favorable body composition
profiles in South Asians compared with people of other races/
ethnicities, however they do not completely explain the excess
risk for diabetes [14].
As metabolically active adiposity is a risk for a variety of

cardiometabolic diseases, our goal is to assess BMI-independent
measures of adiposity, their representative metabolites and lipids
and their prospective associations with metabolic disease in South
Asians. Specifically, we aim to define a metabolomic signature of
visceral adipose tissue area and liver attenuation, and to associate
these signatures with incident type 2 diabetes.

METHODS
Participants
Data were from South Asian individuals who participated in the MASALA
community-based cohort study and had metabolomic and computed
tomography data from Exam 1. The detailed methods have been described
elsewhere [15]. MASALA is a prospective cohort study which enrolled
community-dwelling individuals living in the San Francisco Bay Area and
the greater Chicago areas from 2010 to 2013. Participants self-identified as
being of South Asian ancestry (one out of four grandparents were from
India, Pakistan, Bangladesh, Sri Lanka or Nepal) and were aged 40–84 years
and without known cardiovascular disease. After approximately 4.8 years
of follow-up, 749 (83%) participants from the entire cohort returned to
complete Exam 2. Those on nitroglycerin, with active cancer, with impaired
cognitive ability, a life expectancy less than five years, who lived in a
nursing home, or who had plans to relocate were excluded. Participants
with self-reported cirrhosis (n= 1) and alcohol consumption of >7 drinks/
week (n= 41) were excluded to restrict the analysis sample to those with
likely steatotic liver disease. We then excluded 127 participants without LC-
MS metabolomics measurements, 134 participants with prevalent T2D and
33 participants without visceral or intrahepatic fat measurements. For this
analysis, we used data from a subset of 550 participants who did not have
diabetes at baseline and had metabolomics data. (Supplementary Fig. 1)
The University of California, San Francisco and Northwestern University

Institutional Review Board approved the study protocol and all study
participants provided written informed consent.

Demographic and clinical data
Each participant underwent in-person interviews to determine age,
gender, medical history, physical activity (MET-minutes/week), diet quality
as defined by the Alternative Healthy Eating Index-2010 (AHEI-2010),
energy intake (kcal/day), smoking status and alcohol intake.

Metabolic profiling by UPLC-MS
A total of 754 serum samples obtained at Exam 1 (2010–2013) were
analyzed by ultra‐performance liquid chromatography mass spectrometry
(UPLC-MS) using analytical and quality control procedures described in
detail elsewhere [16, 17]. Sample analysis was performed in a way
designed to be orthogonal to clinical and demographic data. For quality
control assessment and data pre-processing, a study reference sample was
prepared by pooling equal parts of each study sample.
Serum samples were prepared and analyzed using UPLC-MS as

previously published [16, 17]. In brief, 50 μL aliquots were taken from
each sample, diluted 1:1 with ultrapure water for lipid profiling and 1:1.4
for small molecule profiling. Protein was removed by addition of organic
solvent to the diluted sample (four volumes isopropanol per volume of
diluted sample for lipidomic profiling and three volumes of acetonitrile per
volume of diluted sample for small molecule profiling) followed by mixing
and centrifugation to yield a homogenous supernatant. Aliquot sets of
prepared samples were subjected to chromatographic separation using an
ACQUITY UPLC (Waters Corp., Milford, MA, USA) system. Lipidomic profiling
was performed using reversed-phase chromatography (RPC) with a
2.1 × 100mm Acquity BEH C8 column maintained at 55 °C. The

chromatographic separation was performed using a binary mobile phase
system consisting of (A) a 50:25:25 mixture of H2O:ACN:IPA with 5 mm
ammonium acetate, 0.05% acetic acid, and 20 µM phosphoric acid and (B)
50:50 ACN:IPA with 5mm ammonium acetate, 0.05% acetic acid. Polar
metabolite profiling was completed using hydrophilic interaction liquid
chromatography (HILIC) with a 2.1 × 150mm Acquity BEH HILIC column
maintained at 40 °C. The chromatographic separation used a binary mobile
phase system consisting of (A) acetonitrile with 0.1% formic acid and (B)
20mM ammonium formate in water with 0.1% formic acid. Both
separation types were coupled to high resolution mass spectrometry
(Xevo G2‐S TOF mass spectrometers, Waters Corp., Manchester, UK) via a Z‐
spray electrospray ionization source. The lipidomic profiling assay was
conducted in both positive and negative ion modes (generating Lipid RPC
+ and Lipid RPC- datasets), while the HILIC assay was performed in the
positive ion mode only (generating the HILIC+ dataset). A SR sample was
acquired every 10 study samples throughout the analysis. In addition, a
dilution series was created from the SR and analyzed immediately prior to
and after the study sample analysis for use in signal filtering as described
previously [16].
Raw data was converted to the mzML open source format and signals

below an absolute intensity threshold of 100 counts were removed using
the MSConvert tool in ProteoWizard [18]. Metabolite signal extraction was
performed using PeakPantheR, an open-source package to detect,
integrate and report pre-defined and annotated lipids and metabolites
from an in-house database [19]. Elimination of potential run-order effects
and filtering of the extracted metabolites was performed using the nPYc-
Toolbox, an open-source package for data pre-processing [20]. Only those
measured with high accuracy (relative coefficient of variance in SR samples
less than 20%) and high precision (correlation to dilution in SR dilution
series greater than 0.8) were retained and put forward for biological
analysis. Of the 754 total study samples, 32 were not included in our
analysis due to insufficient sample volume and five were excluded due to
missed injection in the HILIC assay.

Cardiometabolic factors measured at baseline. Weight was determined
using a digital scale, height with a stadiometer, and waist circumference
using a measuring tape halfway between the lower ribs and the anterior
superior iliac spine, at the site of greatest circumference. Hip circumference
was measured at the maximum girth of the buttocks. Blood samples were
obtained after a requested 12-h fast. Fasting plasma glucose was measured
using the hexokinase method (Quest diagnostics, San Jose, CA). Type 2
diabetes was defined as a fasting glucose ≥126mg/dl or use of a glucose-
lowering medication.

Metabolic measures at Exam 2. We assessed incident diabetes and fasting
plasma glucose at Exam 2 with the methods described above. The change
in glucose was calculated as the difference between fasting glucose
measurement (mg/dL) at Exam 2 and at Exam 1. There were 50 cases of
incident diabetes at Exam 2.

Body composition measures
Non-contrast cardiac CT images were obtained to quantify pericardial fat
and hepatic attenuation using a cardiac-gated CT scanner: at UCSF, a
Phillips 16D scanner or a Toshiba MSD Aquilion 64 and at NWU, a Siemens
Sensation Cardiac 64 Scanner (Siemens Medical Solutions, Malvern, PA,
USA) was used. The same reading center staff under the supervision of Dr
Jeffrey Carr performed all measurements of pericardial fat volume and
hepatic attenuation. The CT scan range encompassed the entire heart and
provided information on 45mm of adipose tissue encasing the proximal
coronary arteries. We first defined the 45mm z axis volume containing the
proximal coronary arteries. The technician follows a set of regions of
interest pertaining to subcutaneous and pericardial fat within the 45mm
volume along with regions in the calibration phantom to calculate the
range of Hounsfield units for adipose tissue. The technician segments the
heart from the thorax by removing tissues beyond the lung using a
deformable model-based edge detection method such as active contours
or live wires to detect the boundary between the lung and fat around the
heart.19–21 CT images for hepatic attenuation were also interrogated
using the MIPAV software at vertebral level T12-L1. Nine regions of interest
within homogenous portions of the liver at two levels were read, avoiding
any vascular structures or other liver pathology. Assessment of hepatic
attenuation and ectopic fat was done with non-contrast computed
tomography (CT) images obtained at Exam 1 with electron-beam or
multidetector CT scanners as previously described [10]. Non-contrast
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cardiac CT images were used to quantify hepatic attenuation. There were
nine regions of interest read within homogenous portions of the liver at
two levels. Lower values of hepatic attenuation measured in Hounsfield
Units (HU) correspond to greater quantity of intrahepatic fat; to improve
the interpretation and comparability of results, we calculated the inverse of
hepatic attenuation values by multiplying the measured values by −1.
Steatotic liver disase was defined as a dichotomous variable with hepatic
fat attenuation <40 HU.
A trained CT technician obtained a lateral scout image of the abdomen

to establish position between the L4 and L5 vertebrae. Medical Image
Processing, Analysis, and Visualization (MIPAV) software (Center for
Information Technology and National Institutes of Health 1999) was used
to interrogate CT images at vertebral levels L4-L5 for the visceral fat,
intermuscular fat and subcutaneous fat measurements. The subcutaneous
tissue compartment included tissue outside the visceral cavity but within
the body contour, and visceral fat was defined as fat with the appropriate
HU within the visceral cavity.

Statistical methods
Before modeling, relative abundance of metabolites were log-transformed
to reduce the potential for outliers to influence the model. To adjust for
unreliable parameter estimates that may occur when using multiple
regression models in the setting of multicollinearity, we performed an
elastic net regularized regression model to evaluate all metabolites (446
annotated LC-MS metabolites) for their associations with each body
composition outcome. The elastic-net model allowed for a penalized linear
regression on all biomarkers simultaneously to identify the metabolites
most highly associated with each outcome. Optimal parameters for the

penalty value (α) and the regularization penalty (λ) were determined by 10-
fold cross-validation.
Data in the full dataset were randomly assigned to one of two equal

sized datasets (“training” and “testing”). Model performance was judged
based on root mean square error, with the model chosen minimizing mean
cross-validated error. Optimization was completed using STATA’s “elas-
ticnet” and postestimation commands for model prediction using 10-fold
cross-validation. For the training set, we built an elastic net model with a
penalty weight of alpha= 0.3. The shrinkage parameter lambda was
optimized using a 10-fold cross-validation framework. From a total of 445
known metabolites in the original dataset, the elastic net model selected
sets of metabolites significantly associated with each measure of adiposity
(hepatic attenuation and visceral fat area). We then applied the trained
model to the testing set to calculate predicted metabolite scores of inverse
hepatic attenuation (MET-Liver) and visceral fat area (MET-Visc) for all
participants. These metabolite profile scores were calculated as the
weighted sum of the selected metabolites with weights equal to the elastic
net regression coefficients [21].
For the analysis of incident diabetes, we used logistic regression models

with robust standard errors to assess associations of continuous inverse
hepatic attenuation, visceral fat area, MET-Liver and MET-Visc) with
incident diabetes at five-year follow-up adjusting for age, gender, and
study site (Model 1). We then further adjusted these logistic regression
models for BMI, physical activity, diet quality, energy intake and use of
lipid-lowering medication (Model 2) to incorporate covariates associated
with T2D risk. Inclusion of hypertension or use of medications used to
treated hypertension as covariates did not significantly change our point
estimates and were therefore excluded from our analysis. As a sensitivity
analysis, we stratified by glycemic status (normoglycemic and impaired
fasting glucose at baseline).
The analysis was completed using STATA (version 16.1, 2021, College

Station, TX, USA).

RESULTS
The analysis included 550 participants from the MASALA study
with measurements of ectopic fat and LC-MS metabolomics data
and without prevalent diabetes at enrollment. At Exam 1, average
age was 55 years, the participants were 36% women with an
average body mass index (BMI) of 25 kg/m2 and fasting glucose of
93mg/dL. One-fifth of participants used lipid-lowering medica-
tions, and 1/3 had metabolic syndrome, as defined by a waist
circumference of >94 cm in men and >80 cm in women. Half of
participants had a family history of diabetes (Table 1).
Using elastic net analyses, we identified metabolite profiles of

intrahepatic fat and visceral fat area. Intrahepatic fat was
represented by 267 metabolites and visceral fat area by 313
metabolites (Supplementary Table 1). Of those metabolites
representing intrahepatic fat, nearly all were present in the group
of metabolites characterizing visceral fat area.
In Model 1 analyses, with adjustment for age, gender, and study

site, the odds of incident diabetes with a 1-standard deviation
increase in intrahepatic fat was OR 1.64 [95% CI 1.25, 2.16]. In the
most fully adjusted model, after additional adjustment for physical
activity, BMI, caloric intake, AHEI-2010 Diet Quality Score, and use
of lipid-lowering medications, there was a slight attenuation in the
association, with OR 1.54 [1.13, 2.10] (p < 0.01). With use of the
metabolite score for intrahepatic fat (MET-Liver), the odds of
incident diabetes was OR 2.04 [95% CI 1.38, 3.02] (p < 0.01) in the
most fully adjusted model. Similarly, the odds of incident diabetes
was nearly 2-fold higher with one standard deviation increase in
measured visceral fat area, OR 1.98 [95% CI 1.26, 3.11] in the most
fully adjusted model. The odds of incident diabetes were OR 2.80
[1.75, 4.46] with the MET-Visc index. (Table 2) There were no
interactions by gender found in any model.
In analyses of MET-Liver adjusting for CT-measured intrahepatic

fat, the odds of incident diabetes remained significant in the fully
adjusted model (OR 1.87 [1.06, 3.27]) (p= 0.03). Consistent with
this finding, the odds of incident diabetes by MET-Visc adjusted
for CT-measured visceral fat area remained robust (OR 2.38 [95%
CI 1.34, 4.25] (p= 0.003). (Table 2)

Table 1. Clinical and demographic characteristics of the MASALA
study population without prevalent diabetes at Exam 1.

Demographic characteristics

Age (years) 55 (9)

Female N (%) 277 (36)

Behavioral characteristics

Physical activity (MET-minutes/week) (Median, IQR) 990 (623)

Caloric intake (Kcal/day) 1673 (498)

AHEI-2010 Score 70 (7)

Smoking, never N (%) 477 (87)

Alcohol use, ever N (%) 168 (31)

Medical history and Metabolic characteristics

Lipid-lowering medication use N (%) 105 (19)

Family history of diabetes, yes N (%) 263 (48)

Normoglycemic N (%)a 398 (72)

Metabolic syndrome N (%)b 159 (29)

Body Mass Index (kg/m2) 25 (4)

Fasting glucose (mg/dL) 93 (12)

Waist circumference (cm) 92 (10)

Radiographic characteristics

Steatotic liver disease (HU < 40) (No, %) 35 (6)

Liver fat attenuation (HU) 57 (10)

Visceral fat area (cm2) 129 (52)

Subcutaneous fat area (cm2) 235 (89)

Calculated adiposity

MET-Visc 133 (31)

MET-Liver 55 (7)

n= 550, Mean (SD) unless otherwise specified.
aNormoglycemic (fasting glucose <100mgdL and not taking hypoglycemic
medications).
bMetabolic syndrome definition (waist circumference ≥94 cm for men,
≥80 cm for women).
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After analyses adjusting models for both measured intrahepatic
fat and visceral fat area, only visceral fat area remained
significantly associated with odds of incident diabetes (OR 1.78
[95% CI 1.08, 2.93]).
When stratifying the at-risk population to those who were

normoglycemic at baseline or with impaired fasting glucose,
measured adiposity, MET-Liver and MET-VISC had statistically
significant associations with incident T2D only in participants who
were normoglycemic at baseline (Supplementary Table 2).

DISCUSSION
In an analysis of South Asian Americans without prevalent
diabetes, a metabolite-derived intrahepatic fat score and visceral
fat score were both associated with odds of incident type 2
diabetes at five years. These associations remained significant
after adjustment for BMI, and also after adjusting for measured
adiposity, suggesting that the metabolite-derived score may
capture shifts in the metabolic environment beyond those
represented by measurable liver or visceral fat.
BMI is an inadequate measure of metabolically risky adiposity,

especially in South Asian and East Asian populations [8, 22]. Despite
lower World Health Organization (WHO) cutpoints for overweight and
obesity, metabolic abnormalities abound in “normal” weight people
[8]. In an analysis of the MASALA Study as compared with Black,
White, Hispanic and Chinese American participants of the MESA
Study, South Asians with a BMI of 19.6 kg/m2 had equivalent
metabolic abnormalities to people of other race or ethnic groups with
much higher BMI values [1]. It is well-known that abdominal obesity is
linked with metabolic dysfunction. Intrahepatic fat is associated with
metabolic dyslipidemia [5] and insulin resistance [4], and diabetes
[23]. Visceral fat is also associated with type 2 diabetes [24] and
gestational diabetes [25] more strongly than overall adiposity.
In well-adapted physiological states, excess energy is captured by

subcutaneous fat, which expands to store the energy and maintain
balance [26]. When excess energy exceeds the capacity of
subcutaneous fat to accommodate and store it, there is spillover
in the form of free fatty acids which then circulate to house
themselves in liver and visceral adipose tissue [24]. In this disrupted
metabolic state, there is decreased glucose uptake by skeletal
muscles, increased lipolysis, gluconeogenesis and decreased insulin

secretion over time [26]. The metabolites identified in this study are
likely reflections of these disrupted metabolic processes, represent-
ing the etiology behind the associations of ectopic adiposity before
clinically-measurable glycemic dysregulation is present. Capturing
these initial signals of disrupted processes before clinically relevant
aberrations in glycemic control are present, or even before these
ectopic fat stores may be measured radiographically, may be a
means of using metabolites as biomarkers for intrahepatic fat and
visceral adiposity as early biomarkers of T2D risk.
The metabolite score identified in this study uses LC-MS derived

circulating metabolites to represent adiposity. Prior work has shown
that metabolite-derived scores may have higher correlation with
disease prevalence and incidence than the risk factors they represent,
such as the link between diet and cardiovascular disease [21]. This
may be in part due to the exposure itself – diet is difficult to measure,
often determined by self-report, which is subject to some bias.
Additionally, given the wide range of metabolites included in our
score, these metabolites likely reflect numerous metabolic processes
that are affected by metabolically active fat beyond those captured
by the presence of the fat itself. Ectopic fat, specifically intrahepatic
fat and visceral adiposity, and impaired glycemia likely have
bidirectional effects once present; the presence of each contributes
to exacerbation of its counterpart [27]. Therefore, the identification of
metabolically active adiposity before the presence of glycemic
dysfunction may allow for more timely intense lifestyle intervention,
including weight management, improvement in diet quality and an
increase in moderate and vigorous intensity exercise.
Several metabolites, notably ceramides and sphingolipids, may

directly affect and be affected by intrahepatic fat. SulfoHex-
Cer(d18:2/24:1), in particular, had high coefficients of association
with both intrahepatic fat and visceral fat in these analyses.
Ceramides may be especially important as links between
intrahepatic fat and metabolic dysregulation, as indicators of lipid
excess and impairment of insulin signaling pathways [28–30].
Saturated fat intake has been related to increased intrahepatic fat
and also with increased circulating ceramides [31, 32]. The amino
acid proline, previously associated with prevalent and incident
T2D in other cohorts, was also highly represented in metabolite
scores for both visceral adiposity and intrahepatic fat [33, 34].
Conversely, alpha and beta carotene had strong negative

coefficients representing inverse associations with each type of fat

Table 2. Odds of incident diabetes at 5 years by measured and predicted values for intrahepatic fat and visceral fata.

Oddsb of Incident Diabetes, Odds Ratio [95% CI]

Unadjusted P value Model 1c P value Model 2d P value

Hepatic fat, measured by CT or metabolite score

Intrahepatic fata 1.61 [1.23, 2.10] 4.48e−04 1.65 [1.25, 2.16] 3.26e−04 1.53 [1.13, 2.10] 6.71e−03

MET-Liver 1.91 [1.38, 2.65] 1.1e−04 2.04 [1.46, 2.86] 3.33e−05 2.04 [1.37, 3.03] 3.91e−04

Visceral fat, measured by CT or metabolite score

Visceral fat 1.76 [1.36, 2.27] 1.76e−05 1.86 [1.39, 2.48] 2.44e−05 1.98 [1.26, 3.11] 3.18e−03

MET-Visc 2.23 [1.52, 3.25] 3.46e−05 2.43 [1.67, 3.55] 4.25e−06 2.80 [1.75, 4.46] 1.53e−05

Metabolite-derived adiposity scores adjusted for CT-measured adiposity

MET-Liver, adjusted for Intrahepatic fat – – – – 1.87 [1.06, 3.27] 0.03

MET-Visc, adjusted for visceral fat – – – – 2.38 [1.34, 4.25] 3.20e−03

Measured visceral fat area adjusted for hepatic attenuation

Intrahepatic fat – – – – 1.36 [0.97, 1.92] 0.08

Visceral fat – – – – 1.78 [1.08, 2.93] 0.02
aInverse hepatic attenuation in Hounsfield units (HU*-1) visceral fat area (cm2).
bOR by z-score of inverse hepatic attenuation or visceral fat area (cm2).
cAdjusted for age, gender, study site.
dModel 1+ adjustment for BMI (kg/m2), energy intake (kCal/day), Alternative Health Eating Index-2010 (AHEI-2010), physical activity (MET-minutes/week), use
of lipid-lowering medications.
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in the elastic net regression. These may be representative of fruit
and vegetable intake and healthful diet intake overall, which has
lower associations with intrahepatic fat [35] and diabetes [36, 37]
in epidemiologic studies. In prior NHANES analyses, low serum
antioxidant concentration, including alpha- and beta-carotene
status, was associated with higher rates of metabolic syndrome
[38]. Overall, the presence of these metabolites within the risk
score reflects risk factors for metabolic dysregulation. In the future,
measurement of metabolite risk scores may serve as a means to
monitor the effects of lifestyle changes on ectopic adiposity.
The directionality of association between metabolically active

adiposity and glycemic dysregulation is unclear, and the results of
our analysis support the possibility that ectopic adiposity may
develop prior to clinically notable glycemic change. In supple-
mental analyses stratifying for glycemia, we found that both
adiposity and the metabolite scores for adiposity were associated
with incident T2D in those who were normoglycemic at baseline,
but not in those with impaired fasting glucose. This further
suggests that the presence of intrahepatic fat and visceral
adiposity may be an early indicator of metabolic dysfunction,
however once impaired glycemia, once present, is the main driver
of risk for T2D. Therefore, these associated metabolite signatures,
may serve as a biomarker for metabolic dysfunction prior to the
evidence of impaired glycemia. These analyses may be affected by
sample size, as there were fewer participants with impaired fasting
glucose at baseline. Still, our findings suggest that the derived
metabolite risk scores may assist in determining risk for type 2
diabetes even before fasting glucose is elevated.
Our analysis has several strengths: a large, well-characterized

South Asian population in America with uniquely high risks for
type 2 diabetes with robust clinical, demographic, adipose tissue
and metabolomics data and the benefit of longitudinal follow-up
of metabolic change. Limitations to our analysis are present,
including metabolomics measured at one time point and a
population already aged at least 40 years an entrance into the
cohort; we could not identify early-life risk for adiposity. We did
not have time-to-event data as there was data from only one
follow-up available. The metabolite score was calculated based on
observed data, then used in a regression model which treated it as
observed data, thereby underestimating the variance in the
calculated score as compared with the observed data. Therefore,
we cannot directly compare strength of association between the
observed and calculated odds ratios.
Still, since the majority of T2D screening is based on risk

stratification by BMI, our findings suggest that characterizing
adiposity and associated metabolic changes in a population with
lower rates of overweight and obesity may aid in defining T2D risk.
As these relationships remained strong despite adjustment for
BMI, use of a metabolite risk score as a biomarker of visceral and
intrahepatic fat can signal elevated risk for T2D regardless of the
presence of BMI-defined overweight or obesity.

CONCLUSION
In a population of South Asians in the United States, metabolite
risk scores representative of visceral fat and intrahepatic fat were
associated with incident diabetes. Future work including the
metabolites most representative of these adipose fat depots as
measures of risk may help target prevention for future type 2
diabetes, especially in those populations without traditional risk
factors of overweight or obesity.

DATA AVAILABILITY
Data described in the manuscript, code book, and analytic code will be made
available upon request pending request to MASALA Study Steering Committee for
reasons of participant confidentiality
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